Skip to main content
Erschienen in: Quantum Information Processing 2/2021

01.02.2021

Quantum algorithm for the advection–diffusion equation simulated with the lattice Boltzmann method

verfasst von: Ljubomir Budinski

Erschienen in: Quantum Information Processing | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A novel quantum algorithm for solving advection–diffusion equation by the lattice Boltzmann method is proposed. The presented quantum algorithm is composed of two major segments. In the first segment, equilibrium distribution function, presented in the form of a non-unitary diagonal matrix, is quantum circuit implemented by using a standard-form encoding approach. For the second segment, the quantum walk procedure as a method for implementing the propagation step is applied. The constructed algorithm is presented as a series of single- and two-qubit gates, as well as multiple-input controlled-NOT gates. In order to demonstrate the validity of the proposed quantum algorithm, the unsteady one-dimensional (1D) and two-dimensional (2D) advection–diffusion equations are solved by using the IBM’s quantum computing software development framework Qiskit, while the analytic solution and the classic code are used for verification. Finally, the complexity analysis and directions for future work are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings, 28th Annual ACM Symposium on the Theory of Computing, p. 212 (1996) Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings, 28th Annual ACM Symposium on the Theory of Computing, p. 212 (1996)
2.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information (Repr. ed.). Cambridge Univ. Press (2001) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information (Repr. ed.). Cambridge Univ. Press (2001)
3.
Zurück zum Zitat Coppersmith, D.: An Approximate Fourier Transform Useful in Quantum Factoring. Technical Report. IBM, New York (1994) Coppersmith, D.: An Approximate Fourier Transform Useful in Quantum Factoring. Technical Report. IBM, New York (1994)
4.
Zurück zum Zitat Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994) Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)
6.
Zurück zum Zitat Ambainis, A.: Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations (2010) Ambainis, A.: Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations (2010)
7.
Zurück zum Zitat Qian, P., Huang, W.-C., Long, G.-L.: A quantum algorithm for solving systems of nonlinear algebraic equations (2019) Qian, P., Huang, W.-C., Long, G.-L.: A quantum algorithm for solving systems of nonlinear algebraic equations (2019)
8.
9.
Zurück zum Zitat Doronin, S.I., Feldman, E.B., Zenchuk, A.I.: Solving systems of linear algebraic equations via unitary transformations on quantum processor of IBM quantum experience. Quant. Inform. Process. 19(68) (2020) Doronin, S.I., Feldman, E.B., Zenchuk, A.I.: Solving systems of linear algebraic equations via unitary transformations on quantum processor of IBM quantum experience. Quant. Inform. Process. 19(68) (2020)
10.
Zurück zum Zitat Cao, Y., Romero, J., Olson, J.P., Degroote, M., Johnson, P.D., Kieferov, M., Kivlichan, I.D., Menke, T., Peropadre, B., Sawaya, N.P.D., Sim, S., Veis, L., Aspuru-Guzik, A.: Quantum chemistry in the age of quantum computing. Chem. Rev. 119(19), 10856–10915 (2019)CrossRef Cao, Y., Romero, J., Olson, J.P., Degroote, M., Johnson, P.D., Kieferov, M., Kivlichan, I.D., Menke, T., Peropadre, B., Sawaya, N.P.D., Sim, S., Veis, L., Aspuru-Guzik, A.: Quantum chemistry in the age of quantum computing. Chem. Rev. 119(19), 10856–10915 (2019)CrossRef
11.
Zurück zum Zitat Kerenidis, I.S., Prakash, A.: Quantum gradient descent for linear systems and least squares. Phys. Rev. A 101(2), 022316 (2020)ADSMathSciNetCrossRef Kerenidis, I.S., Prakash, A.: Quantum gradient descent for linear systems and least squares. Phys. Rev. A 101(2), 022316 (2020)ADSMathSciNetCrossRef
12.
Zurück zum Zitat Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm (2014) Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm (2014)
13.
Zurück zum Zitat Schuld, M., Petruccione, F.: Supervised Learning with Quantum Computers. Springer Nature, Switzerland (2018)CrossRef Schuld, M., Petruccione, F.: Supervised Learning with Quantum Computers. Springer Nature, Switzerland (2018)CrossRef
14.
Zurück zum Zitat Garg, S., Ramakrishnan, G.: Advances in quantum deep learning: an overview (2020) Garg, S., Ramakrishnan, G.: Advances in quantum deep learning: an overview (2020)
15.
Zurück zum Zitat Sharma, S.: Qeml (quantum enhanced machine learning): using quantum computing to enhance ml classifiers and feature spaces (2020) Sharma, S.: Qeml (quantum enhanced machine learning): using quantum computing to enhance ml classifiers and feature spaces (2020)
16.
Zurück zum Zitat Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors (2018) Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors (2018)
19.
Zurück zum Zitat Mari, A., Bromley, T.R., Izaac, J., Schuld, M., Killoran, N.: Transfer learning in hybrid classical-quantum neural networks (2019) Mari, A., Bromley, T.R., Izaac, J., Schuld, M., Killoran, N.: Transfer learning in hybrid classical-quantum neural networks (2019)
20.
21.
Zurück zum Zitat Prieto, C.B., LaRose, R., Cerezo, M., Subasi, Y., Cincio, L., Coles, P.J.: Variational quantum linear solver (2019) Prieto, C.B., LaRose, R., Cerezo, M., Subasi, Y., Cincio, L., Coles, P.J.: Variational quantum linear solver (2019)
22.
Zurück zum Zitat Huang, H.Y., Bharti, K., Rebentrost, P.: Near-term quantum algorithms for linear systems of equations (2019) Huang, H.Y., Bharti, K., Rebentrost, P.: Near-term quantum algorithms for linear systems of equations (2019)
24.
Zurück zum Zitat Sweke, R., Wilde, F., Meyer, J., Schuld, M., Fhrmann, P. K., Piganeau, B. M., Eisert, J.: Stochastic gradient descent for hybrid quantum-classical optimization, (2019) Sweke, R., Wilde, F., Meyer, J., Schuld, M., Fhrmann, P. K., Piganeau, B. M., Eisert, J.: Stochastic gradient descent for hybrid quantum-classical optimization, (2019)
25.
Zurück zum Zitat Yamamoto, N.: On the natural gradient for variational quantum eigensolver (2019) Yamamoto, N.: On the natural gradient for variational quantum eigensolver (2019)
27.
Zurück zum Zitat Childs, A.M., Liu, J.P., Ostrander, A.: High-precision quantum algorithms for partial differential equations (2020) Childs, A.M., Liu, J.P., Ostrander, A.: High-precision quantum algorithms for partial differential equations (2020)
31.
Zurück zum Zitat Berry, D.W., Childs, A.M., Ostrander, A., Wang, G.: Quantum algorithm for linear differential equations with exponentially improved dependence on precision. Commun. Math. Phys. 356, 1057–1081 (2017)ADSMathSciNetCrossRef Berry, D.W., Childs, A.M., Ostrander, A., Wang, G.: Quantum algorithm for linear differential equations with exponentially improved dependence on precision. Commun. Math. Phys. 356, 1057–1081 (2017)ADSMathSciNetCrossRef
33.
Zurück zum Zitat Leyton, S.K., Osborne, T.J.: A quantum algorithm to solve nonlinear differential equations (2008) Leyton, S.K., Osborne, T.J.: A quantum algorithm to solve nonlinear differential equations (2008)
34.
Zurück zum Zitat Rivet, J.P., Boon, J.P.: Lattice Gas Hydrodynamics. Cambridge University Press, London (2001)CrossRef Rivet, J.P., Boon, J.P.: Lattice Gas Hydrodynamics. Cambridge University Press, London (2001)CrossRef
35.
Zurück zum Zitat Rothman, D.H., Zaleski, S.: Lattice-Gas Cellular Automata Simple Models of Complex Hydrodynamics. Cambridge University Press, London (1996)MATH Rothman, D.H., Zaleski, S.: Lattice-Gas Cellular Automata Simple Models of Complex Hydrodynamics. Cambridge University Press, London (1996)MATH
37.
Zurück zum Zitat Mohamad, A.A.: Lattice Boltzmann Method–Fundamentals and Engineering Applications with Computer Codes. Springer, London (2011)MATH Mohamad, A.A.: Lattice Boltzmann Method–Fundamentals and Engineering Applications with Computer Codes. Springer, London (2011)MATH
38.
Zurück zum Zitat Yepez, J.: Quantum lattice-gas model for computational fluid dynamics. Phys. Rev. E 63, 046702 (2001)ADSCrossRef Yepez, J.: Quantum lattice-gas model for computational fluid dynamics. Phys. Rev. E 63, 046702 (2001)ADSCrossRef
42.
Zurück zum Zitat Todorova, B.N., Steijl, R.: Quantum algorithm for the collisionless Boltzmann equation. J. Comput. Phys. 409, (2020) Todorova, B.N., Steijl, R.: Quantum algorithm for the collisionless Boltzmann equation. J. Comput. Phys. 409, (2020)
45.
Zurück zum Zitat Abraham, H., Offei, A., Akhalwaya, I.Y., Aleksandrowicz, G., Alexander, T., Arbel, E., Asfaw, A., Azaustre, C., Ngoueya, A., Barkoutsos, P., Barron, G., Bello, L., Ben-Haim, Y., Bevenius, D., Bishop, L.S., Bolos, S., Bosch, S., Bravyi, S., Bucher, D., Burov, A., Cabrera, F., Calpin, P., Capelluto, L., Carballo, J., Carrascal, G., Chen, A., Chen, C.-F., Chen, R., Chow, J.M., Claus, C., Cocking, R., Cross, A.J., Cross, A.W., Cross, S., Cruz-Benito, J., Culver, C., Córcoles-Gonzales, A.D., Dague, S., El Dandachi, T., Dartiailh, M., Frr, D., Davila, A.R., Dekusar, A., Ding, D., Doi, J., Drechsler, E., Drew, Dumitrescu, E., Dumon, K., Duran, I., EL-Safty, K., Eastman, E., Eendebak, P., Egger, D., Everitt, M., Fernández, P.M., Ferrera, A.H., Chevallier, F., Frisch, A., Fuhrer, A., George, M., Gacon, J., Gago, B.G., Gambella, C., Gambetta, J.M., Gammanpila, A., Garcia, L., Garion, S., Gilliam, A., Gomez-Mosquera, J., de la Puente González, S., Gorzinski, J., Gould, I., Greenberg, D., Grinko, D., Guan, W., Gunnels, J.A., Haglund, M., Haide, I., Hamamura, I., Hamido, O.C., Havlicek, V., Hellmers, J., Herok, L., Hillmich, S., Horii, H., Howington, C., Hu, S., Hu, W., Imai, H., Imamichi, T., Ishizaki, K., Iten, R., Itoko, T., Seaward, J., Javadi, A., Jessica, Jivrajani, M., Johns, K., Jonathan-Shoemaker, Kachmann, T., Kanazawa, N., Kang-Bae, Karazeev, A., Kassebaum, P., King, S., Knabberjoe, Kobayashi, Y., Kovyrshin, A., Krishnakumar, R., Krishnan, V., Krsulich, K., Kus, G., LaRose, R., Lacal, E., Lambert, R., Latone, J., Lawrence, S., Li, G., Liu, D., Liu, P., Maeng, Y., Malyshev, A., Manela, J., Marecek, J., Marques, M., Maslov, D., Mathews, D., Matsuo, A., McClure, D.T., McGarry, C., McKay, D., McPherson, D., Meesala, S., Metcalfe, T., Mevissen, M., Mezzacapo, A., Midha, R., Minev, Z., Mitchell, A., Moll, N., Mooring, M.D., Morales, R., Moran, N., MrF, Murali, P., Müggenburg, J., Nadlinger, D., Nakanishi, K., Nannicini, G., Nation, P., Navarro, E., Naveh, Y., Neagle, S.W., Neuweiler, P., Niroula, P., Norlen, H., O’Riordan, L.J., Ogunbayo, O., Ollitrault, P., Oud, S., Padilha, D., Paik, H., Perriello, S., Phan, A., Piro, F., Pistoia, M., Piveteau, C., Pozas-iKerstjens, A., Prutyanov, V., Puzzuoli, D., Pérez, J., Quintiii, Ramagiri, N., Rao, A., Raymond, R., Martín-Cuevas Redondo, R., Reuter, M., Rice, J., Rodríguez, D.M., Karur, R., Rossmannek, M., Ryu, M., Tharrmashastha, S.A.P.V., Ferracin, S., Sandberg, M., Sargsyan, H., Sathaye, N., Schmitt, B., Schnabel, C., Schoenfeld, Z., Scholten, T.L., Schoute, E., Schwarm, J., Sertage, I.F., Setia, K., Shammah, N., Shi, Y., Silva, A., Simonetto, A., Singstock, N., Siraichi, Y., Sitdikov, I., Sivarajah, S., Sletfjerding, M.B., Smolin, J.A., Soeken, M., Sokolov, I.O., Thomas, S., Starfish, Steenken, D., Stypulkoski, M., Sun, S., Sung, K.J., Takahashi, H., Tavernelli, I., Taylor, C., Taylour, P., Thomas, S., Tillet, M., Tod, M., Tomasik, M., de la Torre, E., Trabing, K., Treinish, M., Pe, T., Turner, W., Vaknin, Y., Valcarce, C.R., Varchon, F., Vazquez, A.C., Villar, V., Vogt-Lee, D., Vuillot, C., Weaver, J., Wieczorek, R., Wildstrom, J.A., Winston, E., Woehr, J.J., Woerner, S., Woo, R., Wood, C.J., Wood, R., Wood, S., Wood, S., Wootton, J., Yeralin, D., Yonge-Mallo, D., Young, R., Yu, J., Zachow, C., Zdanski, L., Zhang, H., Zoufal, C., Zoufalc, a matsuo, adekusar drl, bcamorrison, brandhsn, chlorophyll zz, dekel.meirom, dekool, dime10, drholmie, dtrenev, elfrocampeador, faisaldebouni, fanizzamarco, gadial, gruu, jagunther, jliu45, kanejess, klinvill, kurarrr, lerongil, ma5x, merav aharoni, michelle4654, ordmoj, rmoyard, saswati qiskit, sethmerkel, strickroman, sumitpuri, tigerjack, toural, vvilpas, welien, willhbang, yang.luh, yotamvakninibm, and Mantas Čepulkovskis. Qiskit: An open-source framework for quantum computing (2019) Abraham, H., Offei, A., Akhalwaya, I.Y., Aleksandrowicz, G., Alexander, T., Arbel, E., Asfaw, A., Azaustre, C., Ngoueya, A., Barkoutsos, P., Barron, G., Bello, L., Ben-Haim, Y., Bevenius, D., Bishop, L.S., Bolos, S., Bosch, S., Bravyi, S., Bucher, D., Burov, A., Cabrera, F., Calpin, P., Capelluto, L., Carballo, J., Carrascal, G., Chen, A., Chen, C.-F., Chen, R., Chow, J.M., Claus, C., Cocking, R., Cross, A.J., Cross, A.W., Cross, S., Cruz-Benito, J., Culver, C., Córcoles-Gonzales, A.D., Dague, S., El Dandachi, T., Dartiailh, M., Frr, D., Davila, A.R., Dekusar, A., Ding, D., Doi, J., Drechsler, E., Drew, Dumitrescu, E., Dumon, K., Duran, I., EL-Safty, K., Eastman, E., Eendebak, P., Egger, D., Everitt, M., Fernández, P.M., Ferrera, A.H., Chevallier, F., Frisch, A., Fuhrer, A., George, M., Gacon, J., Gago, B.G., Gambella, C., Gambetta, J.M., Gammanpila, A., Garcia, L., Garion, S., Gilliam, A., Gomez-Mosquera, J., de la Puente González, S., Gorzinski, J., Gould, I., Greenberg, D., Grinko, D., Guan, W., Gunnels, J.A., Haglund, M., Haide, I., Hamamura, I., Hamido, O.C., Havlicek, V., Hellmers, J., Herok, L., Hillmich, S., Horii, H., Howington, C., Hu, S., Hu, W., Imai, H., Imamichi, T., Ishizaki, K., Iten, R., Itoko, T., Seaward, J., Javadi, A., Jessica, Jivrajani, M., Johns, K., Jonathan-Shoemaker, Kachmann, T., Kanazawa, N., Kang-Bae, Karazeev, A., Kassebaum, P., King, S., Knabberjoe, Kobayashi, Y., Kovyrshin, A., Krishnakumar, R., Krishnan, V., Krsulich, K., Kus, G., LaRose, R., Lacal, E., Lambert, R., Latone, J., Lawrence, S., Li, G., Liu, D., Liu, P., Maeng, Y., Malyshev, A., Manela, J., Marecek, J., Marques, M., Maslov, D., Mathews, D., Matsuo, A., McClure, D.T., McGarry, C., McKay, D., McPherson, D., Meesala, S., Metcalfe, T., Mevissen, M., Mezzacapo, A., Midha, R., Minev, Z., Mitchell, A., Moll, N., Mooring, M.D., Morales, R., Moran, N., MrF, Murali, P., Müggenburg, J., Nadlinger, D., Nakanishi, K., Nannicini, G., Nation, P., Navarro, E., Naveh, Y., Neagle, S.W., Neuweiler, P., Niroula, P., Norlen, H., O’Riordan, L.J., Ogunbayo, O., Ollitrault, P., Oud, S., Padilha, D., Paik, H., Perriello, S., Phan, A., Piro, F., Pistoia, M., Piveteau, C., Pozas-iKerstjens, A., Prutyanov, V., Puzzuoli, D., Pérez, J., Quintiii, Ramagiri, N., Rao, A., Raymond, R., Martín-Cuevas Redondo, R., Reuter, M., Rice, J., Rodríguez, D.M., Karur, R., Rossmannek, M., Ryu, M., Tharrmashastha, S.A.P.V., Ferracin, S., Sandberg, M., Sargsyan, H., Sathaye, N., Schmitt, B., Schnabel, C., Schoenfeld, Z., Scholten, T.L., Schoute, E., Schwarm, J., Sertage, I.F., Setia, K., Shammah, N., Shi, Y., Silva, A., Simonetto, A., Singstock, N., Siraichi, Y., Sitdikov, I., Sivarajah, S., Sletfjerding, M.B., Smolin, J.A., Soeken, M., Sokolov, I.O., Thomas, S., Starfish, Steenken, D., Stypulkoski, M., Sun, S., Sung, K.J., Takahashi, H., Tavernelli, I., Taylor, C., Taylour, P., Thomas, S., Tillet, M., Tod, M., Tomasik, M., de la Torre, E., Trabing, K., Treinish, M., Pe, T., Turner, W., Vaknin, Y., Valcarce, C.R., Varchon, F., Vazquez, A.C., Villar, V., Vogt-Lee, D., Vuillot, C., Weaver, J., Wieczorek, R., Wildstrom, J.A., Winston, E., Woehr, J.J., Woerner, S., Woo, R., Wood, C.J., Wood, R., Wood, S., Wood, S., Wootton, J., Yeralin, D., Yonge-Mallo, D., Young, R., Yu, J., Zachow, C., Zdanski, L., Zhang, H., Zoufal, C., Zoufalc, a matsuo, adekusar drl, bcamorrison, brandhsn, chlorophyll zz, dekel.meirom, dekool, dime10, drholmie, dtrenev, elfrocampeador, faisaldebouni, fanizzamarco, gadial, gruu, jagunther, jliu45, kanejess, klinvill, kurarrr, lerongil, ma5x, merav aharoni, michelle4654, ordmoj, rmoyard, saswati qiskit, sethmerkel, strickroman, sumitpuri, tigerjack, toural, vvilpas, welien, willhbang, yang.luh, yotamvakninibm, and Mantas Čepulkovskis. Qiskit: An open-source framework for quantum computing (2019)
46.
Zurück zum Zitat Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. i: Small amplitude processes in charged and neutral one-component system. Phys. Rev. 94, 511–525 (1954)ADSCrossRef Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. i: Small amplitude processes in charged and neutral one-component system. Phys. Rev. 94, 511–525 (1954)ADSCrossRef
47.
Zurück zum Zitat Zhou, J.G.: Macroscopic lattice Boltzmann method (maclab) (2019) Zhou, J.G.: Macroscopic lattice Boltzmann method (maclab) (2019)
49.
Zurück zum Zitat Kay, A.: Tutorial on the quantikz package (2020) Kay, A.: Tutorial on the quantikz package (2020)
51.
Zurück zum Zitat Shakeel, A.: Efficient and scalable quantum walk algorithms via the quantum Fourier transform (2019) Shakeel, A.: Efficient and scalable quantum walk algorithms via the quantum Fourier transform (2019)
Metadaten
Titel
Quantum algorithm for the advection–diffusion equation simulated with the lattice Boltzmann method
verfasst von
Ljubomir Budinski
Publikationsdatum
01.02.2021
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 2/2021
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-021-02996-3

Weitere Artikel der Ausgabe 2/2021

Quantum Information Processing 2/2021 Zur Ausgabe

Neuer Inhalt