Skip to main content

2019 | OriginalPaper | Buchkapitel

17. Quantum-Chemical Insights from Interpretable Atomistic Neural Networks

verfasst von : Kristof T. Schütt, Michael Gastegger, Alexandre Tkatchenko, Klaus-Robert Müller

Erschienen in: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the rise of deep neural networks for quantum chemistry applications, there is a pressing need for architectures that, beyond delivering accurate predictions of chemical properties, are readily interpretable by researchers. Here, we describe interpretation techniques for atomistic neural networks on the example of Behler–Parrinello networks as well as the end-to-end model SchNet. Both models obtain predictions of chemical properties by aggregating atom-wise contributions. These latent variables can serve as local explanations of a prediction and are obtained during training without additional cost. Due to their correspondence to well-known chemical concepts such as atomic energies and partial charges, these atom-wise explanations enable insights not only about the model but more importantly about the underlying quantum-chemical regularities. We generalize from atomistic explanations to 3d space, thus obtaining spatially resolved visualizations which further improve interpretability. Finally, we analyze learned embeddings of chemical elements that exhibit a partial ordering that resembles the order of the periodic table. As the examined neural networks show excellent agreement with chemical knowledge, the presented techniques open up new venues for data-driven research in chemistry, physics and materials science.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS One 10(7), e0130140 (2015)CrossRef Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS One 10(7), e0130140 (2015)CrossRef
2.
Zurück zum Zitat Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Müller, K.R.: How to explain individual classification decisions. J. Mach. Learn. Res. 11, 1803–1831 (2010)MathSciNetMATH Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Müller, K.R.: How to explain individual classification decisions. J. Mach. Learn. Res. 11, 1803–1831 (2010)MathSciNetMATH
3.
Zurück zum Zitat Bajorath, J.: Integration of virtual and high-throughput screening. Nat. Rev. Drug Discovery 1(11), 882 (2002)CrossRef Bajorath, J.: Integration of virtual and high-throughput screening. Nat. Rev. Drug Discovery 1(11), 882 (2002)CrossRef
4.
Zurück zum Zitat Bartók, A.P., Kondor, R., Csányi, G.: On representing chemical environments. Phys. Rev. B 87(18), 184115 (2013)CrossRef Bartók, A.P., Kondor, R., Csányi, G.: On representing chemical environments. Phys. Rev. B 87(18), 184115 (2013)CrossRef
5.
Zurück zum Zitat Bartók, A.P., Payne, M.C., Kondor, R., Csányi, G.: Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104(13), 136403 (2010)CrossRef Bartók, A.P., Payne, M.C., Kondor, R., Csányi, G.: Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104(13), 136403 (2010)CrossRef
6.
Zurück zum Zitat Bartók, A.P., Csányi, G.: Gaussian approximation potentials: a brief tutorial introduction. Int. J. Quantum Chem. 115(16), 1051–1057 (2015)CrossRef Bartók, A.P., Csányi, G.: Gaussian approximation potentials: a brief tutorial introduction. Int. J. Quantum Chem. 115(16), 1051–1057 (2015)CrossRef
7.
Zurück zum Zitat Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38(6), 3098 (1988)CrossRef Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38(6), 3098 (1988)CrossRef
8.
Zurück zum Zitat Behler, J.: Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys. 134(7), 074106 (2011)CrossRef Behler, J.: Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys. 134(7), 074106 (2011)CrossRef
9.
Zurück zum Zitat Behler, J., Parrinello, M.: Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98(14), 146401 (2007)CrossRef Behler, J., Parrinello, M.: Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98(14), 146401 (2007)CrossRef
10.
Zurück zum Zitat Blum, L.C., Reymond, J.L.: 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J. Am. Chem. Soc. 131, 8732 (2009)CrossRef Blum, L.C., Reymond, J.L.: 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J. Am. Chem. Soc. 131, 8732 (2009)CrossRef
11.
Zurück zum Zitat Brockherde, F., Voigt, L., Li, L., Tuckerman, M.E., Burke, K., Müller, K.R.: Bypassing the Kohn-Sham equations with machine learning. Nat. Commun. 8, 872 (2017)CrossRef Brockherde, F., Voigt, L., Li, L., Tuckerman, M.E., Burke, K., Müller, K.R.: Bypassing the Kohn-Sham equations with machine learning. Nat. Commun. 8, 872 (2017)CrossRef
12.
Zurück zum Zitat Chen, H., et al.: Carbonophosphates: a new family of cathode materials for Li-Ion batteries identified computationally. Chem. Mater. 24(11), 2009–2016 (2012)CrossRef Chen, H., et al.: Carbonophosphates: a new family of cathode materials for Li-Ion batteries identified computationally. Chem. Mater. 24(11), 2009–2016 (2012)CrossRef
13.
Zurück zum Zitat Chmiela, S., Tkatchenko, A., Sauceda, H.E., Poltavsky, I., Schütt, K.T., Müller, K.R.: Machine learning of accurate energy-conserving molecular force fields. Sci. Adv. 3(5), e1603015 (2017)CrossRef Chmiela, S., Tkatchenko, A., Sauceda, H.E., Poltavsky, I., Schütt, K.T., Müller, K.R.: Machine learning of accurate energy-conserving molecular force fields. Sci. Adv. 3(5), e1603015 (2017)CrossRef
15.
Zurück zum Zitat Duvenaud, D.K., et al.: Convolutional networks on graphs for learning molecular fingerprints. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) NIPS, pp. 2224–2232 (2015) Duvenaud, D.K., et al.: Convolutional networks on graphs for learning molecular fingerprints. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) NIPS, pp. 2224–2232 (2015)
16.
Zurück zum Zitat Eickenberg, M., Exarchakis, G., Hirn, M., Mallat, S.: Solid harmonic wavelet scattering: predicting quantum molecular energy from invariant descriptors of 3D electronic densities. In: Advances in Neural Information Processing Systems 30, pp. 6543–6552. Curran Associates, Inc., Long Beach (2017) Eickenberg, M., Exarchakis, G., Hirn, M., Mallat, S.: Solid harmonic wavelet scattering: predicting quantum molecular energy from invariant descriptors of 3D electronic densities. In: Advances in Neural Information Processing Systems 30, pp. 6543–6552. Curran Associates, Inc., Long Beach (2017)
17.
Zurück zum Zitat Faber, F.A., et al.: Prediction errors of molecular machine learning models lower than hybrid DFT error. J. Chem. Theory Comput. 13(11), 5255–5264 (2017)CrossRef Faber, F.A., et al.: Prediction errors of molecular machine learning models lower than hybrid DFT error. J. Chem. Theory Comput. 13(11), 5255–5264 (2017)CrossRef
18.
Zurück zum Zitat Gastegger, M., Behler, J., Marquetand, P.: Machine learning molecular dynamics for the simulation of infrared spectra. Chem. Sci. 8(10), 6924–6935 (2017)CrossRef Gastegger, M., Behler, J., Marquetand, P.: Machine learning molecular dynamics for the simulation of infrared spectra. Chem. Sci. 8(10), 6924–6935 (2017)CrossRef
19.
Zurück zum Zitat Gastegger, M., Schwiedrzik, L., Bittermann, M., Berzsenyi, F., Marquetand, P.: wACSF-weighted atom-centered symmetry functions as descriptors in machine learning potentials. J. Chem. Phys. 148(24), 241709 (2018)CrossRef Gastegger, M., Schwiedrzik, L., Bittermann, M., Berzsenyi, F., Marquetand, P.: wACSF-weighted atom-centered symmetry functions as descriptors in machine learning potentials. J. Chem. Phys. 148(24), 241709 (2018)CrossRef
20.
Zurück zum Zitat Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: Proceedings of the 34th International Conference on Machine Learning, pp. 1263–1272 (2017) Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: Proceedings of the 34th International Conference on Machine Learning, pp. 1263–1272 (2017)
21.
Zurück zum Zitat Hansen, K., et al.: Machine learning predictions of molecular properties: accurate many-body potentials and nonlocality in chemical space. J. Phys. Chem. Lett. 6, 2326 (2015)CrossRef Hansen, K., et al.: Machine learning predictions of molecular properties: accurate many-body potentials and nonlocality in chemical space. J. Phys. Chem. Lett. 6, 2326 (2015)CrossRef
22.
Zurück zum Zitat Hansen, K., et al.: Assessment and validation of machine learning methods for predicting molecular atomization energies. J. Chem. Theory Comput. 9(8), 3404–3419 (2013)CrossRef Hansen, K., et al.: Assessment and validation of machine learning methods for predicting molecular atomization energies. J. Chem. Theory Comput. 9(8), 3404–3419 (2013)CrossRef
23.
Zurück zum Zitat Hautier, G., Jain, A., Mueller, T., Moore, C., Ong, S.P., Ceder, G.: Designing multielectron lithium-ion phosphate cathodes by mixing transition metals. Chem. Mater. 25(10), 2064–2074 (2013)CrossRef Hautier, G., Jain, A., Mueller, T., Moore, C., Ong, S.P., Ceder, G.: Designing multielectron lithium-ion phosphate cathodes by mixing transition metals. Chem. Mater. 25(10), 2064–2074 (2013)CrossRef
24.
Zurück zum Zitat Huo, H., Rupp, M.: Unified representation for machine learning of molecules and crystals. arXiv preprint. arXiv:1704.06439 (2017) Huo, H., Rupp, M.: Unified representation for machine learning of molecules and crystals. arXiv preprint. arXiv:​1704.​06439 (2017)
25.
Zurück zum Zitat Kang, K., Meng, Y.S., Bréger, J., Grey, C.P., Ceder, G.: Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311(5763), 977–980 (2006)CrossRef Kang, K., Meng, Y.S., Bréger, J., Grey, C.P., Ceder, G.: Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311(5763), 977–980 (2006)CrossRef
26.
Zurück zum Zitat Kearnes, S., McCloskey, K., Berndl, M., Pande, V., Riley, P.: Molecular graph convolutions: moving beyond fingerprints. J. Comput. Aided Mol. Des. 30(8), 595–608 (2016)CrossRef Kearnes, S., McCloskey, K., Berndl, M., Pande, V., Riley, P.: Molecular graph convolutions: moving beyond fingerprints. J. Comput. Aided Mol. Des. 30(8), 595–608 (2016)CrossRef
27.
Zurück zum Zitat Kindermans, P.J., et al.: Learning how to explain neural networks: PatternNet and PatternAttribution. In: International Conference on Learning Representations (ICLR) (2018) Kindermans, P.J., et al.: Learning how to explain neural networks: PatternNet and PatternAttribution. In: International Conference on Learning Representations (ICLR) (2018)
29.
Zurück zum Zitat Lee, C., Yang, W., Parr, R.G.: Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37(2), 785 (1988)CrossRef Lee, C., Yang, W., Parr, R.G.: Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37(2), 785 (1988)CrossRef
30.
Zurück zum Zitat von Lilienfeld, O.A.: First principles view on chemical compound space: gaining rigorous atomistic control of molecular properties. Int. J. Quantum Chem. 113(12), 1676–1689 (2013)CrossRef von Lilienfeld, O.A.: First principles view on chemical compound space: gaining rigorous atomistic control of molecular properties. Int. J. Quantum Chem. 113(12), 1676–1689 (2013)CrossRef
31.
Zurück zum Zitat Lubbers, N., Smith, J.S., Barros, K.: Hierarchical modeling of molecular energies using a deep neural network. J. Chem. Phys. 148(24), 241715 (2018)CrossRef Lubbers, N., Smith, J.S., Barros, K.: Hierarchical modeling of molecular energies using a deep neural network. J. Chem. Phys. 148(24), 241715 (2018)CrossRef
32.
Zurück zum Zitat Montavon, G., et al.: Machine learning of molecular electronic properties in chemical compound space. New J. Phys. 15(9), 095003 (2013)CrossRef Montavon, G., et al.: Machine learning of molecular electronic properties in chemical compound space. New J. Phys. 15(9), 095003 (2013)CrossRef
33.
Zurück zum Zitat Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.R.: Explaining nonlinear classification decisions with deep taylor decomposition. Pattern Recogn. 65, 211–222 (2017)CrossRef Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.R.: Explaining nonlinear classification decisions with deep taylor decomposition. Pattern Recogn. 65, 211–222 (2017)CrossRef
34.
Zurück zum Zitat Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digit. Signal Process. 73, 1–15 (2018)MathSciNetCrossRef Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digit. Signal Process. 73, 1–15 (2018)MathSciNetCrossRef
35.
Zurück zum Zitat Olivares-Amaya, R., et al.: Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics. Energy Environ. Sci. 4, 4849–4861 (2011)CrossRef Olivares-Amaya, R., et al.: Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics. Energy Environ. Sci. 4, 4849–4861 (2011)CrossRef
36.
Zurück zum Zitat Pinheiro, P.O., Collobert, R.: From image-level to pixel-level labeling with convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1713–1721 (2015) Pinheiro, P.O., Collobert, R.: From image-level to pixel-level labeling with convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1713–1721 (2015)
38.
Zurück zum Zitat Ramakrishnan, R., Dral, P.O., Rupp, M., von Lilienfeld, O.A.: Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 1, 140022 (2014)CrossRef Ramakrishnan, R., Dral, P.O., Rupp, M., von Lilienfeld, O.A.: Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 1, 140022 (2014)CrossRef
39.
Zurück zum Zitat Ruddigkeit, L., Van Deursen, R., Blum, L.C., Reymond, J.L.: Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J. Chem. Inf. Model. 52(11), 2864–2875 (2012)CrossRef Ruddigkeit, L., Van Deursen, R., Blum, L.C., Reymond, J.L.: Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J. Chem. Inf. Model. 52(11), 2864–2875 (2012)CrossRef
40.
Zurück zum Zitat Rupp, M., Tkatchenko, A., Müller, K.R., Von Lilienfeld, O.A.: Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108(5), 058301 (2012)CrossRef Rupp, M., Tkatchenko, A., Müller, K.R., Von Lilienfeld, O.A.: Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108(5), 058301 (2012)CrossRef
41.
Zurück zum Zitat Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.R.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2660–2673 (2017)MathSciNetCrossRef Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.R.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2660–2673 (2017)MathSciNetCrossRef
42.
Zurück zum Zitat Schütt, K.T., Arbabzadah, F., Chmiela, S., Müller, K.R., Tkatchenko, A.: Quantum-chemical insights from deep tensor neural networks. Nat. Commun. 8, 13890 (2017)CrossRef Schütt, K.T., Arbabzadah, F., Chmiela, S., Müller, K.R., Tkatchenko, A.: Quantum-chemical insights from deep tensor neural networks. Nat. Commun. 8, 13890 (2017)CrossRef
43.
Zurück zum Zitat Schütt, K.T., Glawe, H., Brockherde, F., Sanna, A., Müller, K.R., Gross, E.: How to represent crystal structures for machine learning: towards fast prediction of electronic properties. Phys. Rev. B 89(20), 205118 (2014)CrossRef Schütt, K.T., Glawe, H., Brockherde, F., Sanna, A., Müller, K.R., Gross, E.: How to represent crystal structures for machine learning: towards fast prediction of electronic properties. Phys. Rev. B 89(20), 205118 (2014)CrossRef
44.
Zurück zum Zitat Schütt, K.T., Kindermans, P.J., Sauceda, H.E., Chmiela, S., Tkatchenko, A., Müller, K.R.: SchNet: a continuous-filter convolutional neural network for modeling quantum interactions. In: Advances in Neural Information Processing Systems, vol. 30, pp. 992–1002 (2017) Schütt, K.T., Kindermans, P.J., Sauceda, H.E., Chmiela, S., Tkatchenko, A., Müller, K.R.: SchNet: a continuous-filter convolutional neural network for modeling quantum interactions. In: Advances in Neural Information Processing Systems, vol. 30, pp. 992–1002 (2017)
45.
Zurück zum Zitat Schütt, K.T., Sauceda, H.E., Kindermans, P.J., Tkatchenko, A., Müller, K.R.: SchNet - a deep learning architecture for molecules and materials. J. Chem. Phys. 148(24), 241722 (2018)CrossRef Schütt, K.T., Sauceda, H.E., Kindermans, P.J., Tkatchenko, A., Müller, K.R.: SchNet - a deep learning architecture for molecules and materials. J. Chem. Phys. 148(24), 241722 (2018)CrossRef
46.
Zurück zum Zitat Shoichet, B.K.: Virtual screening of chemical libraries. Nature 432(7019), 862 (2004)CrossRef Shoichet, B.K.: Virtual screening of chemical libraries. Nature 432(7019), 862 (2004)CrossRef
47.
Zurück zum Zitat Sifain, A.E., et al.: Discovering a transferable charge assignment model using machine learning. J. Phys. Chem. Lett. 9, 4495–4501 (2018)CrossRef Sifain, A.E., et al.: Discovering a transferable charge assignment model using machine learning. J. Phys. Chem. Lett. 9, 4495–4501 (2018)CrossRef
48.
Zurück zum Zitat Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv preprint. arXiv:1312.6034 (2013) Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv preprint. arXiv:​1312.​6034 (2013)
49.
Zurück zum Zitat Vollhardt, K.P.C., Schore, N.E.: Organic Chemistry; Palgrave Version: Structure and Function. Palgrave Macmillan, Basingstoke (2014)CrossRef Vollhardt, K.P.C., Schore, N.E.: Organic Chemistry; Palgrave Version: Structure and Function. Palgrave Macmillan, Basingstoke (2014)CrossRef
50.
Zurück zum Zitat Xie, T., Grossman, J.C.: Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120(14), 145301 (2018)CrossRef Xie, T., Grossman, J.C.: Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120(14), 145301 (2018)CrossRef
52.
Zurück zum Zitat Zintgraf, L.M., Cohen, T.S., Adel, T., Welling, M.: Visualizing deep neural network decisions: prediction difference analysis. arXiv preprint. arXiv:1702.04595 (2017) Zintgraf, L.M., Cohen, T.S., Adel, T., Welling, M.: Visualizing deep neural network decisions: prediction difference analysis. arXiv preprint. arXiv:​1702.​04595 (2017)
Metadaten
Titel
Quantum-Chemical Insights from Interpretable Atomistic Neural Networks
verfasst von
Kristof T. Schütt
Michael Gastegger
Alexandre Tkatchenko
Klaus-Robert Müller
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-28954-6_17