Skip to main content

2015 | OriginalPaper | Buchkapitel

8. Quantum Dots and Their Ligand Passivation

verfasst von : Ruhong Zhou

Erschienen in: Modeling of Nanotoxicity

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Another major category of nanoparticles are quantum dots (QDs), which are semiconductor nanocrystals (~2–100 nm) with unique optical and electrical properties, and widely used in biomedical imaging and the electronics industries [19]. These II–VI semiconductor nanostructures (II = Zn, Cd; VI = O, S, Se, Te) display outstanding properties distinct from their bulk counterparts like broad excitation bands, large extinction coefficient, tunable emission features, bright photoluminescence, nonlinear optical properties, and high stability against photobleaching and chemicals due to the quantum nano-confinement.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016CrossRef Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016CrossRef
2.
Zurück zum Zitat Tessler N, Medvedev V, Kazes M, Kan S, Banin U (2002) Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 295:1506–1508CrossRef Tessler N, Medvedev V, Kazes M, Kan S, Banin U (2002) Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 295:1506–1508CrossRef
3.
Zurück zum Zitat Gorman J, Hasko DG, Williams DA (2005) Charge-qubit operation of an isolated double quantum dot. Phys Rev Lett 95:090502CrossRef Gorman J, Hasko DG, Williams DA (2005) Charge-qubit operation of an isolated double quantum dot. Phys Rev Lett 95:090502CrossRef
4.
Zurück zum Zitat Csonka S, Weymann I, Zarand G (2012) An electrically controlled quantum dot based spin current injector. Nanoscale 4:3635–3639CrossRef Csonka S, Weymann I, Zarand G (2012) An electrically controlled quantum dot based spin current injector. Nanoscale 4:3635–3639CrossRef
5.
Zurück zum Zitat Lek JY, Xi L, Kardynal BE, Wong LH, Lam YM (2011) Understanding the effect of surface chemistry on charge generation and transport in Poly (3-hexylthiophene)/CdSe hybrid solar cells. ACS Appl Mater Interf 3:287–292CrossRef Lek JY, Xi L, Kardynal BE, Wong LH, Lam YM (2011) Understanding the effect of surface chemistry on charge generation and transport in Poly (3-hexylthiophene)/CdSe hybrid solar cells. ACS Appl Mater Interf 3:287–292CrossRef
6.
Zurück zum Zitat Kamat PV (2008) Quantum dot solar cells. semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753CrossRef Kamat PV (2008) Quantum dot solar cells. semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753CrossRef
7.
Zurück zum Zitat Lokteva I, Radychev N, Witt F, Borchert H, Parisi J, Kolny-Olesiak J (2010) Surface treatment of CdSe nanoparticles for application in hybrid solar cells: the effect of multiple ligand exchange with pyridine. J Phys Chem C 114:12784–12791CrossRef Lokteva I, Radychev N, Witt F, Borchert H, Parisi J, Kolny-Olesiak J (2010) Surface treatment of CdSe nanoparticles for application in hybrid solar cells: the effect of multiple ligand exchange with pyridine. J Phys Chem C 114:12784–12791CrossRef
8.
Zurück zum Zitat Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105:8861–8871CrossRef Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105:8861–8871CrossRef
9.
Zurück zum Zitat Tryk DA, Fujishima A, Honda K (2000) Recent topics in photoelectrochemistry: achievements and future prospects. Electrochim Acta 45:2363–2376CrossRef Tryk DA, Fujishima A, Honda K (2000) Recent topics in photoelectrochemistry: achievements and future prospects. Electrochim Acta 45:2363–2376CrossRef
10.
Zurück zum Zitat Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937CrossRef Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937CrossRef
11.
Zurück zum Zitat Pandey A, Guyot-Sionnest P (2008) Slow electron cooling in colloidal quantum dots. Science 322:929–932CrossRef Pandey A, Guyot-Sionnest P (2008) Slow electron cooling in colloidal quantum dots. Science 322:929–932CrossRef
12.
Zurück zum Zitat Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715CrossRef Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715CrossRef
13.
Zurück zum Zitat Shiohara A, Prabakar S, Faramus A, Hsu CY, Lai PS, Northcote PT, Tilley RD (2011) Sized controlled synthesis, purification, and cell studies with silicon quantum dots. Nanoscale 3:3364–3370CrossRef Shiohara A, Prabakar S, Faramus A, Hsu CY, Lai PS, Northcote PT, Tilley RD (2011) Sized controlled synthesis, purification, and cell studies with silicon quantum dots. Nanoscale 3:3364–3370CrossRef
14.
Zurück zum Zitat Qu LH, Peng XG (2002) Control of photoluminescence properties of CdSe nanocrystals in growth. J Am Chem Soc 124:2049–2055CrossRef Qu LH, Peng XG (2002) Control of photoluminescence properties of CdSe nanocrystals in growth. J Am Chem Soc 124:2049–2055CrossRef
15.
Zurück zum Zitat Scholes GD, Rumbles G (2006) Excitons in nanoscale systems. Nat Mater 5:683–696CrossRef Scholes GD, Rumbles G (2006) Excitons in nanoscale systems. Nat Mater 5:683–696CrossRef
16.
Zurück zum Zitat Beard M, Midgett A, Law M, Ellingson R, Nozik A (2009) Variations in the quantum efficiency of multiple exciton generation for a series of chemically treated PbSe nanocrystal films. Nano Lett 9:1217–1222CrossRef Beard M, Midgett A, Law M, Ellingson R, Nozik A (2009) Variations in the quantum efficiency of multiple exciton generation for a series of chemically treated PbSe nanocrystal films. Nano Lett 9:1217–1222CrossRef
17.
Zurück zum Zitat Kang SG et al (2012) Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@ C82 (OH)22 and its implication for de novo design of nanomedicine. PNAS 109:15431–15436. See the Supporting Information for full reference Kang SG et al (2012) Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@ C82 (OH)22 and its implication for de novo design of nanomedicine. PNAS 109:15431–15436. See the Supporting Information for full reference
18.
Zurück zum Zitat Kang SG, Huynh T, Zhou RH (2012) Non-destructive inhibition of metallofullerenol Gd@ C82 (OH)22 on WW domain: implication on signal transduction pathway. Sci Rep 2:00957 Kang SG, Huynh T, Zhou RH (2012) Non-destructive inhibition of metallofullerenol Gd@ C82 (OH)22 on WW domain: implication on signal transduction pathway. Sci Rep 2:00957
19.
Zurück zum Zitat Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172CrossRef Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172CrossRef
20.
Zurück zum Zitat Lovrić J et al (2005) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med (Berl) 83:377–385CrossRef Lovrić J et al (2005) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med (Berl) 83:377–385CrossRef
21.
Zurück zum Zitat Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sun-daresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544CrossRef Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sun-daresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544CrossRef
22.
Zurück zum Zitat Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446CrossRef Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446CrossRef
23.
Zurück zum Zitat Gill R, Zayats M, Willner I (2008) Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed 47:7602–7625CrossRef Gill R, Zayats M, Willner I (2008) Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed 47:7602–7625CrossRef
25.
Zurück zum Zitat Drbohlavova J, Adam V, Kizek R, Hubalek J (2009) Quantum dots—characterization, preparation and usage in biological systems. J Mol Sci 10:656–673CrossRef Drbohlavova J, Adam V, Kizek R, Hubalek J (2009) Quantum dots—characterization, preparation and usage in biological systems. J Mol Sci 10:656–673CrossRef
26.
Zurück zum Zitat Smith AM, Nie SM (2009) Next-generation quantum dots. Nat Biotechnol 27:732–733CrossRef Smith AM, Nie SM (2009) Next-generation quantum dots. Nat Biotechnol 27:732–733CrossRef
27.
Zurück zum Zitat Smith AM, Nie SM (2008) Minimizing the hydrodynamic size of quantum dots with multifunctional multidentate polymer ligands. J Am Chem Soc 130:11278–11279CrossRef Smith AM, Nie SM (2008) Minimizing the hydrodynamic size of quantum dots with multifunctional multidentate polymer ligands. J Am Chem Soc 130:11278–11279CrossRef
28.
Zurück zum Zitat Wang Y, Liu YH, Zhang Y, Wang F, Kowalski PJ, Rohrs HW, Loomis RA, Gross ML, Buhro WE (2012) Isolation of the magic-size CdSe nanoclusters [(CdSe)13(n-octylamine)13] and [(CdSe)13(oleylamine)13]. Angew Chem Int Ed 51:6154–6157CrossRef Wang Y, Liu YH, Zhang Y, Wang F, Kowalski PJ, Rohrs HW, Loomis RA, Gross ML, Buhro WE (2012) Isolation of the magic-size CdSe nanoclusters [(CdSe)13(n-octylamine)13] and [(CdSe)13(oleylamine)13]. Angew Chem Int Ed 51:6154–6157CrossRef
29.
Zurück zum Zitat Walling MA, Novak JA, Shepard JRE (2009) Quantum dots for live cell and in vivo imaging. J Mol Sci 10:441–491CrossRef Walling MA, Novak JA, Shepard JRE (2009) Quantum dots for live cell and in vivo imaging. J Mol Sci 10:441–491CrossRef
30.
Zurück zum Zitat Chung SY, Lee S, Liu C, Neuhauser D (2009) Structures and electronic spectra of CdSe−Cys complexes: density functional theory study of a simple peptide-coated nanocluster. J Phys Chem B 113:292–301CrossRef Chung SY, Lee S, Liu C, Neuhauser D (2009) Structures and electronic spectra of CdSe−Cys complexes: density functional theory study of a simple peptide-coated nanocluster. J Phys Chem B 113:292–301CrossRef
31.
Zurück zum Zitat Kim H, Jang SW, Chung SY, Lee S (2010) Effects of bioconjugation on the structures and electronic spectra of CdSe: density functional theory study of CdSe-Adenine complexes. J Phys Chem B 114:471–479CrossRef Kim H, Jang SW, Chung SY, Lee S (2010) Effects of bioconjugation on the structures and electronic spectra of CdSe: density functional theory study of CdSe-Adenine complexes. J Phys Chem B 114:471–479CrossRef
32.
Zurück zum Zitat Albert VV, Ivanov SA, Tretiak S, Kilina SV (2011) Electronic structure of ligated CdSe clusters: dependence on DFT methodology. J Phys Chem C 115:15793–15800CrossRef Albert VV, Ivanov SA, Tretiak S, Kilina SV (2011) Electronic structure of ligated CdSe clusters: dependence on DFT methodology. J Phys Chem C 115:15793–15800CrossRef
33.
Zurück zum Zitat Evans CM, Guo L, Peterson JJ, Maccagnano ZS, Krauss TD (2008) Ultrabright PbSe magic-sized clusters. Nano Lett 8:2896–2899CrossRef Evans CM, Guo L, Peterson JJ, Maccagnano ZS, Krauss TD (2008) Ultrabright PbSe magic-sized clusters. Nano Lett 8:2896–2899CrossRef
34.
Zurück zum Zitat Nag A, Hazarika A, Shanavas KV, Sharma SM, Dasgupta I, Sarma DD (2011) Crystal structure engineering by fine-tuning the surface energy: the case of CdE (E = S/Se) nanocrystals. J Phys Chem Lett 2:706–712CrossRef Nag A, Hazarika A, Shanavas KV, Sharma SM, Dasgupta I, Sarma DD (2011) Crystal structure engineering by fine-tuning the surface energy: the case of CdE (E = S/Se) nanocrystals. J Phys Chem Lett 2:706–712CrossRef
35.
Zurück zum Zitat Gao Y, Zhou B, Kang S, Xin M, Yang P, Dai X, Wang Z, Zhou R (2014) Effect of ligands on characteristics of (CdSe)13 quantum dot. RSC Adv 4:27146–27151CrossRef Gao Y, Zhou B, Kang S, Xin M, Yang P, Dai X, Wang Z, Zhou R (2014) Effect of ligands on characteristics of (CdSe)13 quantum dot. RSC Adv 4:27146–27151CrossRef
36.
Zurück zum Zitat Azpiroz JM, Matxain JM, Infante I, Lopez X, Ugalde JM (2013) A DFT/TDDFT study on the optoelectronic properties of the amine-capped magic (CdSe)13 nanocluster. Phys Chem Chem Phys 15:10996–11005CrossRef Azpiroz JM, Matxain JM, Infante I, Lopez X, Ugalde JM (2013) A DFT/TDDFT study on the optoelectronic properties of the amine-capped magic (CdSe)13 nanocluster. Phys Chem Chem Phys 15:10996–11005CrossRef
37.
Zurück zum Zitat Kasuya A et al (2004) Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nat Mater 3:99–102. See the Supporting Information for full reference Kasuya A et al (2004) Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nat Mater 3:99–102. See the Supporting Information for full reference
38.
Zurück zum Zitat Schreuder MA, McBride JR, Dukes AD III, Sammons JA, Ro-senthal SJ (2009) Control of surface state emission via phosphonic acid modulation in ultrasmall CdSe nanocrystals: the role of ligand electronegativity. J Phys Chem C 113:8169–8176CrossRef Schreuder MA, McBride JR, Dukes AD III, Sammons JA, Ro-senthal SJ (2009) Control of surface state emission via phosphonic acid modulation in ultrasmall CdSe nanocrystals: the role of ligand electronegativity. J Phys Chem C 113:8169–8176CrossRef
39.
Zurück zum Zitat Knowles K, Tice DB, McArthur EA, SolOMOn GC, Weiss EA (2009) Chemical control of the photoluminescence of CdSe quantum dot−organic complexes with a series of para-substituted aniline ligands. J Am Chem Soc 132:1041–1050CrossRef Knowles K, Tice DB, McArthur EA, SolOMOn GC, Weiss EA (2009) Chemical control of the photoluminescence of CdSe quantum dot−organic complexes with a series of para-substituted aniline ligands. J Am Chem Soc 132:1041–1050CrossRef
40.
Zurück zum Zitat Eichkorn K, Ahlrichs R (1998) Cadmium selenide semiconductor nanocrystals: a theoretical study. Chem Phys Lett 288:235–242CrossRef Eichkorn K, Ahlrichs R (1998) Cadmium selenide semiconductor nanocrystals: a theoretical study. Chem Phys Lett 288:235–242CrossRef
41.
Zurück zum Zitat Deglmann P, Ahlrichs R, Tsereteli K (2002) Theoretical studies of ligand-free cadmium selenide and related semiconductor clusters. J Chem Phys 116:1585–1597CrossRef Deglmann P, Ahlrichs R, Tsereteli K (2002) Theoretical studies of ligand-free cadmium selenide and related semiconductor clusters. J Chem Phys 116:1585–1597CrossRef
42.
Zurück zum Zitat Leung K, Whaley KB (1999) Surface relaxation in CdSe nanocrystals. J Chem Phys 110:11012–11022CrossRef Leung K, Whaley KB (1999) Surface relaxation in CdSe nanocrystals. J Chem Phys 110:11012–11022CrossRef
43.
Zurück zum Zitat Troparevsky MC, Chelikowsky JR (2001) Structural and electronic properties of CdS and CdSe clusters. J Chem Phys 114:943–946CrossRef Troparevsky MC, Chelikowsky JR (2001) Structural and electronic properties of CdS and CdSe clusters. J Chem Phys 114:943–946CrossRef
44.
Zurück zum Zitat Troparevsky MC, Kronik L, Chelikowsky JR (2003) Optical properties of CdSe quantum dots. J Chem Phys 119:2284–2287CrossRef Troparevsky MC, Kronik L, Chelikowsky JR (2003) Optical properties of CdSe quantum dots. J Chem Phys 119:2284–2287CrossRef
45.
Zurück zum Zitat Puzder A, Williamson AJ, Gygi F, Galli G (2004) Self-healing of CdSe nanocrystals: first-principles calculations. Phys Rev Lett 92:217401CrossRef Puzder A, Williamson AJ, Gygi F, Galli G (2004) Self-healing of CdSe nanocrystals: first-principles calculations. Phys Rev Lett 92:217401CrossRef
46.
Zurück zum Zitat Yang P, Tretiak S, Masunov A, Ivanov S (2008) Quantum chemistry of the minimal CdSe clusters. J Chem Phys 129:074709CrossRef Yang P, Tretiak S, Masunov A, Ivanov S (2008) Quantum chemistry of the minimal CdSe clusters. J Chem Phys 129:074709CrossRef
47.
Zurück zum Zitat Tian CJ, Xiu P, Meng Y, Zhao WY, Wang ZG, Zhou RH (2012) Enantiomerization mechanism of thalidomide and the role of water and hydroxide ions. Chem Eur J 18:14305–14313CrossRef Tian CJ, Xiu P, Meng Y, Zhao WY, Wang ZG, Zhou RH (2012) Enantiomerization mechanism of thalidomide and the role of water and hydroxide ions. Chem Eur J 18:14305–14313CrossRef
48.
Zurück zum Zitat Wang ZG, Yao MG, Pan SF, Jin MX, Liu BB, Zhang HX (2007) A barrierless process from physisorption to chemisorption of H2 molecules on light-element-doped fullerenes. J Phys Chem C 111:4473–4476CrossRef Wang ZG, Yao MG, Pan SF, Jin MX, Liu BB, Zhang HX (2007) A barrierless process from physisorption to chemisorption of H2 molecules on light-element-doped fullerenes. J Phys Chem C 111:4473–4476CrossRef
49.
Zurück zum Zitat Dai X, Cheng C, Zhang W, Xin MS, Huai P, Zhang RQ, Wang ZG (2013) Defect induced electronic structure of uranofullerene. Sci Rep 3:1341 Dai X, Cheng C, Zhang W, Xin MS, Huai P, Zhang RQ, Wang ZG (2013) Defect induced electronic structure of uranofullerene. Sci Rep 3:1341
50.
Zurück zum Zitat Svetlana K, Sergei I, Sergei T (2009) Effect of surface ligands on optical and electronic spectra of semiconductor nanoclusters. J Am Chem Soc 131:7717–7726CrossRef Svetlana K, Sergei I, Sergei T (2009) Effect of surface ligands on optical and electronic spectra of semiconductor nanoclusters. J Am Chem Soc 131:7717–7726CrossRef
51.
Zurück zum Zitat Kuznetsov AE, Balamurugan D, Skourtis SS, Beratan DN (2012) Structural and electronic properties of bare and capped CdnSen/CdnTen Nanoparticles (n = 6, 9). J Phys Chem C 116:6817–6830CrossRef Kuznetsov AE, Balamurugan D, Skourtis SS, Beratan DN (2012) Structural and electronic properties of bare and capped CdnSen/CdnTen Nanoparticles (n = 6, 9). J Phys Chem C 116:6817–6830CrossRef
52.
Zurück zum Zitat Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRef Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRef
53.
Zurück zum Zitat Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRef Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRef
54.
Zurück zum Zitat Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206CrossRef Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206CrossRef
55.
Zurück zum Zitat Nadler R, Sanz JF (2013) Simulating the optical properties of CdSe clusters using the RT-TDDFT approach. Theor Chem Acc 132:1–9CrossRef Nadler R, Sanz JF (2013) Simulating the optical properties of CdSe clusters using the RT-TDDFT approach. Theor Chem Acc 132:1–9CrossRef
56.
Zurück zum Zitat Yang P, Tretiak S, Ivanov S (2011) Influence of surfactants and charges on CdSe quantum dots. J Clust Sci 22:405–431CrossRef Yang P, Tretiak S, Ivanov S (2011) Influence of surfactants and charges on CdSe quantum dots. J Clust Sci 22:405–431CrossRef
57.
Zurück zum Zitat Wang XQ, Zeng Q, Shi J, Jiang G, Yang ML, Liu XY, Enrightb G, Yu K (2013) The structure and optical absorption of single source precursors for II–VI quantum dots. Chem Phys Lett 568–569:125–129CrossRef Wang XQ, Zeng Q, Shi J, Jiang G, Yang ML, Liu XY, Enrightb G, Yu K (2013) The structure and optical absorption of single source precursors for II–VI quantum dots. Chem Phys Lett 568–569:125–129CrossRef
58.
Zurück zum Zitat Bloom BP, Zhao LB, Wang Y, Waldeck DH (2013) Ligand-induced changes in the characteristic size-dependent electronic energies of CdSe nanocrystals. J Phys Chem B 117:22401–22411 Bloom BP, Zhao LB, Wang Y, Waldeck DH (2013) Ligand-induced changes in the characteristic size-dependent electronic energies of CdSe nanocrystals. J Phys Chem B 117:22401–22411
59.
Zurück zum Zitat Muzakir SK, Alias N, Yusoff MM, Jose R (2013) On the missing links in quantum dot solar cells: a DFT study on fluorophore oxidation and reduction processes in sensitized solar cells. Phys Chem Chem Phys 15:16275–16285CrossRef Muzakir SK, Alias N, Yusoff MM, Jose R (2013) On the missing links in quantum dot solar cells: a DFT study on fluorophore oxidation and reduction processes in sensitized solar cells. Phys Chem Chem Phys 15:16275–16285CrossRef
60.
Zurück zum Zitat Del Ben M, Havenith RWA, Broer R, Stener M (2011) J Phys Chem C 115:16782–16796CrossRef Del Ben M, Havenith RWA, Broer R, Stener M (2011) J Phys Chem C 115:16782–16796CrossRef
61.
Zurück zum Zitat Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728CrossRef Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728CrossRef
62.
Zurück zum Zitat Marques MAL, Gross EKU (2004) Time-dependent density functional theory. Annu Rev Phys Chem 55:427–455CrossRef Marques MAL, Gross EKU (2004) Time-dependent density functional theory. Annu Rev Phys Chem 55:427–455CrossRef
63.
Zurück zum Zitat Frisch MJ et al (2013) Gaussian 09 Revision D.01, Wallingford CT. See the Supporting Information for full reference Frisch MJ et al (2013) Gaussian 09 Revision D.01, Wallingford CT. See the Supporting Information for full reference
64.
Zurück zum Zitat Landes C, Braun M, Burda C, El-Sayed MA (2001) Observation of large changes in the band gap absorption energy of small CdSe nanoparticles induced by the adsorption of a strong hole acceptor. Nano Lett 1:667–670CrossRef Landes C, Braun M, Burda C, El-Sayed MA (2001) Observation of large changes in the band gap absorption energy of small CdSe nanoparticles induced by the adsorption of a strong hole acceptor. Nano Lett 1:667–670CrossRef
65.
Zurück zum Zitat Kalyuzhny G, Murray RW (2005) Ligand effects on optical properties of CdSe nanocrystals. J Phys Chem B 109:7012–7021CrossRef Kalyuzhny G, Murray RW (2005) Ligand effects on optical properties of CdSe nanocrystals. J Phys Chem B 109:7012–7021CrossRef
66.
Zurück zum Zitat Peng A, Wickham J, Alivisatos AP (1998) Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: focusing of size distributions. J Am Chem Soc 120:5343–5344CrossRef Peng A, Wickham J, Alivisatos AP (1998) Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: focusing of size distributions. J Am Chem Soc 120:5343–5344CrossRef
67.
Zurück zum Zitat Margaret AH, Philippe GS (1996) Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem 100:468–471CrossRef Margaret AH, Philippe GS (1996) Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem 100:468–471CrossRef
68.
Zurück zum Zitat Nguyen KA, Day PN, Pachter R (2010) Understanding structural and optical properties of nanoscale CdSe magic-size quantum dots: insight from computational prediction. J Phys Chem C 114:16197–16209CrossRef Nguyen KA, Day PN, Pachter R (2010) Understanding structural and optical properties of nanoscale CdSe magic-size quantum dots: insight from computational prediction. J Phys Chem C 114:16197–16209CrossRef
69.
70.
Zurück zum Zitat Velde GT, Bickelhaupt FM, Baerends EJ, Guerra CF, Gisbergen SJAV, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967CrossRef Velde GT, Bickelhaupt FM, Baerends EJ, Guerra CF, Gisbergen SJAV, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967CrossRef
72.
Zurück zum Zitat Cossi M, Rega N, Scalmani G, Barone V (2003) J Phys Chem 24:669–681 Cossi M, Rega N, Scalmani G, Barone V (2003) J Phys Chem 24:669–681
73.
Zurück zum Zitat Kuznetsov AE, Balamurugan D, Skourtis SS, Beratan DN (2012) J Phys Chem C 116:6817–6830CrossRef Kuznetsov AE, Balamurugan D, Skourtis SS, Beratan DN (2012) J Phys Chem C 116:6817–6830CrossRef
74.
Zurück zum Zitat Fischer SA, Crotty AM, Kilina SV, Ivanov SA, Tretiak S (2012) Nanoscale 4:904–914CrossRef Fischer SA, Crotty AM, Kilina SV, Ivanov SA, Tretiak S (2012) Nanoscale 4:904–914CrossRef
Metadaten
Titel
Quantum Dots and Their Ligand Passivation
verfasst von
Ruhong Zhou
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-15382-7_8

Neuer Inhalt