Skip to main content
Erschienen in: Quantum Information Processing 2/2020

01.02.2020

Quantum implementation of classical Marr–Hildreth edge detection

verfasst von: Panchi Li, Tong Shi, Aiping Lu, Bing Wang

Erschienen in: Quantum Information Processing | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Edge detection is a fundamental task in digital image processing. Marr–Hildreth edge detection is the basic tool for implementing edge detection in classic image processing. This paper studies the quantum version of the classical Marr–Hildreth edge detection, which includes two core processes: Gaussian–Laplacian filtering and zero-crossing extraction. Based on the sampling results of the Gaussian–Laplace function, Gaussian–Laplacian filtering is implemented directly using quantum multipliers and quantum adders. Zero-crossing extraction is achieved using several quantum comparators. The quantum circuits of these two core processes with several auxiliary operators are designed in detail. Complexity analysis shows that the quantum Marr–Hildreth edge detection has exponential speedup compared to its classical counterpart. The simulation on the classical computer verifies the correctness of the quantum Marr–Hildreth edge detection results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Beach, G., Dr. Lomont, C., Dr. Cohen, C.: Quantum image processing (QuIP). In: Proceedings of the 32nd IEEE Conference on Applied Imagery and Pattern Recognition, pp. 39–44, Bellingham (2003) Beach, G., Dr. Lomont, C., Dr. Cohen, C.: Quantum image processing (QuIP). In: Proceedings of the 32nd IEEE Conference on Applied Imagery and Pattern Recognition, pp. 39–44, Bellingham (2003)
2.
Zurück zum Zitat Yan, F., Iliyasu, A.M., Le, P.Q.: Quantum image processing: a review of advances in its security technologies. Int. J. Quantum Inf. 15(3), 1730001-(1–18) (2017)MathSciNetCrossRef Yan, F., Iliyasu, A.M., Le, P.Q.: Quantum image processing: a review of advances in its security technologies. Int. J. Quantum Inf. 15(3), 1730001-(1–18) (2017)MathSciNetCrossRef
3.
Zurück zum Zitat Venegas-Andraca, S., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics. In: Proceedings of SPIE Conference of Quantum Information and Computation, vol. 5105, pp. 134–147 (2003) Venegas-Andraca, S., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics. In: Proceedings of SPIE Conference of Quantum Information and Computation, vol. 5105, pp. 134–147 (2003)
5.
Zurück zum Zitat Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)MathSciNetCrossRef Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)MathSciNetCrossRef
6.
Zurück zum Zitat Le, P., Iliyasu, A., Dong, F., Hirota, K.: A flexible representation and invertible transformations for images on quantum computers. N. Adv. Intell. Signal Process. Stud. Comput. Intell. 372, 179–202 (2011) Le, P., Iliyasu, A., Dong, F., Hirota, K.: A flexible representation and invertible transformations for images on quantum computers. N. Adv. Intell. Signal Process. Stud. Comput. Intell. 372, 179–202 (2011)
7.
Zurück zum Zitat Yuan, S., Mao, X., Xue, Y., Chen, L., Xiong, Q., Compare, A.: SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13(6), 1353–1379 (2014)ADSMathSciNetCrossRef Yuan, S., Mao, X., Xue, Y., Chen, L., Xiong, Q., Compare, A.: SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13(6), 1353–1379 (2014)ADSMathSciNetCrossRef
8.
Zurück zum Zitat Sun, B., Iliyasu, A., Yan, F., Dong, F., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Info. 17(3), 404–417 (2013)CrossRef Sun, B., Iliyasu, A., Yan, F., Dong, F., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Info. 17(3), 404–417 (2013)CrossRef
9.
Zurück zum Zitat Sun, B., Le, P., Iliyasu, A., Yan, F., Garcia, J., Dong, F., Hirota, K.: Amulti-channel representation for images on quantum computers using the RGB color space. In: IEEE 7th International Symposium on Intelligent Signal Processing (WISP), pp. 1–6 (2011) Sun, B., Le, P., Iliyasu, A., Yan, F., Garcia, J., Dong, F., Hirota, K.: Amulti-channel representation for images on quantum computers using the RGB color space. In: IEEE 7th International Symposium on Intelligent Signal Processing (WISP), pp. 1–6 (2011)
10.
Zurück zum Zitat Zhang, Y., Lu, K., Gao, Y., et al.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)ADSMathSciNetCrossRef Zhang, Y., Lu, K., Gao, Y., et al.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)ADSMathSciNetCrossRef
11.
Zurück zum Zitat Zhou, R.G., Sun, Y.J., Fan, P.: Quantum image gray-code and bit-plane scrambling. Quantum Inf. Process. 14(5), 1717–1734 (2015)ADSMathSciNetCrossRef Zhou, R.G., Sun, Y.J., Fan, P.: Quantum image gray-code and bit-plane scrambling. Quantum Inf. Process. 14(5), 1717–1734 (2015)ADSMathSciNetCrossRef
12.
Zurück zum Zitat Jiang, N., Wu, W.Y., Wang, J.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)ADSMathSciNetCrossRef Jiang, N., Wu, W.Y., Wang, J.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)ADSMathSciNetCrossRef
13.
Zurück zum Zitat Zhou, R.G., Wu, Q., Zhang, M.Q., et al.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52(6), 1802–1817 (2013)MathSciNetCrossRef Zhou, R.G., Wu, Q., Zhang, M.Q., et al.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52(6), 1802–1817 (2013)MathSciNetCrossRef
14.
Zurück zum Zitat Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016)CrossRef Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016)CrossRef
15.
Zurück zum Zitat Iliyasu, A.M., Le, P.Q., Dong, F., et al.: Watermarking and authentication of quantum image based on restricted geometric transformations. Inf. Sci. 186(1), 126–149 (2012)MathSciNetCrossRef Iliyasu, A.M., Le, P.Q., Dong, F., et al.: Watermarking and authentication of quantum image based on restricted geometric transformations. Inf. Sci. 186(1), 126–149 (2012)MathSciNetCrossRef
16.
Zurück zum Zitat Yan, F., Iliyasu, A.M., Sun, B., et al.: A duple watermarking strategy for multi-channel quantum images. Quantum Inf. Process. 14(5), 1675–1692 (2015)ADSMathSciNetCrossRef Yan, F., Iliyasu, A.M., Sun, B., et al.: A duple watermarking strategy for multi-channel quantum images. Quantum Inf. Process. 14(5), 1675–1692 (2015)ADSMathSciNetCrossRef
17.
Zurück zum Zitat Abdullah, M., Iliyasu, P.C., Le, Q., Dong, F.Y., et al.: A framework for representing and producing movies on quantum computers. Int. J. Quantum Inf. 9(6), 1459–1497 (2011)CrossRef Abdullah, M., Iliyasu, P.C., Le, Q., Dong, F.Y., et al.: A framework for representing and producing movies on quantum computers. Int. J. Quantum Inf. 9(6), 1459–1497 (2011)CrossRef
18.
Zurück zum Zitat Yan, F., Iliyasu, A.M., Guo, Y.M., Yang, H.M.: Flexible representation and manipulation of audio signals on quantum computers. Theor. Comput. Sci. 752, 71–85 (2018)MathSciNetCrossRef Yan, F., Iliyasu, A.M., Guo, Y.M., Yang, H.M.: Flexible representation and manipulation of audio signals on quantum computers. Theor. Comput. Sci. 752, 71–85 (2018)MathSciNetCrossRef
20.
Zurück zum Zitat Jiang, N., Dang, Y., Zhao, N.: Quantum image location. Int. J. Theor. Phys. 55(10), 4501–4512 (2016)CrossRef Jiang, N., Dang, Y., Zhao, N.: Quantum image location. Int. J. Theor. Phys. 55(10), 4501–4512 (2016)CrossRef
21.
Zurück zum Zitat Le, P.Q., Iliyasuy, A.M., Dong, F., et al.: Fast geometric transformations on quantum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)MathSciNet Le, P.Q., Iliyasuy, A.M., Dong, F., et al.: Fast geometric transformations on quantum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)MathSciNet
22.
Zurück zum Zitat Jiang, N., Wu, W.Y., Wang, L., et al.: Quantum image pseudo color coding based on the density-stratified method. Quantum Inf. Process. 14(5), 1735–1755 (2015)ADSMathSciNetCrossRef Jiang, N., Wu, W.Y., Wang, L., et al.: Quantum image pseudo color coding based on the density-stratified method. Quantum Inf. Process. 14(5), 1735–1755 (2015)ADSMathSciNetCrossRef
23.
Zurück zum Zitat Zhang, Y., Lu, K., Xu, K., et al.: Local feature point extraction for quantum images. Quantum Inf. Process. 14(5), 1573–1588 (2015)ADSMathSciNetCrossRef Zhang, Y., Lu, K., Xu, K., et al.: Local feature point extraction for quantum images. Quantum Inf. Process. 14(5), 1573–1588 (2015)ADSMathSciNetCrossRef
24.
Zurück zum Zitat Simona, C., Vasile, I.M.: Image segmentation on a quantum computer. Quantum Inf. Process. 14(5), 1693–1715 (2015)MathSciNetCrossRef Simona, C., Vasile, I.M.: Image segmentation on a quantum computer. Quantum Inf. Process. 14(5), 1693–1715 (2015)MathSciNetCrossRef
26.
Zurück zum Zitat Fan, P., Zhou, R.G., Hu, W.W., Jiang, N.H.: Quantum image edge extraction based on Laplacian operator and zero-cross method. Quantum Inf. Process. 18, 27 (2019)ADSCrossRef Fan, P., Zhou, R.G., Hu, W.W., Jiang, N.H.: Quantum image edge extraction based on Laplacian operator and zero-cross method. Quantum Inf. Process. 18, 27 (2019)ADSCrossRef
27.
Zurück zum Zitat Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn, pp. 736–739. Pearson Education Inc., London (2010) Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn, pp. 736–739. Pearson Education Inc., London (2010)
28.
Zurück zum Zitat Wang, D., Liu, Z., Zhu, W., et al.: Design of quantum comparator based on extended general Toffoli gates with multiple targets. Comput. Sci. 39(9), 302–306 (2012) Wang, D., Liu, Z., Zhu, W., et al.: Design of quantum comparator based on extended general Toffoli gates with multiple targets. Comput. Sci. 39(9), 302–306 (2012)
29.
Zurück zum Zitat Vefral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)ADSMathSciNetCrossRef Vefral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)ADSMathSciNetCrossRef
30.
Zurück zum Zitat Li, P.C., Wang, B., Xiao, H., Liu, X.D.: Quantum representation and basic operations of digital signals. Int. J. Theor. Phys. 57(10), 3242–3270 (2018)CrossRef Li, P.C., Wang, B., Xiao, H., Liu, X.D.: Quantum representation and basic operations of digital signals. Int. J. Theor. Phys. 57(10), 3242–3270 (2018)CrossRef
31.
Zurück zum Zitat Barenco, A., Bennett, C.H., Cleve, R., et al.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995)ADSCrossRef Barenco, A., Bennett, C.H., Cleve, R., et al.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995)ADSCrossRef
33.
Zurück zum Zitat Zhang, Y., Lu, K., Gao, Y.H.: QSobel: a novel quantum image edge extraction algorithm. Sci. China Inf. Sci. 58(012106), 1–13 (2014)MATH Zhang, Y., Lu, K., Gao, Y.H.: QSobel: a novel quantum image edge extraction algorithm. Sci. China Inf. Sci. 58(012106), 1–13 (2014)MATH
Metadaten
Titel
Quantum implementation of classical Marr–Hildreth edge detection
verfasst von
Panchi Li
Tong Shi
Aiping Lu
Bing Wang
Publikationsdatum
01.02.2020
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 2/2020
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2559-0

Weitere Artikel der Ausgabe 2/2020

Quantum Information Processing 2/2020 Zur Ausgabe

Neuer Inhalt