Skip to main content

2024 | OriginalPaper | Buchkapitel

Quantum K-Nearest Neighbors for Object Recognition

verfasst von : Ahmad Zaki Al Muntazhar, Dwi Ratna Sulistyaningrum, Subiono

Erschienen in: Applied and Computational Mathematics

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Object recognition research is essential to simulate human vision capabilities on computers or robots. As time goes by, this research is getting more sophisticated, but it encounters challenges in the form of 3V: (volume) large volume of data; (variety) large variety of data; (velocity); and the need for fast data processing. That matter has led scientists to start looking for solutions to these problems. On the other hand, the development of quantum computing has opened up new opportunities in Quantum Machine Learning (QML), which combines the power of quantum computing with machine learning techniques. One of the exciting algorithms in QML is Quantum k-Nearest Neighbors (QKNN), which can be used in image-based object recognition. However, the use of QKNN in image-based object recognition is still limited and needs to be developed further. This research aims to apply and analyze the quantum computing-based QKNN algorithm in image-based object recognition. The steps include representing the image as quantum states, calculating the distance between two quantum states using the fidelity method, and determining the label using a majority vote based on the closest distance. In this study, the test of QKNN algorithm used 84 synthetic image data sets with a ratio of 64:20. The experimental results on the 2-class variety, the QKNN succeeded on average 0.80, show that the QKNN algorithm can recognize objects with an accuracy rate of 0.65 on the 4-class data set. Based on these results, there is a need for further study in terms of data fidelity and data preprocessing techniques to improve QKNN’s performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Bennamoun, M., Mamic, G.J.: Object Recognition: Fundamentals and Case Studies, 1st edn. Advances in Pattern Recognition, Springer-Verlag, London (2002) Bennamoun, M., Mamic, G.J.: Object Recognition: Fundamentals and Case Studies, 1st edn. Advances in Pattern Recognition, Springer-Verlag, London (2002)
3.
Zurück zum Zitat Buhrman, H., Cleve, R., Watrous, J., De Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)CrossRef Buhrman, H., Cleve, R., Watrous, J., De Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)CrossRef
4.
Zurück zum Zitat Caron, S., Acun, A.: Building a quantum KNN classifier with Qiskit: theoretical gains put to practice (2021) Caron, S., Acun, A.: Building a quantum KNN classifier with Qiskit: theoretical gains put to practice (2021)
5.
Zurück zum Zitat Chen, X.W., Lin, X.: Big data deep learning: challenges and perspectives. IEEE Access 2, 514–525 (2014)CrossRef Chen, X.W., Lin, X.: Big data deep learning: challenges and perspectives. IEEE Access 2, 514–525 (2014)CrossRef
6.
Zurück zum Zitat Dang, Y., Jiang, N., Hu, H., Ji, Z., Zhang, W.: Image classification based on quantum k-nearest-neighbor algorithm. Quantum Inf. Process. 17, 1–18 (2018)CrossRef Dang, Y., Jiang, N., Hu, H., Ji, Z., Zhang, W.: Image classification based on quantum k-nearest-neighbor algorithm. Quantum Inf. Process. 17, 1–18 (2018)CrossRef
7.
Zurück zum Zitat Emily Grumbling, M.H.: Quantum Computing: Progress and Prospects. National Academies of Sciences Engineering, and Medicine (2019) Emily Grumbling, M.H.: Quantum Computing: Progress and Prospects. National Academies of Sciences Engineering, and Medicine (2019)
8.
Zurück zum Zitat Gambetta, J.: Ibm’s roadmap for scaling quantum technology. IBM Research Blog (2020) Gambetta, J.: Ibm’s roadmap for scaling quantum technology. IBM Research Blog (2020)
10.
Zurück zum Zitat Huang, H.Y., Broughton, M., Mohseni, M., Babbush, R., Boixo, S., Neven, H., McClean, J.R.: Power of data in quantum machine learning. Nat. Commun. 12(1), 2631 (2021)CrossRef Huang, H.Y., Broughton, M., Mohseni, M., Babbush, R., Boixo, S., Neven, H., McClean, J.R.: Power of data in quantum machine learning. Nat. Commun. 12(1), 2631 (2021)CrossRef
11.
Zurück zum Zitat Kelly, J., Chen, Z., Chiaro, B., Foxen, B., Martinis, J., Google quantum hardware team team: operating and characterizing of a 72 superconducting qubit processor “Bristlecone”: part 1. In: APS March Meeting Abstracts. APS Meeting Abstracts, vol. 2019, p. A42.002 (2019) Kelly, J., Chen, Z., Chiaro, B., Foxen, B., Martinis, J., Google quantum hardware team team: operating and characterizing of a 72 superconducting qubit processor “Bristlecone”: part 1. In: APS March Meeting Abstracts. APS Meeting Abstracts, vol. 2019, p. A42.002 (2019)
12.
Zurück zum Zitat Liang, Y.C., Yeh, Y.H., Mendonça, P.E., Teh, R.Y., Reid, M.D., Drummond, P.D.: Quantum fidelity measures for mixed states. Rep. Prog. Phys. 82(7), 076001 (2019)MathSciNetCrossRef Liang, Y.C., Yeh, Y.H., Mendonça, P.E., Teh, R.Y., Reid, M.D., Drummond, P.D.: Quantum fidelity measures for mixed states. Rep. Prog. Phys. 82(7), 076001 (2019)MathSciNetCrossRef
14.
Zurück zum Zitat Schuld, M., Petruccione, F.: Supervised Learning with Quantum Computers, vol. 17. Springer (2018) Schuld, M., Petruccione, F.: Supervised Learning with Quantum Computers, vol. 17. Springer (2018)
15.
Zurück zum Zitat Treiber, M.A.: An Introduction to Object Recognition: Selected Algorithms for a Wide Variety of Applications, 1st edn. Advances in Pattern Recognition, Springer-Verlag, London (2010) Treiber, M.A.: An Introduction to Object Recognition: Selected Algorithms for a Wide Variety of Applications, 1st edn. Advances in Pattern Recognition, Springer-Verlag, London (2010)
16.
Zurück zum Zitat Wong, H.Y.: Introduction to Quantum Computing: From a Layperson to a Programmer in 30 Steps. Springer Nature (2022) Wong, H.Y.: Introduction to Quantum Computing: From a Layperson to a Programmer in 30 Steps. Springer Nature (2022)
17.
Zurück zum Zitat Zhou, N.R., Liu, X.X., Chen, Y.L., Du, N.S.: Quantum k-nearest-neighbor image classification algorithm based on kl transform. Int. J. Theor. Phys. 60, 1209–1224 (2021)CrossRef Zhou, N.R., Liu, X.X., Chen, Y.L., Du, N.S.: Quantum k-nearest-neighbor image classification algorithm based on kl transform. Int. J. Theor. Phys. 60, 1209–1224 (2021)CrossRef
Metadaten
Titel
Quantum K-Nearest Neighbors for Object Recognition
verfasst von
Ahmad Zaki Al Muntazhar
Dwi Ratna Sulistyaningrum
Subiono
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-2136-8_11

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.