Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 10/2011

01.10.2011 | Special Issue - Original Article

Quantitative evaluation of upper-limb motor control in robot-aided rehabilitation

verfasst von: Loredana Zollo, Luca Rossini, Marco Bravi, Giovanni Magrone, Silvia Sterzi, Eugenio Guglielmelli

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 10/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper is focused on the multimodal analysis of patient performance, carried out by means of robotic technology and wearable sensors, and aims at providing quantitative measure of biomechanical and motion planning features of arm motor control following rehabilitation. Upper-limb robotic therapy was administered to 24 community-dwelling persons with chronic stroke. Performance indices on patient motor performance were computed from data recorded with the InMotion2 robotic machine and a magneto-inertial sensor. Motor planning issues were investigated by means of techniques of motion decomposition into submovements. A linear regression analysis was carried out to study correlation with clinical scales. Robotic outcome measures showed a significant improvement of kinematic motor performance; improvement of dynamic components was more significant in resistive motion and highly correlated with MP. The analysis of motion decomposition into submovements showed an important change with recovery of submovement number, amplitude and order, tending to patterns measured in healthy subjects. Preliminary results showed that arm biomechanical functions can be objectively measured by means of the proposed set of performance indices. Correlation with MP is high, while correlation with FM is moderate. Features related to motion planning strategies can be extracted from submovement analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
0 < R ≤ 0.3 indicates a weak correlation; 0.3 < R ≤ 0.7 indicates a moderate correlation; R > 0.7 indicates a strong correlation [19].
 
Literatur
1.
Zurück zum Zitat Berthier NE (1996) Learning to reach: a mathematical model. Dev Psychol 32:811–823CrossRef Berthier NE (1996) Learning to reach: a mathematical model. Dev Psychol 32:811–823CrossRef
2.
Zurück zum Zitat Bhushan N, Shadmehr R (1999) Computational nature of human adaptive control during learning of reaching movements in force fields. Biol Cybern 81:39–60PubMedCrossRef Bhushan N, Shadmehr R (1999) Computational nature of human adaptive control during learning of reaching movements in force fields. Biol Cybern 81:39–60PubMedCrossRef
3.
Zurück zum Zitat Bosecker C, Dipietro L, Volpe B, Krebs HI (2010) Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke. Neurorehabil Neural Repair 24:1545–9683 Bosecker C, Dipietro L, Volpe B, Krebs HI (2010) Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke. Neurorehabil Neural Repair 24:1545–9683
4.
Zurück zum Zitat Bowen A, Lincoln NB (2007) Cognitive rehabilitation for spatial neglect following stroke. Cochrane Database Syst Rev (2) Bowen A, Lincoln NB (2007) Cognitive rehabilitation for spatial neglect following stroke. Cochrane Database Syst Rev (2)
5.
Zurück zum Zitat Brewer BR, McDowell SK, Worthen-Chaudhari LC (2007) Poststroke upper extremity rehabilitation: a review of robotic systems and clinical results. Top Stroke Rehabil 14:22–44PubMedCrossRef Brewer BR, McDowell SK, Worthen-Chaudhari LC (2007) Poststroke upper extremity rehabilitation: a review of robotic systems and clinical results. Top Stroke Rehabil 14:22–44PubMedCrossRef
6.
Zurück zum Zitat Cirstea MC, Levin MF (2000) Compensatory strategies for reaching in stroke. Brain 123:940–953PubMedCrossRef Cirstea MC, Levin MF (2000) Compensatory strategies for reaching in stroke. Brain 123:940–953PubMedCrossRef
7.
Zurück zum Zitat Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza MC, Dario P, Minuco G (2008) Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb. Neurorehabil Neural Repair 22:50–63PubMed Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza MC, Dario P, Minuco G (2008) Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb. Neurorehabil Neural Repair 22:50–63PubMed
9.
Zurück zum Zitat Duncan PW, Propst M, Nelson SG (1983) Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Ther 63:1606–1610PubMed Duncan PW, Propst M, Nelson SG (1983) Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Ther 63:1606–1610PubMed
10.
Zurück zum Zitat Fishbach A, Roy SA, Bastianen C, Miller LE, Houk JC (2005) Kinematic properties of on-line error corrections in the monkey. Exp Brain Res 164:442–457PubMedCrossRef Fishbach A, Roy SA, Bastianen C, Miller LE, Houk JC (2005) Kinematic properties of on-line error corrections in the monkey. Exp Brain Res 164:442–457PubMedCrossRef
11.
Zurück zum Zitat Fishbach A, Roy SA, Bastianen C, Miller LE, Houk JC (2007) Deciding when and how to correct a movement: discrete submovements as a decision making process. Exp Brain Res 177:45–63PubMedCrossRef Fishbach A, Roy SA, Bastianen C, Miller LE, Houk JC (2007) Deciding when and how to correct a movement: discrete submovements as a decision making process. Exp Brain Res 177:45–63PubMedCrossRef
12.
Zurück zum Zitat Flash T, Henis E (1991) Arm trajectory modifications during reaching towards visual targets. J Cogn Neurosci 3:220–230CrossRef Flash T, Henis E (1991) Arm trajectory modifications during reaching towards visual targets. J Cogn Neurosci 3:220–230CrossRef
13.
Zurück zum Zitat Gomez-Pinilla F, Ying Z, Roy RR, Molteni R, Edgerton VR (2002) Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J Neurophysiol 88:2187–2195PubMedCrossRef Gomez-Pinilla F, Ying Z, Roy RR, Molteni R, Edgerton VR (2002) Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J Neurophysiol 88:2187–2195PubMedCrossRef
14.
Zurück zum Zitat Gregson JM, Leathley MJ, Moore AP, Smith TL, Sharma AK, Watkins CL (2000) Reliability of measurements of muscle tone and muscle power in stroke patients. Age Ageing 29:223–228PubMedCrossRef Gregson JM, Leathley MJ, Moore AP, Smith TL, Sharma AK, Watkins CL (2000) Reliability of measurements of muscle tone and muscle power in stroke patients. Age Ageing 29:223–228PubMedCrossRef
15.
Zurück zum Zitat Guglielmelli E, Johnson MJ, Shibata T (2009) Guest editorial special issue on rehabilitation robotics. IEEE Trans Robot 25:477–480CrossRef Guglielmelli E, Johnson MJ, Shibata T (2009) Guest editorial special issue on rehabilitation robotics. IEEE Trans Robot 25:477–480CrossRef
16.
Zurück zum Zitat Hoffmann T, Bennett S, Koh CL, McKenna K (2010) A systematic review of cognitive interventions to improve functional ability in people who have cognitive impairment following stroke. Top Stroke Rehabil 17(2):99–107PubMedCrossRef Hoffmann T, Bennett S, Koh CL, McKenna K (2010) A systematic review of cognitive interventions to improve functional ability in people who have cognitive impairment following stroke. Top Stroke Rehabil 17(2):99–107PubMedCrossRef
17.
Zurück zum Zitat Hogan N, Sternad D (2009) Sensitivity of smoothness measures to movement duration, amplitude, and arrests. J Mot Behav 41:6CrossRef Hogan N, Sternad D (2009) Sensitivity of smoothness measures to movement duration, amplitude, and arrests. J Mot Behav 41:6CrossRef
18.
Zurück zum Zitat Hogan N, Krebs HI, Sharon A, Charnnarong J (1995) Interactive robotic therapist. Massachusetts Institute of Technology, Cambridge, U.S. Patent #5466213 Hogan N, Krebs HI, Sharon A, Charnnarong J (1995) Interactive robotic therapist. Massachusetts Institute of Technology, Cambridge, U.S. Patent #5466213
19.
Zurück zum Zitat Jackson SL (2003) Research methods, statistics: a critical thinking approach. Wadsworth/Thomson Learning Ed, Belmont Jackson SL (2003) Research methods, statistics: a critical thinking approach. Wadsworth/Thomson Learning Ed, Belmont
20.
Zurück zum Zitat Jones TA, Chu CJ, Grande LA, Gregory AD (1999) Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J Neurosci 19:10153–10163PubMed Jones TA, Chu CJ, Grande LA, Gregory AD (1999) Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J Neurosci 19:10153–10163PubMed
21.
Zurück zum Zitat Kawato M (1992) Optimization and learning in neural networks for formation and control of coordinated movement. In: Meyer DE, Kornblum S (eds) Attention and performance, vol XIV. MIT Press, Cambridge, pp 821–849 Kawato M (1992) Optimization and learning in neural networks for formation and control of coordinated movement. In: Meyer DE, Kornblum S (eds) Attention and performance, vol XIV. MIT Press, Cambridge, pp 821–849
22.
Zurück zum Zitat Kempermann G, Van Praag H, Gage FH (2000) Activity-dependent regulation of neuronal plasticity and self repair. Prog Brain Res 127:35–48PubMedCrossRef Kempermann G, Van Praag H, Gage FH (2000) Activity-dependent regulation of neuronal plasticity and self repair. Prog Brain Res 127:35–48PubMedCrossRef
23.
Zurück zum Zitat Krakauer JW (2006) Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol 19:84–90PubMedCrossRef Krakauer JW (2006) Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol 19:84–90PubMedCrossRef
24.
Zurück zum Zitat Krebs HI, Hogan N, Aisen ML, Volpe BT (1998) Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng 6:75–87PubMedCrossRef Krebs HI, Hogan N, Aisen ML, Volpe BT (1998) Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng 6:75–87PubMedCrossRef
25.
Zurück zum Zitat Krebs HI, Palazzolo JJ, Dipietro L, Ferraro M, Krol J, Rannekleiv K, Volpe BT, Hogan N (2003) Rehabilitation robotics: performance-based progressive robot-assisted therapy. Auton Robots 15:7–20CrossRef Krebs HI, Palazzolo JJ, Dipietro L, Ferraro M, Krol J, Rannekleiv K, Volpe BT, Hogan N (2003) Rehabilitation robotics: performance-based progressive robot-assisted therapy. Auton Robots 15:7–20CrossRef
26.
Zurück zum Zitat Krebs HI, Volpe BT, Williams D, Celestino J, Charles SK, Lynch D, Hogan N (2007) Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15:327–335PubMedCrossRef Krebs HI, Volpe BT, Williams D, Celestino J, Charles SK, Lynch D, Hogan N (2007) Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15:327–335PubMedCrossRef
27.
Zurück zum Zitat Kwakkel G, Kollen B, Lindeman E (2004) Understanding the pattern of functional recovery after stroke: facts and theories. Restor Neurol Neurosci 22:281–299PubMed Kwakkel G, Kollen B, Lindeman E (2004) Understanding the pattern of functional recovery after stroke: facts and theories. Restor Neurol Neurosci 22:281–299PubMed
28.
Zurück zum Zitat Kwakkel G, van Peppen R, Wagenaar RC, Wood Dauphinee S, Richards C, Ashburn A, Miller K, Lincoln N, Partridge C, Wellwood I, Langhorne P (2004) Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke 35:2529–2536PubMedCrossRef Kwakkel G, van Peppen R, Wagenaar RC, Wood Dauphinee S, Richards C, Ashburn A, Miller K, Lincoln N, Partridge C, Wellwood I, Langhorne P (2004) Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke 35:2529–2536PubMedCrossRef
29.
Zurück zum Zitat Latash ML, Anson JG (1996) What are “normal” movements in atypical populations? Behav Brain Sci 19:55–106CrossRef Latash ML, Anson JG (1996) What are “normal” movements in atypical populations? Behav Brain Sci 19:55–106CrossRef
30.
Zurück zum Zitat Lee D, Port NL, Georgopoulos AP (1997) Manual interception of moving targets II. On-line control of overlapping submovements. Exp Brain Res 116:421–433PubMedCrossRef Lee D, Port NL, Georgopoulos AP (1997) Manual interception of moving targets II. On-line control of overlapping submovements. Exp Brain Res 116:421–433PubMedCrossRef
31.
Zurück zum Zitat Levin MF, Kleim JA, Wolf SL (2009) What do motor “Recovery” and “Compensation” mean in patients following stroke? Neurorehabil Neural Repair 23:313–319PubMed Levin MF, Kleim JA, Wolf SL (2009) What do motor “Recovery” and “Compensation” mean in patients following stroke? Neurorehabil Neural Repair 23:313–319PubMed
32.
Zurück zum Zitat Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, Ringer RJ, Wagner TH, Krebs HI, Volpe BT, Bever CT, Bravata DM, Duncan PW, Corn BH, Maffucci AD, Nadeau SE, Conroy SS, Powell JM, Huang GD, Peduzzi P (2010) Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med 362:1772–1783PubMedCrossRef Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, Ringer RJ, Wagner TH, Krebs HI, Volpe BT, Bever CT, Bravata DM, Duncan PW, Corn BH, Maffucci AD, Nadeau SE, Conroy SS, Powell JM, Huang GD, Peduzzi P (2010) Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med 362:1772–1783PubMedCrossRef
33.
Zurück zum Zitat Masur H (2008) The rational use of robots in neurorehabilitation-fact or fiction? Dtsch Arztebl Int 105:329PubMed Masur H (2008) The rational use of robots in neurorehabilitation-fact or fiction? Dtsch Arztebl Int 105:329PubMed
34.
Zurück zum Zitat Medical Research Council/Guarantors of Brain (1986) Aids to the examination of the peripheral nervous system. Bailliere Tindall, London Medical Research Council/Guarantors of Brain (1986) Aids to the examination of the peripheral nervous system. Bailliere Tindall, London
35.
Zurück zum Zitat Mehrholz J, Platz T, Kugler J, Pohl M (2009) Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke (Review). Cochrane Lib 4:1–44 Mehrholz J, Platz T, Kugler J, Pohl M (2009) Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke (Review). Cochrane Lib 4:1–44
36.
Zurück zum Zitat Meyer DE, Abrams RA, Kornblum S, Wright CE, Smith JE (1988) Optimality in human motor performance: ideal control of rapid aimed movements. Psychol Rev 95:340–370PubMedCrossRef Meyer DE, Abrams RA, Kornblum S, Wright CE, Smith JE (1988) Optimality in human motor performance: ideal control of rapid aimed movements. Psychol Rev 95:340–370PubMedCrossRef
37.
Zurück zum Zitat Milner T (1992) A model for the generation of movements requiring endpoint precision. Neuroscience 49:487–496PubMedCrossRef Milner T (1992) A model for the generation of movements requiring endpoint precision. Neuroscience 49:487–496PubMedCrossRef
39.
Zurück zum Zitat Novak KE, Miller LE, Houk JC (2000) Kinematics of rapid hand movements in a knobturning task. Exp Brain Res 132:419–433PubMedCrossRef Novak KE, Miller LE, Houk JC (2000) Kinematics of rapid hand movements in a knobturning task. Exp Brain Res 132:419–433PubMedCrossRef
40.
Zurück zum Zitat Novak KE, Miller LE, Houk JC (2002) The use of overlapping submovements in the control of rapid hand movements. Exp Brain Res 144(3):351–364PubMedCrossRef Novak KE, Miller LE, Houk JC (2002) The use of overlapping submovements in the control of rapid hand movements. Exp Brain Res 144(3):351–364PubMedCrossRef
41.
Zurück zum Zitat Nudo RJ, Friel KM (1999) Cortical plasticity after stroke: implications for rehabilitation. Rev Neurol 155:713–717PubMed Nudo RJ, Friel KM (1999) Cortical plasticity after stroke: implications for rehabilitation. Rev Neurol 155:713–717PubMed
42.
Zurück zum Zitat Prange GB, Jannink MJA, Groothuis-Oudshoorn CGM, Hermens HJ, IJzerman MJ (2006) Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev 43:171–184PubMedCrossRef Prange GB, Jannink MJA, Groothuis-Oudshoorn CGM, Hermens HJ, IJzerman MJ (2006) Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev 43:171–184PubMedCrossRef
43.
Zurück zum Zitat Rohrer B, Hogan N (2003) Avoiding spurious submovement decompositions: a globally optimal algorithm. Biol Cybern 89:190–199PubMedCrossRef Rohrer B, Hogan N (2003) Avoiding spurious submovement decompositions: a globally optimal algorithm. Biol Cybern 89:190–199PubMedCrossRef
44.
Zurück zum Zitat Rohrer B, Hogan N (2006) Avoiding spurious submovement decompositions II: a scattershot algorithm. Biol Cybern 94:409–414PubMedCrossRef Rohrer B, Hogan N (2006) Avoiding spurious submovement decompositions II: a scattershot algorithm. Biol Cybern 94:409–414PubMedCrossRef
45.
Zurück zum Zitat Rohrer B, Fasoli S, Krebs HI et al (2002) Movement smoothness changes during stroke recovery. J Neurosci 22:8297–8304PubMed Rohrer B, Fasoli S, Krebs HI et al (2002) Movement smoothness changes during stroke recovery. J Neurosci 22:8297–8304PubMed
46.
Zurück zum Zitat Rossini L (2010) Neuroinspired interfaces for human-machine interaction. PhD Thesis Rossini L (2010) Neuroinspired interfaces for human-machine interaction. PhD Thesis
47.
Zurück zum Zitat Saunders JA, Knill DC (2003) Humans use continuous visual feedback from the hand to control fast reaching movements. Exp Brain Res 152:341–352PubMedCrossRef Saunders JA, Knill DC (2003) Humans use continuous visual feedback from the hand to control fast reaching movements. Exp Brain Res 152:341–352PubMedCrossRef
48.
Zurück zum Zitat Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224PubMed Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224PubMed
49.
Zurück zum Zitat Smith MA, Shadmehr R (2005) Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J Neurophysiol 93:2809–2821PubMedCrossRef Smith MA, Shadmehr R (2005) Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J Neurophysiol 93:2809–2821PubMedCrossRef
50.
Zurück zum Zitat Smith MA, Brandt J, Shadmehr R (2000) Motor disorder in Huntington’s disease begins as a dysfunction in error feedback control. Nature 403:544–549PubMedCrossRef Smith MA, Brandt J, Shadmehr R (2000) Motor disorder in Huntington’s disease begins as a dysfunction in error feedback control. Nature 403:544–549PubMedCrossRef
51.
Zurück zum Zitat Steenbergen B, Van Thiel E, Hulstijn W, Meulenbroek RGJ (2000) The coordination of reaching and grasping in spastic hemiparesis. Hum Mov Sci 19:75–105CrossRef Steenbergen B, Van Thiel E, Hulstijn W, Meulenbroek RGJ (2000) The coordination of reaching and grasping in spastic hemiparesis. Hum Mov Sci 19:75–105CrossRef
52.
Zurück zum Zitat Takahashi CD, Der-Yeghiaian L, Le V, Motiwala RR, Cramer SC (2008) Robot-based hand motor therapy after stroke. Brain 131:425–437PubMedCrossRef Takahashi CD, Der-Yeghiaian L, Le V, Motiwala RR, Cramer SC (2008) Robot-based hand motor therapy after stroke. Brain 131:425–437PubMedCrossRef
53.
Zurück zum Zitat Timmermans AAA, Seelen HAM, Willmann RD, Kingma H (2009) Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. J Neuroeng Rehabil 6:1–18PubMedCrossRef Timmermans AAA, Seelen HAM, Willmann RD, Kingma H (2009) Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. J Neuroeng Rehabil 6:1–18PubMedCrossRef
54.
Zurück zum Zitat Vallbo AB, Wessberg J (1993) Organization of motor output in slow finger movements in man. J Physiol 469:673–691PubMed Vallbo AB, Wessberg J (1993) Organization of motor output in slow finger movements in man. J Physiol 469:673–691PubMed
55.
Zurück zum Zitat Woodworth RS (1899) The accuracy of voluntary movement. J Nerv Ment Dis 26:743–752CrossRef Woodworth RS (1899) The accuracy of voluntary movement. J Nerv Ment Dis 26:743–752CrossRef
56.
Zurück zum Zitat Zollo L, Salerno A, Rossini L, Guglielmelli E (2010) Submovement composition for motion and interaction control of a robot manipulator. In: Proceedings of the IEEE international conference on biomedical robotics and biomechatronics. Tokyo, Japan Zollo L, Salerno A, Rossini L, Guglielmelli E (2010) Submovement composition for motion and interaction control of a robot manipulator. In: Proceedings of the IEEE international conference on biomedical robotics and biomechatronics. Tokyo, Japan
57.
Zurück zum Zitat Zollo L, Gallotta E, Guglielmelli E, Sterzi S (2011) Robotic technologies and rehabilitation: new tools for upper-limb therapy and assessment in chronic stroke. Eur J Phys Rehabil Med 47:223–236 Zollo L, Gallotta E, Guglielmelli E, Sterzi S (2011) Robotic technologies and rehabilitation: new tools for upper-limb therapy and assessment in chronic stroke. Eur J Phys Rehabil Med 47:223–236
Metadaten
Titel
Quantitative evaluation of upper-limb motor control in robot-aided rehabilitation
verfasst von
Loredana Zollo
Luca Rossini
Marco Bravi
Giovanni Magrone
Silvia Sterzi
Eugenio Guglielmelli
Publikationsdatum
01.10.2011
Verlag
Springer-Verlag
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 10/2011
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-011-0808-1

Weitere Artikel der Ausgabe 10/2011

Medical & Biological Engineering & Computing 10/2011 Zur Ausgabe