Skip to main content
Erschienen in: Neural Computing and Applications 14/2020

07.11.2019 | Original Article

Quantitative model of irrigation effect on maize yield by deep neural network

verfasst von: Babak Saravi, A. Pouyan Nejadhashemi, Bo Tang

Erschienen in: Neural Computing and Applications | Ausgabe 14/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A rapidly expanding world population and extreme climate change have made food production a crucial challenge in the twenty-first century. Improving crop management could be an effective solution for this challenge. However, due to the associated cost and time to perform field works, researchers are widely rely on agricultural systems modeling to examine the impacts of different crop management scenarios. Meanwhile, due to the complexity of agricultural systems modeling, their applications in producing practical knowledge for producers are limited. Meanwhile, deep learning techniques have been recognized as the preferred method compared to other machine learning techniques, especially when dealing with large datasets. In addition, deep learning techniques are easily adopted by non-experts due to the feature of learning ability that can automatically discover the classifications from raw data. Meanwhile, one of the drawbacks of using deep learning techniques is the training time, which can last anywhere from a couple of weeks to even a few months. Therefore, the goal of this study is to examine the applicability of deep learning techniques to compute a numerical model of crop growth. In this study, an agricultural systems model known as the Decision Support System for Agrotechnology Transfer (DSSAT) is used to evaluate the impacts of irrigation amount and time of application on crop yield. A deep learning network is utilized and trained by incorporating the large amounts of DSSAT models inputs (i.e., precipitation date, precipitation amount, irrigation date irrigation amount) and output (i.e., maize yield at the end of the growing season). However, in order to simplify the process, we combined the amount of irrigation and rainfall together and presented them in the form of the amount of water per day. Experimental results have demonstrated the effectiveness of this proposed deep learning technique in crop yield prediction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat Bennett J, Jones J, Zur B, Hammond L (1986) Interactive effects of nitrogen and water stresses on water relations of field-grown corn leaves 1. Agron J 78(2):273–280CrossRef Bennett J, Jones J, Zur B, Hammond L (1986) Interactive effects of nitrogen and water stresses on water relations of field-grown corn leaves 1. Agron J 78(2):273–280CrossRef
7.
Zurück zum Zitat Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P (2011) Natural language processing (almost) from scratch. J Mach Learn Res 12:2493–2537MATH Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P (2011) Natural language processing (almost) from scratch. J Mach Learn Res 12:2493–2537MATH
12.
Zurück zum Zitat Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. Pmlr 9:249–256 Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. Pmlr 9:249–256
14.
15.
Zurück zum Zitat Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef
16.
Zurück zum Zitat Jean S, Cho K, Memisevic R, Bengio Y (2014) On using very large target vocabulary for neural machine translation. arXiv preprint arXiv:1412.2007 Jean S, Cho K, Memisevic R, Bengio Y (2014) On using very large target vocabulary for neural machine translation. arXiv preprint arXiv:​1412.​2007
20.
Zurück zum Zitat Jordan MI, Mitchell TM (2015) Machine learning: trends, perspectives, and prospects. Science 349(6245):255–260MathSciNetCrossRef Jordan MI, Mitchell TM (2015) Machine learning: trends, perspectives, and prospects. Science 349(6245):255–260MathSciNetCrossRef
21.
Zurück zum Zitat Leung MK, Xiong HY, Lee LJ, Frey BJ (2014) Deep learning of the tissue-regulated splicing code. Bioinformatics 30(12):i121–i129CrossRef Leung MK, Xiong HY, Lee LJ, Frey BJ (2014) Deep learning of the tissue-regulated splicing code. Bioinformatics 30(12):i121–i129CrossRef
26.
Zurück zum Zitat Muhd KAK, Mohd ZA, Nadaraj M (2014) Wheat yield prediction: artificial neural network based approach, pp 161–165 Muhd KAK, Mohd ZA, Nadaraj M (2014) Wheat yield prediction: artificial neural network based approach, pp 161–165
31.
Zurück zum Zitat Wallach D, Makowski D, Jones JW, Brun F (2014) Working with dynamic crop models, pp 3–9 Wallach D, Makowski D, Jones JW, Brun F (2014) Working with dynamic crop models, pp 3–9
32.
Zurück zum Zitat Wallach D, Makowski D, Jones JW, Brun F (2014) Working with dynamic crop models, pp 479–487 Wallach D, Makowski D, Jones JW, Brun F (2014) Working with dynamic crop models, pp 479–487
33.
Zurück zum Zitat Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, Yuen RK, Hua Y, Gueroussov S, Najafabadi HS, Hughes TR et al (2015) The human splicing code reveals new insights into the genetic determinants of disease. Science 347(6218):1254806CrossRef Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, Yuen RK, Hua Y, Gueroussov S, Najafabadi HS, Hughes TR et al (2015) The human splicing code reveals new insights into the genetic determinants of disease. Science 347(6218):1254806CrossRef
34.
Zurück zum Zitat Zhang C, Bengio S, Hardt M, Recht B, Vinyals O (2016) Understanding deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530 Zhang C, Bengio S, Hardt M, Recht B, Vinyals O (2016) Understanding deep learning requires rethinking generalization. arXiv preprint arXiv:​1611.​03530
35.
Zurück zum Zitat Zhang L, Zhang L, Du B (2016) Deep learning for remote sensing data: a technical tutorial on the state of the art. IEEE Geosci Remote Sens Mag 4(2):22–40CrossRef Zhang L, Zhang L, Du B (2016) Deep learning for remote sensing data: a technical tutorial on the state of the art. IEEE Geosci Remote Sens Mag 4(2):22–40CrossRef
Metadaten
Titel
Quantitative model of irrigation effect on maize yield by deep neural network
verfasst von
Babak Saravi
A. Pouyan Nejadhashemi
Bo Tang
Publikationsdatum
07.11.2019
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 14/2020
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-019-04601-2

Weitere Artikel der Ausgabe 14/2020

Neural Computing and Applications 14/2020 Zur Ausgabe