Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Neural Processing Letters 4/2022

26.02.2022

Quasi-Synchronization and Complete Synchronization of Fractional-Order Fuzzy BAM Neural Networks Via Nonlinear Control

verfasst von: Juanping Yang, Hong-Li Li, Jikai Yang, Long Zhang, Haijun Jiang

Erschienen in: Neural Processing Letters | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

This paper investigates quasi-synchronization (QS) and complete synchronization(CS) for fractional-order fuzzy bidirectional associative memory neural networks. To realize QS and CS, two kinds of novel nonlinear controllers are designed, which are more general and effective compared to the existing results. By using Lyapunov function method, fractional calculation and some inequality techniques, some sufficient synchronization criteria are derived for the considered networks. Moreover, the error level of QS is estimated. Finally, two illustrative examples are presented to show the effectiveness of our results.
Literatur
1.
Zurück zum Zitat Kosko B (1987) Adaptive bidirectional associative memories. Appl Opt 26:4947–4960 Kosko B (1987) Adaptive bidirectional associative memories. Appl Opt 26:4947–4960
2.
Zurück zum Zitat Song Q, Zhao Z, Li Y (2005) Global exponential stability of BAM neural networks with distributed delays and reaction-diffusion terms. Phys Let A 335:213–225 MATH Song Q, Zhao Z, Li Y (2005) Global exponential stability of BAM neural networks with distributed delays and reaction-diffusion terms. Phys Let A 335:213–225 MATH
3.
Zurück zum Zitat Guo L, Wang H (2006) Minimum entropy filtering for multivariate stochastic systems with non-gaussian noise. IEEE Trans Autom Control 51:695–700 MathSciNetMATH Guo L, Wang H (2006) Minimum entropy filtering for multivariate stochastic systems with non-gaussian noise. IEEE Trans Autom Control 51:695–700 MathSciNetMATH
4.
Zurück zum Zitat Tu Z, Wang L, Zha Z, Jian J (2013) Global dissipativity of a class of BAM neural networks with time-varying and unbound delays. Commun Nonlinear Sci Numer Simul 18:2562–2570 MathSciNetMATH Tu Z, Wang L, Zha Z, Jian J (2013) Global dissipativity of a class of BAM neural networks with time-varying and unbound delays. Commun Nonlinear Sci Numer Simul 18:2562–2570 MathSciNetMATH
5.
Zurück zum Zitat Xu G, Bao H (2020) Further results on mean-square exponential input-to-state stability of time-varying delayed BAM neural networks with Markovian switching. Neurocomputing 376:191–201 Xu G, Bao H (2020) Further results on mean-square exponential input-to-state stability of time-varying delayed BAM neural networks with Markovian switching. Neurocomputing 376:191–201
6.
Zurück zum Zitat Cao J, Wang L (2001) Exponential stability and periodic oscillatory solution in BAM networks with delays. IEEE Trans Neural Netw 13:457–463 Cao J, Wang L (2001) Exponential stability and periodic oscillatory solution in BAM networks with delays. IEEE Trans Neural Netw 13:457–463
7.
Zurück zum Zitat Xu C, Tang X, Liao M (2010) Frequency domain analysis for bifurcation in a simplified tri-neuron BAM network model with two delays. Neural Netw 23:872–880 MATH Xu C, Tang X, Liao M (2010) Frequency domain analysis for bifurcation in a simplified tri-neuron BAM network model with two delays. Neural Netw 23:872–880 MATH
8.
Zurück zum Zitat Cao J, Wan Y (2014) Matrix measure strategies for stability and synchronization of inertial BAM neural network with time delays. Neural Netw 53:165–172 MATH Cao J, Wan Y (2014) Matrix measure strategies for stability and synchronization of inertial BAM neural network with time delays. Neural Netw 53:165–172 MATH
9.
Zurück zum Zitat Mathiyalagan K, Park J, Sakthivel R (2015) Synchronization for delayed memristive BAM neural networks using impulsive control with random nonlinearities. Appl Math Comput 259:967–979 MathSciNetMATH Mathiyalagan K, Park J, Sakthivel R (2015) Synchronization for delayed memristive BAM neural networks using impulsive control with random nonlinearities. Appl Math Comput 259:967–979 MathSciNetMATH
10.
Zurück zum Zitat Yan M, Jiang M (2020) Synchronization with general decay rate for memristor-based BAM neural networks with distributed delays and discontinuous activation functions. Neurocomputing 387:221–240 Yan M, Jiang M (2020) Synchronization with general decay rate for memristor-based BAM neural networks with distributed delays and discontinuous activation functions. Neurocomputing 387:221–240
11.
12.
Zurück zum Zitat Liu X, Xia J, Huang X, Huang X, Shen H (2020) Generalized synchronization for coupled Markovian neural networks subject to randomly occurring parameter uncertainties. Physica A 540:123070 MathSciNetMATH Liu X, Xia J, Huang X, Huang X, Shen H (2020) Generalized synchronization for coupled Markovian neural networks subject to randomly occurring parameter uncertainties. Physica A 540:123070 MathSciNetMATH
13.
Zurück zum Zitat Li Y, Li C (2016) Matrix measure strategies for stabilization and synchronization of delayed BAM neural networks. Nonlinear Dyn 84:1759–1770 MathSciNetMATH Li Y, Li C (2016) Matrix measure strategies for stabilization and synchronization of delayed BAM neural networks. Nonlinear Dyn 84:1759–1770 MathSciNetMATH
14.
Zurück zum Zitat Yang X, Cao J, Lu J (2014) Synchronization of delayed complex dynamical networks with impulsive and stochastic effects. Nonlinear Anal RWA 12:2252–2266 MathSciNetMATH Yang X, Cao J, Lu J (2014) Synchronization of delayed complex dynamical networks with impulsive and stochastic effects. Nonlinear Anal RWA 12:2252–2266 MathSciNetMATH
15.
Zurück zum Zitat Liao T, Huang N (1999) An observe-based approach for chaotic synchronization with applications to secure commmunication. IEEE Trans Autom Control 46:1144–1150 MATH Liao T, Huang N (1999) An observe-based approach for chaotic synchronization with applications to secure commmunication. IEEE Trans Autom Control 46:1144–1150 MATH
16.
Zurück zum Zitat Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15:116–132 MATH Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15:116–132 MATH
17.
Zurück zum Zitat Yang T, Yang L (1996) The global stability of fuzzy cellular neural networks. IEEE Trans Circuits Syst I 43:880–883 MathSciNet Yang T, Yang L (1996) The global stability of fuzzy cellular neural networks. IEEE Trans Circuits Syst I 43:880–883 MathSciNet
18.
Zurück zum Zitat Li X, Huang T (2021) Adaptive synchronization for fuzzy inertial complex-valued neural networks with state-dependent coefficients and mixed delays. Fuzzy Sets Syst 411:174–189 MathSciNetMATH Li X, Huang T (2021) Adaptive synchronization for fuzzy inertial complex-valued neural networks with state-dependent coefficients and mixed delays. Fuzzy Sets Syst 411:174–189 MathSciNetMATH
19.
Zurück zum Zitat Song Q, Cao J (2010) On pinning synchronization of directed and undirected complex dynamical networks. IEEE Trans Cricuits Syst I 57:672–680 MathSciNetMATH Song Q, Cao J (2010) On pinning synchronization of directed and undirected complex dynamical networks. IEEE Trans Cricuits Syst I 57:672–680 MathSciNetMATH
20.
Zurück zum Zitat Zhang L, Yang Y (2018) Different impulsive efffects on synchronization of frctional-order memristive BAM neural networks. Nonlinear Dyn 93:233–250 Zhang L, Yang Y (2018) Different impulsive efffects on synchronization of frctional-order memristive BAM neural networks. Nonlinear Dyn 93:233–250
21.
Zurück zum Zitat Yang S, Li C, Huang T (2016) Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control. Neural Netw 75:162–172 MATH Yang S, Li C, Huang T (2016) Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control. Neural Netw 75:162–172 MATH
22.
Zurück zum Zitat Balasubramaniam P, Ratnavelu K, Manikandan M (2015) Synchronization of fuzzy bidirectional associative memory neural networks with various time delays. Appl Math Comput 270:582–605 MathSciNetMATH Balasubramaniam P, Ratnavelu K, Manikandan M (2015) Synchronization of fuzzy bidirectional associative memory neural networks with various time delays. Appl Math Comput 270:582–605 MathSciNetMATH
23.
Zurück zum Zitat Yuan M, Wang W, Yu M, Luo X, Liu L, Zhao W (2017) Synchronization of memristive BAM Neural Networks with leakage delay and additive time-varying delay components via sampled-Data Control. Chaos Solitons Fract 104:84–97 MathSciNetMATH Yuan M, Wang W, Yu M, Luo X, Liu L, Zhao W (2017) Synchronization of memristive BAM Neural Networks with leakage delay and additive time-varying delay components via sampled-Data Control. Chaos Solitons Fract 104:84–97 MathSciNetMATH
24.
Zurück zum Zitat Wang D, Huang L, Tang L (2018) Dissipativity and synchronization of generalized BAM neural networks with multivariate discontinuous activations. IEEE Trans Neural Netw Learn Syst 29:3815–3827 MathSciNet Wang D, Huang L, Tang L (2018) Dissipativity and synchronization of generalized BAM neural networks with multivariate discontinuous activations. IEEE Trans Neural Netw Learn Syst 29:3815–3827 MathSciNet
25.
Zurück zum Zitat Ali M, Narayanan G, Saroha S, Priya B, Thakur G (2021) Finite-time stability analysis of fractional-order memristive fuzzy cellular neural networks with time delay and leakage term. Math Comput Simulation 185:468–485 MathSciNetMATH Ali M, Narayanan G, Saroha S, Priya B, Thakur G (2021) Finite-time stability analysis of fractional-order memristive fuzzy cellular neural networks with time delay and leakage term. Math Comput Simulation 185:468–485 MathSciNetMATH
26.
Zurück zum Zitat Li H, Zhong L, Hu C, Jiang Y, Teng Z (2017) Dynamic analysis of a fractional-order single-species model with diffusion. Nonlinear Anal Model Control 22:303–316 MathSciNetMATH Li H, Zhong L, Hu C, Jiang Y, Teng Z (2017) Dynamic analysis of a fractional-order single-species model with diffusion. Nonlinear Anal Model Control 22:303–316 MathSciNetMATH
27.
Zurück zum Zitat Bao H, Park J, Cao J (2019) Non-fragile state estimation for fractional-order delayed memristive BAM neural networks. Neural Netw 119:190–199 MATH Bao H, Park J, Cao J (2019) Non-fragile state estimation for fractional-order delayed memristive BAM neural networks. Neural Netw 119:190–199 MATH
28.
Zurück zum Zitat Chen S, Li H, Kao Y, Zhang L, Hu C (2021) Finite-time stabilization of fractional-order fuzzy quaternion-valued BAM neural networks via direct quaternion approach. J Franklin Inst 358:7650–7673 MathSciNetMATH Chen S, Li H, Kao Y, Zhang L, Hu C (2021) Finite-time stabilization of fractional-order fuzzy quaternion-valued BAM neural networks via direct quaternion approach. J Franklin Inst 358:7650–7673 MathSciNetMATH
29.
Zurück zum Zitat Ali M, Narayanan G, Orman Z, Shekher V, Arik S (2020) Finite time stability analysis of fractional-order complex-valued memristive neural networks with proportional delays. Neural Process Lett 51:407–426 Ali M, Narayanan G, Orman Z, Shekher V, Arik S (2020) Finite time stability analysis of fractional-order complex-valued memristive neural networks with proportional delays. Neural Process Lett 51:407–426
30.
Zurück zum Zitat Arslan E, Narayanan G, Ali M, Arik S, Saroha S (2020) Controller design for finite-time and fixed-time stabilization of fractional-order memristive complex-valued BAM neural networks with uncertain parameters and time-varying delays. Neural Netw 130:60–74 MATH Arslan E, Narayanan G, Ali M, Arik S, Saroha S (2020) Controller design for finite-time and fixed-time stabilization of fractional-order memristive complex-valued BAM neural networks with uncertain parameters and time-varying delays. Neural Netw 130:60–74 MATH
32.
Zurück zum Zitat Podlubny I (1999) Fractional differential equations. Academic Press, San Diego MATH Podlubny I (1999) Fractional differential equations. Academic Press, San Diego MATH
33.
Zurück zum Zitat Kilbas A, Srivastava H, Trujillo J (2006) Theory and application of fractional differential equations. Elsevier, New York MATH Kilbas A, Srivastava H, Trujillo J (2006) Theory and application of fractional differential equations. Elsevier, New York MATH
34.
Zurück zum Zitat Aguila-Camacho N, Duarte-Mermoud M, Gallegos J (2014) Lyapunov functions for fractional order systems. Commun Nonlinear Sci Numer Simul 19:2951–2957 MathSciNetMATH Aguila-Camacho N, Duarte-Mermoud M, Gallegos J (2014) Lyapunov functions for fractional order systems. Commun Nonlinear Sci Numer Simul 19:2951–2957 MathSciNetMATH
35.
Zurück zum Zitat Li H, Zhong L, Hu C, Jiang Y, Teng Z (2017) Dynamic analysis of a fractional-order predator-prey model incorporating a prey refuge. J Appl Math Comput 54:435–449 MathSciNetMATH Li H, Zhong L, Hu C, Jiang Y, Teng Z (2017) Dynamic analysis of a fractional-order predator-prey model incorporating a prey refuge. J Appl Math Comput 54:435–449 MathSciNetMATH
36.
Zurück zum Zitat Xu Q, Zhuang S, Liu S, Xiao J (2016) Decentralized adaptive coupling synchronization of fractional-order complex-variable dynamical networks. Neurocomputing 186:119–126 Xu Q, Zhuang S, Liu S, Xiao J (2016) Decentralized adaptive coupling synchronization of fractional-order complex-variable dynamical networks. Neurocomputing 186:119–126
37.
Zurück zum Zitat Pratap A, Raja R, Cao J (2019) Quasi-pinning synchronization and stabilization of fractional order BAM neural networks with delays and discontinuous neuron activations. Chaos Solitons Fract 131:20–45 MathSciNet Pratap A, Raja R, Cao J (2019) Quasi-pinning synchronization and stabilization of fractional order BAM neural networks with delays and discontinuous neuron activations. Chaos Solitons Fract 131:20–45 MathSciNet
38.
Zurück zum Zitat Xiao J, Zhong S, Li Y, Xu F (2017) Finite-time Mittag–Leffler synchronization of fractional-order memristive BAM neural networks with time delays. Neurocomputing 219:431–439 Xiao J, Zhong S, Li Y, Xu F (2017) Finite-time Mittag–Leffler synchronization of fractional-order memristive BAM neural networks with time delays. Neurocomputing 219:431–439
39.
Zurück zum Zitat Ye R, Liu X, Zhang H (2018) Global Mittag–Leffler synchronization for fractional-order BAM neural networks with impulses and multiple variable delays via delayed-feedback control strategy. Neural Process Lett 49:1–18 Ye R, Liu X, Zhang H (2018) Global Mittag–Leffler synchronization for fractional-order BAM neural networks with impulses and multiple variable delays via delayed-feedback control strategy. Neural Process Lett 49:1–18
40.
Zurück zum Zitat Li H, Hu C, Cao J (2019) Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays. Neural Netw 118:102–109 MATH Li H, Hu C, Cao J (2019) Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays. Neural Netw 118:102–109 MATH
41.
Zurück zum Zitat Zhang J, Wu J, Bao H (2018) Synchronization analysis of fractional-order three-neuron BAM neural networks with multiple time delays. Appl Math Comput 339:441–450 MathSciNetMATH Zhang J, Wu J, Bao H (2018) Synchronization analysis of fractional-order three-neuron BAM neural networks with multiple time delays. Appl Math Comput 339:441–450 MathSciNetMATH
42.
Zurück zum Zitat Yu J, Hu C, Jiang H (2015) Corrigendum to projective synchronization for fractional neural networks. Neural Netw 67:152–154 MATH Yu J, Hu C, Jiang H (2015) Corrigendum to projective synchronization for fractional neural networks. Neural Netw 67:152–154 MATH
43.
Zurück zum Zitat Liu S, Yang R, Zhou X, Jiang W, Li X, Zhao X (2019) Stability analysis of fractional delayed equations and its applications on consensus of multi-agent systems. Commun Nonlinear Sci Numer Simul 73:351–362 MathSciNetMATH Liu S, Yang R, Zhou X, Jiang W, Li X, Zhao X (2019) Stability analysis of fractional delayed equations and its applications on consensus of multi-agent systems. Commun Nonlinear Sci Numer Simul 73:351–362 MathSciNetMATH
44.
Zurück zum Zitat Sakthivel R, Sakthivel R, Kwon O, Selvaraj P (2021) Observer-based synchronization of fractional-order Markovian jump multi-weighted complex dynamical networks subject to actuator faults. J Frankl Inst 358:4602–4625 MathSciNetMATH Sakthivel R, Sakthivel R, Kwon O, Selvaraj P (2021) Observer-based synchronization of fractional-order Markovian jump multi-weighted complex dynamical networks subject to actuator faults. J Frankl Inst 358:4602–4625 MathSciNetMATH
45.
Zurück zum Zitat Selvaraj P, Sakthivel R, Kwon O (2018) Synchronization of fractional-order complex dynamical network with random coupling delay, actuator faults and saturation. Nonlinear Dyn 94:3101–3116 MATH Selvaraj P, Sakthivel R, Kwon O (2018) Synchronization of fractional-order complex dynamical network with random coupling delay, actuator faults and saturation. Nonlinear Dyn 94:3101–3116 MATH
46.
Zurück zum Zitat Bhalekar S, Gejji V (2011) A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order. J Fract Calc Appl 1:1–9 MATH Bhalekar S, Gejji V (2011) A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order. J Fract Calc Appl 1:1–9 MATH
Metadaten
Titel
Quasi-Synchronization and Complete Synchronization of Fractional-Order Fuzzy BAM Neural Networks Via Nonlinear Control
verfasst von
Juanping Yang
Hong-Li Li
Jikai Yang
Long Zhang
Haijun Jiang
Publikationsdatum
26.02.2022
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 4/2022
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-022-10769-x

Weitere Artikel der Ausgabe 4/2022

Neural Processing Letters 4/2022 Zur Ausgabe