Skip to main content
Erschienen in: Quantum Information Processing 9/2020

01.08.2020

Quantum speed limit in the thermal spin-boson system with and without tunneling term

verfasst von: Sh. Dehdashti, F. Yasar, M. Bagheri Harouni, A. Mahdifar, B. Mirza

Erschienen in: Quantum Information Processing | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we study the spin-bosonic model, with and without tunneling terms, in detail. The spin-bosonic model without tunneling is studied by using the thermofield dynamics approach. Indeed, by considering temperature, we show that environmental states, while they become entangled with system, approach thermal coherent states with different phases. In addition, by considering the tunneling term, we study the interplay of the environmental cut-off frequency as well as the impacts of environmental temperature on the quantum speed limit in both cases, i.e., spin-boson system with and without tunneling term. In these studies, we indicate temperature play more important role in compare with cut-off frequency to control the quantumness of a spin system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)ADS Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)ADS
2.
Zurück zum Zitat Costi, T., Kieffer, C.: Equilibrium dynamics of the dissipative two-state system. Phys. Rev. Lett. 76, 1683 (1996)ADS Costi, T., Kieffer, C.: Equilibrium dynamics of the dissipative two-state system. Phys. Rev. Lett. 76, 1683 (1996)ADS
3.
Zurück zum Zitat Egger, R., Mak, C.: Low-temperature dynamical simulation of spin-boson systems. Phys. Rev. B 50, 15210 (1994)ADS Egger, R., Mak, C.: Low-temperature dynamical simulation of spin-boson systems. Phys. Rev. B 50, 15210 (1994)ADS
4.
Zurück zum Zitat Dehdashti, S., Mahdifar, A., Harouni, M.B., Roknizadeh, R.: Decoherence of spin-deformed bosonic model. Ann. Phys. 334, 321 (2013)ADSMathSciNetMATH Dehdashti, S., Mahdifar, A., Harouni, M.B., Roknizadeh, R.: Decoherence of spin-deformed bosonic model. Ann. Phys. 334, 321 (2013)ADSMathSciNetMATH
5.
Zurück zum Zitat Dehdashti, S., Harouni, M.B., Mahdifar, A., Roknizadeh, R.: Deformed Weyl–Heisenberg algebra and quantum decoherence effect. Laser Phys. 24, 055203 (2014)ADS Dehdashti, S., Harouni, M.B., Mahdifar, A., Roknizadeh, R.: Deformed Weyl–Heisenberg algebra and quantum decoherence effect. Laser Phys. 24, 055203 (2014)ADS
6.
Zurück zum Zitat Dehdashti, S., et al.: Stability of two interacting entangled spins interacting with a thermal environment. Quantum Inf. Comput. 16, 1365 (2016)MathSciNet Dehdashti, S., et al.: Stability of two interacting entangled spins interacting with a thermal environment. Quantum Inf. Comput. 16, 1365 (2016)MathSciNet
7.
Zurück zum Zitat Zurek, W.H.: Pointer basis of quantum apparatus: into what mixture does the wave packet collapse? Phys. Rev. D 24, 1516 (1981)ADSMathSciNet Zurek, W.H.: Pointer basis of quantum apparatus: into what mixture does the wave packet collapse? Phys. Rev. D 24, 1516 (1981)ADSMathSciNet
8.
Zurück zum Zitat Zurek, W.H., Habib, S., Paz, J.P.: Coherent states via decoherence. Phys. Rev. Lett. 70, 1187 (1993)ADS Zurek, W.H., Habib, S., Paz, J.P.: Coherent states via decoherence. Phys. Rev. Lett. 70, 1187 (1993)ADS
9.
Zurück zum Zitat Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)MATH Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)MATH
10.
Zurück zum Zitat Schlosshauer, M.A.: Decoherence: And the Quantum-to-Classical Transition. Springer, Berlin (2007) Schlosshauer, M.A.: Decoherence: And the Quantum-to-Classical Transition. Springer, Berlin (2007)
11.
Zurück zum Zitat Pachon, L.A., Brumer, P.: Physical basis for long-lived electronic coherence in photosynthetic light-harvesting systems. J. Phys. Chem. Lett. 2, 2728 (2011) Pachon, L.A., Brumer, P.: Physical basis for long-lived electronic coherence in photosynthetic light-harvesting systems. J. Phys. Chem. Lett. 2, 2728 (2011)
12.
Zurück zum Zitat Fleming, G.R., Scholes, G.D., Cheng, Y.-C.: Quantum effects in biology. Procedia Chem. 3, 38 (2011) Fleming, G.R., Scholes, G.D., Cheng, Y.-C.: Quantum effects in biology. Procedia Chem. 3, 38 (2011)
13.
Zurück zum Zitat Huelga, S.F., Plenio, M.: Quantum dynamics of bio-molecular systems in noisy environments. Procedia Chem. 3, 248 (2011) Huelga, S.F., Plenio, M.: Quantum dynamics of bio-molecular systems in noisy environments. Procedia Chem. 3, 248 (2011)
14.
Zurück zum Zitat Shi, Q., Zhu, L., Chen, L.: Quantum rate dynamics for proton transfer reaction in a model system: effect of the rate promoting vibrational mode. J. Chem. Phys. 135, 044505 (2011)ADS Shi, Q., Zhu, L., Chen, L.: Quantum rate dynamics for proton transfer reaction in a model system: effect of the rate promoting vibrational mode. J. Chem. Phys. 135, 044505 (2011)ADS
15.
Zurück zum Zitat Lei, C.U., Zhang, W.-M.: Decoherence suppression of open quantum systems through a strong coupling to non-Markovian reservoirs. Phys. Rev. A 84, 052116 (2011)ADS Lei, C.U., Zhang, W.-M.: Decoherence suppression of open quantum systems through a strong coupling to non-Markovian reservoirs. Phys. Rev. A 84, 052116 (2011)ADS
16.
Zurück zum Zitat Zhang, J., Liu, Y.-X., Zhang, W.-M., Wu, L.-A., Wu, R.-B., Tarn, T.-J.: Deterministic chaos can act as a decoherence suppressor. Phys. Rev. B 84, 214304 (2011)ADS Zhang, J., Liu, Y.-X., Zhang, W.-M., Wu, L.-A., Wu, R.-B., Tarn, T.-J.: Deterministic chaos can act as a decoherence suppressor. Phys. Rev. B 84, 214304 (2011)ADS
17.
Zurück zum Zitat Costi, T., McKenzie, R.H.: Entanglement between a qubit and the environment in the spin-boson model. Phys. Rev. A 68, 034301 (2003)ADS Costi, T., McKenzie, R.H.: Entanglement between a qubit and the environment in the spin-boson model. Phys. Rev. A 68, 034301 (2003)ADS
18.
Zurück zum Zitat Uchiyama, C., Aihara, M.: Multipulse control of decoherence. Phys. Rev. A 66, 032313 (2002)ADS Uchiyama, C., Aihara, M.: Multipulse control of decoherence. Phys. Rev. A 66, 032313 (2002)ADS
19.
Zurück zum Zitat Weiss, U.: Quantum Dissipative Systems, vol. 10. World Scientific, Singapore (1999)MATH Weiss, U.: Quantum Dissipative Systems, vol. 10. World Scientific, Singapore (1999)MATH
20.
Zurück zum Zitat Pöschl, G., Teller, E.: Bemerkungen zur Quantenmechanik des anharmonischen Oszillators. Z. Phys. 83, 143 (1933)ADSMATH Pöschl, G., Teller, E.: Bemerkungen zur Quantenmechanik des anharmonischen Oszillators. Z. Phys. 83, 143 (1933)ADSMATH
21.
Zurück zum Zitat Gilmore, J.B., McKenzie, R.H.: Criteria for quantum coherent transfer of excitations between chromophores in a polar solvent. Chem. Phys. Lett. 421, 266 (2006)ADS Gilmore, J.B., McKenzie, R.H.: Criteria for quantum coherent transfer of excitations between chromophores in a polar solvent. Chem. Phys. Lett. 421, 266 (2006)ADS
22.
Zurück zum Zitat Tirandaz, A., Ghahramani, F.T., Shafiee, A.: Emergence of molecular chirality due to chiral interactions in a biological environment. J. Biol. Phys. 40, 369 (2014) Tirandaz, A., Ghahramani, F.T., Shafiee, A.: Emergence of molecular chirality due to chiral interactions in a biological environment. J. Biol. Phys. 40, 369 (2014)
23.
Zurück zum Zitat Mandelstam, L., Tamm, I.: The uncertainty relation between energy and time in nonrelativistic quantum mechanics. J. Phys. (USSR) 9, 1 (1945) Mandelstam, L., Tamm, I.: The uncertainty relation between energy and time in nonrelativistic quantum mechanics. J. Phys. (USSR) 9, 1 (1945)
24.
Zurück zum Zitat Fleming, G.N.: A unitarity bound on the evolution of nonstationary states. Il Nuovo Cimento A (1971-1996) 16, 232 (1973) Fleming, G.N.: A unitarity bound on the evolution of nonstationary states. Il Nuovo Cimento A (1971-1996) 16, 232 (1973)
26.
27.
Zurück zum Zitat Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Phys. D 120, 188 (1998) Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Phys. D 120, 188 (1998)
28.
Zurück zum Zitat Levitin, L.B., Toffoli, T.: Fundamental limit on the rate of quantum dynamics: the unified bound is tight. Phys. Rev. Lett. 103, 160502 (2009)ADS Levitin, L.B., Toffoli, T.: Fundamental limit on the rate of quantum dynamics: the unified bound is tight. Phys. Rev. Lett. 103, 160502 (2009)ADS
29.
Zurück zum Zitat Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222 (2011)ADS Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222 (2011)ADS
31.
Zurück zum Zitat Lloyd, S.: Computational capacity of the universe. Phys. Rev. Lett. 88, 237901 (2002)ADS Lloyd, S.: Computational capacity of the universe. Phys. Rev. Lett. 88, 237901 (2002)ADS
32.
Zurück zum Zitat Caneva, T., et al.: Optimal control at the quantum speed limit. Phys. Rev. Lett. 103, 240501 (2009)ADS Caneva, T., et al.: Optimal control at the quantum speed limit. Phys. Rev. Lett. 103, 240501 (2009)ADS
33.
Zurück zum Zitat Zhang, Y.-J., Han, W., Xia, Y.-J., Cao, J.-P., Fan, H.: Quantum speed limit for arbitrary initial states. Sci. Rep. 4, 1–6 (2014) Zhang, Y.-J., Han, W., Xia, Y.-J., Cao, J.-P., Fan, H.: Quantum speed limit for arbitrary initial states. Sci. Rep. 4, 1–6 (2014)
34.
Zurück zum Zitat Dehdashti, S., Harouni, M.B., Mirza, B., Chen, H.: Decoherence speed limit in the spin-deformed boson model. Phys. Rev. A 91, 022116 (2015)ADS Dehdashti, S., Harouni, M.B., Mirza, B., Chen, H.: Decoherence speed limit in the spin-deformed boson model. Phys. Rev. A 91, 022116 (2015)ADS
35.
Zurück zum Zitat Stamp, P.C.: The decoherence puzzle. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 37, 467 (2006)ADSMathSciNetMATH Stamp, P.C.: The decoherence puzzle. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 37, 467 (2006)ADSMathSciNetMATH
36.
Zurück zum Zitat Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)ADSMathSciNetMATH Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)ADSMathSciNetMATH
37.
Zurück zum Zitat Cirac, J.I., Zoller, P.: Goals and opportunities in quantum simulation. Nat. Phys. 8, 264 (2012) Cirac, J.I., Zoller, P.: Goals and opportunities in quantum simulation. Nat. Phys. 8, 264 (2012)
38.
Zurück zum Zitat Taddei, M.M., Escher, B.M., Davidovich, L., de Matos Filho, R.L.: Quantum speed limit for physical processes. Phys. Rev. Lett. 110, 050402 (2013)ADS Taddei, M.M., Escher, B.M., Davidovich, L., de Matos Filho, R.L.: Quantum speed limit for physical processes. Phys. Rev. Lett. 110, 050402 (2013)ADS
39.
Zurück zum Zitat del Campo, A., Egusquiza, I., Plenio, M., Huelga, S.: Quantum speed limits in open system dynamics. Phys. Rev. Lett. 110, 050403 (2013) del Campo, A., Egusquiza, I., Plenio, M., Huelga, S.: Quantum speed limits in open system dynamics. Phys. Rev. Lett. 110, 050403 (2013)
40.
Zurück zum Zitat Deffner, S., Lutz, E.: Quantum speed limit for non-Markovian dynamics. Phys. Rev. Lett. 111, 010402 (2013)ADS Deffner, S., Lutz, E.: Quantum speed limit for non-Markovian dynamics. Phys. Rev. Lett. 111, 010402 (2013)ADS
41.
Zurück zum Zitat Audenaert, K.M.: Comparisons between quantum state distinguishability measures. Quantum Inf. Comput. 14, 31 (2014)MathSciNet Audenaert, K.M.: Comparisons between quantum state distinguishability measures. Quantum Inf. Comput. 14, 31 (2014)MathSciNet
42.
Zurück zum Zitat Khanna, F. C., Malbouisson, A. P., Malbouisson, J., Santana, A. E.: Thermal quantum field theory: algebraic aspects and applications. In: Ch. 12, Thermal Quantum Field Theory: Algebraic Aspects and Applications. World Scientific Books, Singapore (2009) Khanna, F. C., Malbouisson, A. P., Malbouisson, J., Santana, A. E.: Thermal quantum field theory: algebraic aspects and applications. In: Ch. 12, Thermal Quantum Field Theory: Algebraic Aspects and Applications. World Scientific Books, Singapore (2009)
43.
Zurück zum Zitat Bagheri, H., Mahdifar, A.: Thermal nonlinear coherent states on a flat space and on a sphere. J. Math. Phys. 54, 052104 (2013)ADSMathSciNetMATH Bagheri, H., Mahdifar, A.: Thermal nonlinear coherent states on a flat space and on a sphere. J. Math. Phys. 54, 052104 (2013)ADSMathSciNetMATH
44.
Zurück zum Zitat Barnett, S., Knight, P.: Thermofield analysis of squeezing and statistical mixtures in quantum optics. J. Opt. Soc. Am. B 2, 467 (1985)ADS Barnett, S., Knight, P.: Thermofield analysis of squeezing and statistical mixtures in quantum optics. J. Opt. Soc. Am. B 2, 467 (1985)ADS
46.
Zurück zum Zitat Chaturvedi, S., Sandhya, R., Srinivasan, V., Simon, R.: Thermal counterparts of nonclassical states in quantum optics. Phys. Rev. A 41, 3969 (1990)ADSMathSciNet Chaturvedi, S., Sandhya, R., Srinivasan, V., Simon, R.: Thermal counterparts of nonclassical states in quantum optics. Phys. Rev. A 41, 3969 (1990)ADSMathSciNet
47.
Zurück zum Zitat Bengtsson, I., Zyczkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)MATH Bengtsson, I., Zyczkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)MATH
48.
Zurück zum Zitat Dehdashti, S., Mahdifar, A., Roknizadeh, R.: Coherent state of \(\alpha \)-deformed Weyl–Heisenberg algebra. Int. J. Geom. Methods Mod. Phys. 10, 1350014 (2013)MathSciNetMATH Dehdashti, S., Mahdifar, A., Roknizadeh, R.: Coherent state of \(\alpha \)-deformed Weyl–Heisenberg algebra. Int. J. Geom. Methods Mod. Phys. 10, 1350014 (2013)MathSciNetMATH
Metadaten
Titel
Quantum speed limit in the thermal spin-boson system with and without tunneling term
verfasst von
Sh. Dehdashti
F. Yasar
M. Bagheri Harouni
A. Mahdifar
B. Mirza
Publikationsdatum
01.08.2020
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 9/2020
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-020-02807-1

Weitere Artikel der Ausgabe 9/2020

Quantum Information Processing 9/2020 Zur Ausgabe

Neuer Inhalt