Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

03.03.2020 | Ausgabe 4/2020

Water Resources Management 4/2020

Quantifying the Uncertainties in Data-Driven Models for Reservoir Inflow Prediction

Zeitschrift:
Water Resources Management > Ausgabe 4/2020
Autoren:
Xiaoli Zhang, Haixia Wang, Anbang Peng, Wenchuan Wang, Baojian Li, Xudong Huang
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s11269-020-02514-7) contains supplementary material, which is available to authorized users.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Reservoir inflow prediction is subject to high uncertainties in data-driven modelling. In this study, a decomposition scheme is proposed to evaluate the individual and combined contributions of uncertainties from input sets and data-driven models to the total predictive uncertainty. Six variables (i.e., inflow (Q), precipitation (P), relative humidity (H), minimum temperature (Tmin), maximum temperature (Tmax) and precipitation forecast (F)), and three data-driven models (i.e., artificial neural network (ANN), support vector machine (SVM), and adaptive neuro fuzzy inference systems (ANFIS)) are used to produce an ensemble of 10-day inflow forecast for Huanren reservoir in China, and the analysis of variance (ANOVA) method is employed to decompose the uncertainty. The ensemble forecast results show that when the three variables, i.e., Q, P and F, are used only, the predictive accuracy of the data-driven models is very high and the addition of the other three variables, i. e., H, Tmin and Tmax, can slightly improve the predictive accuracy. The decomposition results indicate that the input set is the dominant source of uncertainty, the contribution of the data-driven model is limited and has a strong seasonal variation: larger in winter and summer, smaller in spring and autumn. Most importantly, the interactive contribution of the input set and the data-driven model to the total predictive uncertainty is very high and is more significant than the individual contribution from the model itself, implying that the combined effects of the input set and the data-driven model should be carefully considered in the modelling process.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Zusatzmaterial
Nur für berechtigte Nutzer zugänglich
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2020

Water Resources Management 4/2020 Zur Ausgabe