Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 5/2019

24.01.2019

Quantum size effects and tunable visible photoluminescence in a-Si:H/nc-Si:H superlattices

verfasst von: Asha Yadav, Pratima Agarwal, Rana Biswas

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quantum size effects are commonly observed in semiconductor nanocrystals and quantum dots. Here, we demonstrate unexpected quantum size effects in an unusual bulk system with multiple interfaces, consisting of alternating layers of nanocrystalline silicon (nc-Si:H) and amorphous silicon (a-Si:H) material thin films. The nc-Si:H layers consist of silicon nanocrystals embedded in an amorphous matrix, with an amorphous-crystalline interface separating the two structures. Plasma-enhanced chemical vapor deposition was utilized to grow nanocrystalline-amorphous silicon superlattices with a varying thickness of the nanocrystalline layer. Strong visible photoluminescence at room temperature was deconvoluted into individual peaks. As the nanocrystalline silicon layer thickness was increased from 5 to 20 nm, the photoluminescence spectra red-shifted with the emission wavelength varying as d2 (d is the size of the nanocrystallites), the characteristic signature underlying quantum size effects. The size d of the nanocrystals was estimated by the measured shift of the Raman peak, and could be tuned by varying the thickness of the nc-Si:H layers. High resolution transmission electron microscopy show nanocrystals with a narrow size distribution, in an amorphous matrix. We also observe long wavelength photoluminescence from interfacial states that leads to persistent photconductivity. Nanocrystalline-amorphous superlattices offer a unique pathway for synthesizing embedded nanocrystals with controlled sizes and photonic signatures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat W.L. Wilson, P.F. Szajowski, L.E. Brus, Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science 262, 1242–1244 (1993)CrossRef W.L. Wilson, P.F. Szajowski, L.E. Brus, Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science 262, 1242–1244 (1993)CrossRef
2.
Zurück zum Zitat V. Lehmann, U. Gösele, Porous silicon formation: a quantum wire effect. Appl. Phys. Lett. 58, 856–858 (1991)CrossRef V. Lehmann, U. Gösele, Porous silicon formation: a quantum wire effect. Appl. Phys. Lett. 58, 856–858 (1991)CrossRef
3.
Zurück zum Zitat O. Yukio, T. Keiji, T. Fumitaka, M. Hiroaki, K. Kenji, Visible photoluminescence from Si microcrystals embedded in SiO2 glass films. Jpn. J. Appl. Phys. 31, L365 (1992)CrossRef O. Yukio, T. Keiji, T. Fumitaka, M. Hiroaki, K. Kenji, Visible photoluminescence from Si microcrystals embedded in SiO2 glass films. Jpn. J. Appl. Phys. 31, L365 (1992)CrossRef
4.
Zurück zum Zitat C.M. Hessel, D. Reid, M.G. Panthani, M.R. Rasch, B.W. Goodfellow, J. Wei, H. Fujii, V. Akhavan, B.A. Korgel, Synthesis of ligand-stabilized silicon nanocrystals with size dependent photoluminescence spanning visible to near-infrared wavelengths. Chem. Mater. 24, 393–401 (2012)CrossRef C.M. Hessel, D. Reid, M.G. Panthani, M.R. Rasch, B.W. Goodfellow, J. Wei, H. Fujii, V. Akhavan, B.A. Korgel, Synthesis of ligand-stabilized silicon nanocrystals with size dependent photoluminescence spanning visible to near-infrared wavelengths. Chem. Mater. 24, 393–401 (2012)CrossRef
5.
Zurück zum Zitat L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990)CrossRef L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990)CrossRef
6.
Zurück zum Zitat S. Mitra, V. Svrcek, M.M. Montero, T. Velusamy, D. Mariotti, Temperature-dependent photoluminescence of surface-engineered silicon nanocrystals. Sci. Rep. 6, 27727 1–9 (2016)CrossRef S. Mitra, V. Svrcek, M.M. Montero, T. Velusamy, D. Mariotti, Temperature-dependent photoluminescence of surface-engineered silicon nanocrystals. Sci. Rep. 6, 27727 1–9 (2016)CrossRef
7.
Zurück zum Zitat D.C. Hannah, J. Yang, N.J. Kramer, G.C. Schatz, U.R. Kortshagen, R.D. Schaller, Ultrafast photoluminescence in quantum-confined silicon nanocrystals arises from an amorphous surface layer. ACS Photonics 1, 960–967 (2014)CrossRef D.C. Hannah, J. Yang, N.J. Kramer, G.C. Schatz, U.R. Kortshagen, R.D. Schaller, Ultrafast photoluminescence in quantum-confined silicon nanocrystals arises from an amorphous surface layer. ACS Photonics 1, 960–967 (2014)CrossRef
8.
Zurück zum Zitat E. Steveler, H. Rinnert, M. Vergnat, Low-temperature photoluminescence properties of Nd-doped silicon oxide thin films containing silicon nanocrystals. J. Lumin. 183, 311–314 (2017)CrossRef E. Steveler, H. Rinnert, M. Vergnat, Low-temperature photoluminescence properties of Nd-doped silicon oxide thin films containing silicon nanocrystals. J. Lumin. 183, 311–314 (2017)CrossRef
9.
Zurück zum Zitat S.F. Ahmed, D. Banerjee, M.K. Mitra, K.K. Chattopadhyay, Visible photoluminescence from silicon-incorporated diamond like carbon films synthesized via direct current PECVD technique. J. Lumin. 131, 2352–2358 (2011)CrossRef S.F. Ahmed, D. Banerjee, M.K. Mitra, K.K. Chattopadhyay, Visible photoluminescence from silicon-incorporated diamond like carbon films synthesized via direct current PECVD technique. J. Lumin. 131, 2352–2358 (2011)CrossRef
10.
Zurück zum Zitat A. Momeni, M.H. Mahdieh, Photoluminescence analysis of colloidal silicon nanoparticles in ethanol produced by double-pulse ns laser ablation. J. Lumin. 176, 136–143 (2016)CrossRef A. Momeni, M.H. Mahdieh, Photoluminescence analysis of colloidal silicon nanoparticles in ethanol produced by double-pulse ns laser ablation. J. Lumin. 176, 136–143 (2016)CrossRef
11.
Zurück zum Zitat C.-H. Cho, J.-W. Kang, I.-K. Park, S.-J. Park, Enhanced quantum confinement in tensile-strained silicon nanocrystals embedded in silicon nitride. Curr. Appl. Phys. 17, 1616–1621 (2017)CrossRef C.-H. Cho, J.-W. Kang, I.-K. Park, S.-J. Park, Enhanced quantum confinement in tensile-strained silicon nanocrystals embedded in silicon nitride. Curr. Appl. Phys. 17, 1616–1621 (2017)CrossRef
12.
Zurück zum Zitat S.J. Angus, A.J. Ferguson, A.S. Dzurak, R.G. Clark, Gate-defined quantum dots in intrinsic silicon. Nano Lett. 7, 2051 (2007)CrossRef S.J. Angus, A.J. Ferguson, A.S. Dzurak, R.G. Clark, Gate-defined quantum dots in intrinsic silicon. Nano Lett. 7, 2051 (2007)CrossRef
13.
Zurück zum Zitat A. Fujiwara, H. Inokawa, K. Yamazaki, H. Namatsu, Y. Takahashi, N.M. Zimmerman, S.B. Martin, Single electron tunneling transistor with tunable barriers using silicon nanowire metal-oxide-semiconductor field-effect transistor. Appl. Phys. Lett. 88, 053121 (2006)CrossRef A. Fujiwara, H. Inokawa, K. Yamazaki, H. Namatsu, Y. Takahashi, N.M. Zimmerman, S.B. Martin, Single electron tunneling transistor with tunable barriers using silicon nanowire metal-oxide-semiconductor field-effect transistor. Appl. Phys. Lett. 88, 053121 (2006)CrossRef
14.
Zurück zum Zitat S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbé, K. Chan, A silicon nanocrystals based memory. Appl. Phys. Lett. 68, 1377–1379 (1996)CrossRef S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbé, K. Chan, A silicon nanocrystals based memory. Appl. Phys. Lett. 68, 1377–1379 (1996)CrossRef
15.
Zurück zum Zitat Y.T. Tan, T. Kamiya, Z.A.K. Durrani, H. Ahmed, Room temperature nanocrystalline silicon single-electron transistors. J. Appl. Phys. 94, 633–637 (2003)CrossRef Y.T. Tan, T. Kamiya, Z.A.K. Durrani, H. Ahmed, Room temperature nanocrystalline silicon single-electron transistors. J. Appl. Phys. 94, 633–637 (2003)CrossRef
16.
Zurück zum Zitat J.H. Shim, S. Im, N.H. Cho, Nanostructural features of ncSiH thin films prepared by PECVD. Appl. Surf. Sci. 234, 268–273 (2004)CrossRef J.H. Shim, S. Im, N.H. Cho, Nanostructural features of ncSiH thin films prepared by PECVD. Appl. Surf. Sci. 234, 268–273 (2004)CrossRef
17.
Zurück zum Zitat H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, T. Nakagiri, Quantum size effects on photoluminescence in ultrafine Si particles. Appl. Phys. Lett. 56, 2379–2380 (1990)CrossRef H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, T. Nakagiri, Quantum size effects on photoluminescence in ultrafine Si particles. Appl. Phys. Lett. 56, 2379–2380 (1990)CrossRef
18.
Zurück zum Zitat A. Nakajima, Y. Sugita, K. Kawamura, H. Tomita, N. Yokoyama, Microstructure and optical absorption properties of Si nanocrystals fabricated with low-pressure chemical-vapor deposition. J. Appl. Phys. 80, 4006–4011 (1996)CrossRef A. Nakajima, Y. Sugita, K. Kawamura, H. Tomita, N. Yokoyama, Microstructure and optical absorption properties of Si nanocrystals fabricated with low-pressure chemical-vapor deposition. J. Appl. Phys. 80, 4006–4011 (1996)CrossRef
19.
Zurück zum Zitat L.N. Dinh, L.L. Chase, M. Balooch, L.J. Terminello, F. Wooten, Photoluminescence of oxidized silicon nanoclusters deposited on the basal plane of graphite. Appl. Phys. Lett. 65, 3111–3113 (1994)CrossRef L.N. Dinh, L.L. Chase, M. Balooch, L.J. Terminello, F. Wooten, Photoluminescence of oxidized silicon nanoclusters deposited on the basal plane of graphite. Appl. Phys. Lett. 65, 3111–3113 (1994)CrossRef
20.
Zurück zum Zitat E. Werwa, A.A. Seraphin, L.A. Chiu, C. Zhou, K.D. Kolenbrander, Synthesis and processing of silicon nanocrystallites using a pulsed laser ablation supersonic expansion method. Appl. Phys. Lett. 64, 1821–1823 (1994)CrossRef E. Werwa, A.A. Seraphin, L.A. Chiu, C. Zhou, K.D. Kolenbrander, Synthesis and processing of silicon nanocrystallites using a pulsed laser ablation supersonic expansion method. Appl. Phys. Lett. 64, 1821–1823 (1994)CrossRef
21.
Zurück zum Zitat Y.-H. So, S. Huang, G. Conibeer, M.A. Green, Formation and photoluminescence of Si nanocrystals in controlled multilayer structure comprising of Si-rich nitride and ultrathin silicon nitride barrier layers. Thin Solid Films 519, 5408–5412 (2011)CrossRef Y.-H. So, S. Huang, G. Conibeer, M.A. Green, Formation and photoluminescence of Si nanocrystals in controlled multilayer structure comprising of Si-rich nitride and ultrathin silicon nitride barrier layers. Thin Solid Films 519, 5408–5412 (2011)CrossRef
22.
Zurück zum Zitat F. Iacona, G. Franzò, C. Spinella, Correlation between luminescence and structural properties of Si nanocrystals. J. Appl. Phys. 87, 1295–1303 (2000)CrossRef F. Iacona, G. Franzò, C. Spinella, Correlation between luminescence and structural properties of Si nanocrystals. J. Appl. Phys. 87, 1295–1303 (2000)CrossRef
23.
Zurück zum Zitat D. Zhang, R.M. Kolbas, P.D. Milewski, D.J. Lichtenwalner, A.I. Kingon, J.M. Zavada, Light emission from thermally oxidized silicon nanoparticles. Appl. Phys. Lett. 65, 2684–2686 (1994)CrossRef D. Zhang, R.M. Kolbas, P.D. Milewski, D.J. Lichtenwalner, A.I. Kingon, J.M. Zavada, Light emission from thermally oxidized silicon nanoparticles. Appl. Phys. Lett. 65, 2684–2686 (1994)CrossRef
24.
Zurück zum Zitat M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, J. Bläsing, Size-controlled highly luminescent silicon nanocrystals: a SiO/SiO2 superlattice approach. Appl. Phys. Lett. 80, 661–663 (2002)CrossRef M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, J. Bläsing, Size-controlled highly luminescent silicon nanocrystals: a SiO/SiO2 superlattice approach. Appl. Phys. Lett. 80, 661–663 (2002)CrossRef
25.
Zurück zum Zitat P. Photopoulos, A.G. Nassiopoulou, D.N. Kouvatsos, A. Travlos, Photo- and electroluminescence from nanocrystalline silicon single and multilayer structures. Mater. Sci. Eng. B 69, 345–349 (2000)CrossRef P. Photopoulos, A.G. Nassiopoulou, D.N. Kouvatsos, A. Travlos, Photo- and electroluminescence from nanocrystalline silicon single and multilayer structures. Mater. Sci. Eng. B 69, 345–349 (2000)CrossRef
26.
Zurück zum Zitat L. Tsybeskov, K.D. Hirschman, S.P. Duttagupta, M. Zacharias, P.M. Fauchet, J.P. McCaffrey, D.J. Lockwood, Nanocrystalline-silicon superlattice produced by controlled recrystallization. Appl. Phys. Lett. 72, 43–45 (1998)CrossRef L. Tsybeskov, K.D. Hirschman, S.P. Duttagupta, M. Zacharias, P.M. Fauchet, J.P. McCaffrey, D.J. Lockwood, Nanocrystalline-silicon superlattice produced by controlled recrystallization. Appl. Phys. Lett. 72, 43–45 (1998)CrossRef
27.
Zurück zum Zitat D.J. Lockwood, Z.H. Lu, J.M. Baribeau, Quantum confined luminescence in Si/SiO2 superlattices. Phys. Rev. Lett. 76, 539–541 (1996)CrossRef D.J. Lockwood, Z.H. Lu, J.M. Baribeau, Quantum confined luminescence in Si/SiO2 superlattices. Phys. Rev. Lett. 76, 539–541 (1996)CrossRef
28.
Zurück zum Zitat M. Zacharias, L. Tsybeskov, K.D. Hirschman, P.M. Fauchet, J. Bläsing, P. Kohlert, P. Veit, Nanocrystalline silicon superlattices: fabrication and characterization. J. Non-Cryst. Solids 227, 1132–1136 (1998)CrossRef M. Zacharias, L. Tsybeskov, K.D. Hirschman, P.M. Fauchet, J. Bläsing, P. Kohlert, P. Veit, Nanocrystalline silicon superlattices: fabrication and characterization. J. Non-Cryst. Solids 227, 1132–1136 (1998)CrossRef
29.
Zurück zum Zitat J. Dresner, Transistor having a superlattice, U.S Patent 4, 697,197, (1987) J. Dresner, Transistor having a superlattice, U.S Patent 4, 697,197, (1987)
30.
Zurück zum Zitat S. Pattnaik, N. Chakravarty, R. Biswas, V. Dalal, D. Slafer, Nano-photonic and nano-plasmonic enhancements in thin film silicon solar cells. Sol. Energy Mater. Sol. Cells 129, 115–123 (2014)CrossRef S. Pattnaik, N. Chakravarty, R. Biswas, V. Dalal, D. Slafer, Nano-photonic and nano-plasmonic enhancements in thin film silicon solar cells. Sol. Energy Mater. Sol. Cells 129, 115–123 (2014)CrossRef
31.
Zurück zum Zitat B. Curtin, R. Biswas, V. Dalal, Photonic crystal based back reflectors for light management and enhanced absorption in amorphous silicon solar cells. Appl. Phys. Lett. 95, 231102 (2009)CrossRef B. Curtin, R. Biswas, V. Dalal, Photonic crystal based back reflectors for light management and enhanced absorption in amorphous silicon solar cells. Appl. Phys. Lett. 95, 231102 (2009)CrossRef
32.
Zurück zum Zitat C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F.-J. Haug, M. Despeisse, C. Ballif, Nanoimprint lithography for high-efficiency thin-film silicon solar cells. Nano Lett. 11, 661–665 (2011)CrossRef C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F.-J. Haug, M. Despeisse, C. Ballif, Nanoimprint lithography for high-efficiency thin-film silicon solar cells. Nano Lett. 11, 661–665 (2011)CrossRef
33.
Zurück zum Zitat O. Isabella, J. Krč, M. Zeman, Modulated surface textures for enhanced light trapping in thin-film silicon solar cells. Appl. Phys. Lett. 97, 101106 (2010)CrossRef O. Isabella, J. Krč, M. Zeman, Modulated surface textures for enhanced light trapping in thin-film silicon solar cells. Appl. Phys. Lett. 97, 101106 (2010)CrossRef
34.
Zurück zum Zitat B.C. Pan, R. Biswas, Structure and simulation of hydrogenated nanocrystalline silicon. J. Appl. Phys. 96, 6247–6252 (2004)CrossRef B.C. Pan, R. Biswas, Structure and simulation of hydrogenated nanocrystalline silicon. J. Appl. Phys. 96, 6247–6252 (2004)CrossRef
35.
Zurück zum Zitat B.C. Pan, R. Biswas, Simulation of hydrogen evolution from nano-crystalline silicon. J. Non-Cryst. Solids 333, 44–47 (2004)CrossRef B.C. Pan, R. Biswas, Simulation of hydrogen evolution from nano-crystalline silicon. J. Non-Cryst. Solids 333, 44–47 (2004)CrossRef
36.
Zurück zum Zitat Y. He, C. Yin, G. Cheng, L. Wang, X. Liu, The structure and properties of nanosize crystalline silicon films. J. Appl. Phys. 75, 797–803 (1994)CrossRef Y. He, C. Yin, G. Cheng, L. Wang, X. Liu, The structure and properties of nanosize crystalline silicon films. J. Appl. Phys. 75, 797–803 (1994)CrossRef
37.
Zurück zum Zitat L.E. Brus, Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984)CrossRef L.E. Brus, Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984)CrossRef
38.
Zurück zum Zitat E.M.F. Vieira, J. Toudert, A.G. Rolo, A. Parisini, J.P. Leitao, M.R. Correia, N. Franco, E. Alves, A. Chahboun, J. Martin Sanchez, R. Serna, M.J.M. Gomes, SiGe layer thickness effect on the structural and optical properties of well organised SiGe/SiO2 multilayers. Nanotechnology 28, 345701 (2017)CrossRef E.M.F. Vieira, J. Toudert, A.G. Rolo, A. Parisini, J.P. Leitao, M.R. Correia, N. Franco, E. Alves, A. Chahboun, J. Martin Sanchez, R. Serna, M.J.M. Gomes, SiGe layer thickness effect on the structural and optical properties of well organised SiGe/SiO2 multilayers. Nanotechnology 28, 345701 (2017)CrossRef
39.
Zurück zum Zitat A. Yadav, P. Agarwal, Persistent photoconductivity studies in a-Si:H/nc-Si:H thin film superlattices. Superlattices Microstruct. 85, 776–783 (2015)CrossRef A. Yadav, P. Agarwal, Persistent photoconductivity studies in a-Si:H/nc-Si:H thin film superlattices. Superlattices Microstruct. 85, 776–783 (2015)CrossRef
Metadaten
Titel
Quantum size effects and tunable visible photoluminescence in a-Si:H/nc-Si:H superlattices
verfasst von
Asha Yadav
Pratima Agarwal
Rana Biswas
Publikationsdatum
24.01.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 5/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-00763-w

Weitere Artikel der Ausgabe 5/2019

Journal of Materials Science: Materials in Electronics 5/2019 Zur Ausgabe

Neuer Inhalt