Skip to main content
Erschienen in: Quantum Information Processing 5/2019

01.05.2019

Quantum identity authentication in the orthogonal-state-encoding QKD system

verfasst von: Bin Liu, Zhifeng Gao, Di Xiao, Wei Huang, Xingbin Liu, Bingjie Xu

Erschienen in: Quantum Information Processing | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As is known, quantum key distribution could achieve information-theoretical security under several basic requirements, one of which is reliable identity authentications between the participants. Compared with classical identity authentication, quantum identity authentication (QIA) is considered to be more secure and more efficient to combine with quantum key distribution (QKD), and therefore, more and more scholars are involved in the study of QIA. During the last 3 decades, various types of QKD protocols have been proposed utilizing different kinds of quantum technologies. One of the most special QKD protocols is the orthogonal-state-encoding QKD protocol proposed by Goldenberg and Vaidman (Phys Rev Lett 75:1239–1243, 1995), which is usually called GV95 protocol. Almost all of the QKD protocols employ nonorthogonal states to prevent and detect eavesdropping, and the most famous exception is GV95. In this paper, we present a QIA protocol based on the GV95 technology, which can be performed in a revised circuit of the GV95 protocol. And we also analyze the security of both Alice’s and Bob’s identities.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179. IEEE, New York (1984) Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179. IEEE, New York (1984)
4.
5.
Zurück zum Zitat Sun, Y., Wen, Q.-Y., Gao, F., Zhu, F.-C.: Robust variations of the Bennett–Brassard 1984 protocol against collective noise. Phys. Rev. A 80, 032321 (2009)ADSCrossRef Sun, Y., Wen, Q.-Y., Gao, F., Zhu, F.-C.: Robust variations of the Bennett–Brassard 1984 protocol against collective noise. Phys. Rev. A 80, 032321 (2009)ADSCrossRef
6.
Zurück zum Zitat Song, T.-T., Wen, Q.-Y., Guo, F.-Z., Tan, X.-Q.: Finite-key analysis for measurement-device independent quantum key distribution. Phys. Rev. A 86, 022332 (2012)ADSCrossRef Song, T.-T., Wen, Q.-Y., Guo, F.-Z., Tan, X.-Q.: Finite-key analysis for measurement-device independent quantum key distribution. Phys. Rev. A 86, 022332 (2012)ADSCrossRef
7.
Zurück zum Zitat Lin, S., Guo, G.-D., et al.: Quantum key distribution: defeating collective noise without reducing efficiency. Quantum Inf. Comput. 14, 845–856 (2014)MathSciNet Lin, S., Guo, G.-D., et al.: Quantum key distribution: defeating collective noise without reducing efficiency. Quantum Inf. Comput. 14, 845–856 (2014)MathSciNet
8.
Zurück zum Zitat Li, Y.-B.: Analysis of counterfactual quantum key distribution using error correcting theory. Quantum Inf. Process. 13, 2325–2342 (2014)ADSMathSciNetCrossRef Li, Y.-B.: Analysis of counterfactual quantum key distribution using error correcting theory. Quantum Inf. Process. 13, 2325–2342 (2014)ADSMathSciNetCrossRef
9.
Zurück zum Zitat Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)ADSCrossRef Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)ADSCrossRef
11.
Zurück zum Zitat Yang, Y.-G., Wen, Q.-Y., Zhang, X.: Multiparty simultaneous quantum identity authentication with secret sharing. Sci. China Phys. Mech. Astron. 51, 321–327 (2008)ADSCrossRef Yang, Y.-G., Wen, Q.-Y., Zhang, X.: Multiparty simultaneous quantum identity authentication with secret sharing. Sci. China Phys. Mech. Astron. 51, 321–327 (2008)ADSCrossRef
12.
Zurück zum Zitat Qin, S.-J., Gao, F., Wen, Q.-Y., Zhu, F.-C.: Security of quantum secret sharing with two-particle entanglement against individual attacks. Quantum Inf. Comput. 9, 0765–0772 (2009)MathSciNetMATH Qin, S.-J., Gao, F., Wen, Q.-Y., Zhu, F.-C.: Security of quantum secret sharing with two-particle entanglement against individual attacks. Quantum Inf. Comput. 9, 0765–0772 (2009)MathSciNetMATH
13.
Zurück zum Zitat Lin, S., Wen, Q.-Y., Qin, S.-J., et al.: Multiparty quantum secret sharing with collective eavesdropping-check. Opt. Commun. 282, 4455–4459 (2009)ADSCrossRef Lin, S., Wen, Q.-Y., Qin, S.-J., et al.: Multiparty quantum secret sharing with collective eavesdropping-check. Opt. Commun. 282, 4455–4459 (2009)ADSCrossRef
14.
Zurück zum Zitat Wang, T.-Y., Wen, Q.-Y.: Security of a kind of quantum secret sharing with single photons. Quantum Inf. Comput. 11, 0434–0443 (2011)MathSciNet Wang, T.-Y., Wen, Q.-Y.: Security of a kind of quantum secret sharing with single photons. Quantum Inf. Comput. 11, 0434–0443 (2011)MathSciNet
15.
Zurück zum Zitat Long, G.-L., Liu, X.: Theoretically efficient high-capacity quantum key distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRef Long, G.-L., Liu, X.: Theoretically efficient high-capacity quantum key distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRef
16.
Zurück zum Zitat Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)ADSCrossRef Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)ADSCrossRef
17.
Zurück zum Zitat Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRef Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRef
18.
Zurück zum Zitat Lin, S., Wen, Q.-Y., Zhu, F.-C.: Quantum secure direct communication with x-type entangled states. Phys. Rev. A 78, 064304 (2008)ADSCrossRef Lin, S., Wen, Q.-Y., Zhu, F.-C.: Quantum secure direct communication with x-type entangled states. Phys. Rev. A 78, 064304 (2008)ADSCrossRef
19.
Zurück zum Zitat Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283, 192 (2010)ADSCrossRef Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283, 192 (2010)ADSCrossRef
20.
Zurück zum Zitat Huang, W., Wen, Q.-Y., Jia, H.-Y., Qin, S.-J., Gao, F.: Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin. Phys. B 21(10), 100308 (2012)ADSCrossRef Huang, W., Wen, Q.-Y., Jia, H.-Y., Qin, S.-J., Gao, F.: Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin. Phys. B 21(10), 100308 (2012)ADSCrossRef
22.
Zurück zum Zitat Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)ADSCrossRef Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)ADSCrossRef
23.
Zurück zum Zitat Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum 21(3), 6600111 (2015) Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum 21(3), 6600111 (2015)
24.
Zurück zum Zitat Liu, B., Gao, F., Huang, W., et al.: QKD-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58, 100301 (2015)CrossRef Liu, B., Gao, F., Huang, W., et al.: QKD-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58, 100301 (2015)CrossRef
25.
Zurück zum Zitat Wei, C.-Y., Cai, X.-Q., Liu, B., Wang, T.-Y., Gao, F.: A generic construction of quantum-oblivious-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67(1), 2–8 (2018)MathSciNetCrossRef Wei, C.-Y., Cai, X.-Q., Liu, B., Wang, T.-Y., Gao, F.: A generic construction of quantum-oblivious-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67(1), 2–8 (2018)MathSciNetCrossRef
26.
Zurück zum Zitat Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22, 265 (1981)MathSciNetCrossRef Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22, 265 (1981)MathSciNetCrossRef
27.
Zurück zum Zitat Dusek, M., Haderka, O., Hendrych, M., Myska, R.: Quantum identification system. Phys. Rev. A 60, 149–156 (1999)ADSCrossRef Dusek, M., Haderka, O., Hendrych, M., Myska, R.: Quantum identification system. Phys. Rev. A 60, 149–156 (1999)ADSCrossRef
28.
Zurück zum Zitat Curty, M., Santos, D.J.: Quantum authentication of classical messages. Phys. Rev. A 64, 062309 (2001)ADSCrossRef Curty, M., Santos, D.J.: Quantum authentication of classical messages. Phys. Rev. A 64, 062309 (2001)ADSCrossRef
29.
Zurück zum Zitat Zhang, Z.-S., Zeng, G.-H., Zhou, N.-R., Xiong, J.: Quantum identity authentication based on ping–pong technique for photons. Phys. Lett. A 356, 199–205 (2006)ADSCrossRef Zhang, Z.-S., Zeng, G.-H., Zhou, N.-R., Xiong, J.: Quantum identity authentication based on ping–pong technique for photons. Phys. Lett. A 356, 199–205 (2006)ADSCrossRef
30.
Zurück zum Zitat Shi, B.-S., Li, J., Liu, J.-M., Fan, X.-F., Guo, G.-C.: Quantum key distribution and quantum authentication based on entangled state. Phys. Lett. A 281, 83–87 (2001)ADSMathSciNetCrossRef Shi, B.-S., Li, J., Liu, J.-M., Fan, X.-F., Guo, G.-C.: Quantum key distribution and quantum authentication based on entangled state. Phys. Lett. A 281, 83–87 (2001)ADSMathSciNetCrossRef
31.
Zurück zum Zitat Yuan, H., Liu, Y.-M., Pan, G.-Z., Zhang, G., et al.: Quantum identity authentication based on ping–pong technique without entanglements. Quantum Inf. Process. 13, 2535–2549 (2014)ADSMathSciNetCrossRef Yuan, H., Liu, Y.-M., Pan, G.-Z., Zhang, G., et al.: Quantum identity authentication based on ping–pong technique without entanglements. Quantum Inf. Process. 13, 2535–2549 (2014)ADSMathSciNetCrossRef
32.
Zurück zum Zitat Ma, H.-X., Huang, P., Bao, W.-S., et al.: Continuous-variable quantum identity authentication based on quantum teleportation. Quantum Inf. Process. 15, 2605–2620 (2016)ADSMathSciNetCrossRef Ma, H.-X., Huang, P., Bao, W.-S., et al.: Continuous-variable quantum identity authentication based on quantum teleportation. Quantum Inf. Process. 15, 2605–2620 (2016)ADSMathSciNetCrossRef
33.
Zurück zum Zitat Liao, L.-X., Peng, X.-Q., Shi, J.-J., et al.: Graph state-based quantum authentication scheme. Int. J. Mod. Phys. B 31, 1750067 (2017)ADSMathSciNetCrossRef Liao, L.-X., Peng, X.-Q., Shi, J.-J., et al.: Graph state-based quantum authentication scheme. Int. J. Mod. Phys. B 31, 1750067 (2017)ADSMathSciNetCrossRef
34.
Zurück zum Zitat Hong, C.-H., Heo, J., Jang, J.-G.: Quantum identity authentication with single photon. Quantum Inf. Process. 16, UNSP 236 (2017) Hong, C.-H., Heo, J., Jang, J.-G.: Quantum identity authentication with single photon. Quantum Inf. Process. 16, UNSP 236 (2017)
35.
Zurück zum Zitat Ljunggren, D., Bourennane, M., Karlsson, A.: Authority-based user authentication in quantum key distribution. Phys. Rev. A 62, 022305 (2000)ADSCrossRef Ljunggren, D., Bourennane, M., Karlsson, A.: Authority-based user authentication in quantum key distribution. Phys. Rev. A 62, 022305 (2000)ADSCrossRef
36.
Zurück zum Zitat Wang, J., Zhang, Q., Tang, C.-J.: Multiparty simultaneous quantum identity authentication based on entanglement swapping. Chin. Phys. Lett. 23, 2360–2363 (2006)ADSCrossRef Wang, J., Zhang, Q., Tang, C.-J.: Multiparty simultaneous quantum identity authentication based on entanglement swapping. Chin. Phys. Lett. 23, 2360–2363 (2006)ADSCrossRef
37.
Zurück zum Zitat Niu, P.-H., Yuan, C., Li, Chong: Quantum authentication scheme based on entanglement swapping. Int. J. Theor. Phys. 55, 302–312 (2016)MathSciNetCrossRef Niu, P.-H., Yuan, C., Li, Chong: Quantum authentication scheme based on entanglement swapping. Int. J. Theor. Phys. 55, 302–312 (2016)MathSciNetCrossRef
38.
Zurück zum Zitat Xu, S.-W., Sun, Y., Lin, S.: Quantum private query based on single-photon interference. Quantum Inf. Process. 15, 3301–3310 (2016)ADSMathSciNetCrossRef Xu, S.-W., Sun, Y., Lin, S.: Quantum private query based on single-photon interference. Quantum Inf. Process. 15, 3301–3310 (2016)ADSMathSciNetCrossRef
39.
Zurück zum Zitat Shimizu, K., Imoto, N.: Single-photon-interference communication equivalent to Bell-state-basis cryptographic quantum communication. Phys. Rev. A 62, 054303 (2000)ADSCrossRef Shimizu, K., Imoto, N.: Single-photon-interference communication equivalent to Bell-state-basis cryptographic quantum communication. Phys. Rev. A 62, 054303 (2000)ADSCrossRef
40.
Zurück zum Zitat Liu, B., Xiao, D., Huang, W., et al.: Quantum private comparison employing single-photon interference. 16, UNSP 180 (2017) Liu, B., Xiao, D., Huang, W., et al.: Quantum private comparison employing single-photon interference. 16, UNSP 180 (2017)
41.
Zurück zum Zitat Barnett, S.M., Croke, S.: Quantum state discrimination. Adv. Opt. Photonics 1, 238–278 (2009)ADSCrossRef Barnett, S.M., Croke, S.: Quantum state discrimination. Adv. Opt. Photonics 1, 238–278 (2009)ADSCrossRef
Metadaten
Titel
Quantum identity authentication in the orthogonal-state-encoding QKD system
verfasst von
Bin Liu
Zhifeng Gao
Di Xiao
Wei Huang
Xingbin Liu
Bingjie Xu
Publikationsdatum
01.05.2019
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 5/2019
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2255-0

Weitere Artikel der Ausgabe 5/2019

Quantum Information Processing 5/2019 Zur Ausgabe

Neuer Inhalt