Skip to main content
Erschienen in: Continuum Mechanics and Thermodynamics 4/2020

13.09.2019 | Original Article

Quasiconvex envelope for a model of finite elastoplasticity with one active slip system and linear hardening

verfasst von: Sergio Conti , Georg Dolzmann

Erschienen in: Continuum Mechanics and Thermodynamics | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An explicit characterization of the quasiconvex envelope of the condensed energy in a model for finite elastoplasticity is presented, both in two and in three spatial dimensions. A variational formulation of plasticity, which is appropriate for the first time step in a time discrete formulation of the evolution problem, is used, and it is assumed that only one slip system is active. The model includes a nonlinear elastic energy, which is invariant under SO(n), and an effective plastic contribution which is quadratic in the slip parameter. The quasiconvex envelope arises via the formation of first-order laminates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aubry, S., Fago, M., Ortiz, M.: A constrained sequential-lamination algorithm for the simulation of sub-grid microstructure in martensitic materials. J. Comput. Methods Appl. Mech. Eng. 192, 2823–2843 (2003)ADSMathSciNetCrossRef Aubry, S., Fago, M., Ortiz, M.: A constrained sequential-lamination algorithm for the simulation of sub-grid microstructure in martensitic materials. J. Comput. Methods Appl. Mech. Eng. 192, 2823–2843 (2003)ADSMathSciNetCrossRef
2.
Zurück zum Zitat Ball, J.M., Murat, F.: \(W^{1, p}\) quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58, 225–253 (1984)MathSciNetCrossRef Ball, J.M., Murat, F.: \(W^{1, p}\) quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58, 225–253 (1984)MathSciNetCrossRef
3.
Zurück zum Zitat Bartels, S., Carstensen, C., Hackl, K., Hoppe, U.: Effective relaxation for microstructure simulations: algorithms and applications. Comput. Methods Appl. Mech. Eng. 193, 5143–5175 (2004)ADSMathSciNetCrossRef Bartels, S., Carstensen, C., Hackl, K., Hoppe, U.: Effective relaxation for microstructure simulations: algorithms and applications. Comput. Methods Appl. Mech. Eng. 193, 5143–5175 (2004)ADSMathSciNetCrossRef
4.
Zurück zum Zitat Carstensen, C., Conti, S., Orlando, A.: Mixed analytical–numerical relaxation in finite single-slip crystal plasticity. Contin. Mech. Thermodyn. 20, 275–301 (2008)ADSMathSciNetCrossRef Carstensen, C., Conti, S., Orlando, A.: Mixed analytical–numerical relaxation in finite single-slip crystal plasticity. Contin. Mech. Thermodyn. 20, 275–301 (2008)ADSMathSciNetCrossRef
5.
Zurück zum Zitat Carstensen, C., Hackl, K., Mielke, A.: Non-convex potentials and microstructures in finite-strain plasticity. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 458, 299–317 (2002)ADSMathSciNetCrossRef Carstensen, C., Hackl, K., Mielke, A.: Non-convex potentials and microstructures in finite-strain plasticity. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 458, 299–317 (2002)ADSMathSciNetCrossRef
7.
Zurück zum Zitat Conti, S.: Relaxation of single-slip single-crystal plasticity with linear hardening. In: Gumbsch, P. (ed.) Multiscale Materials Modeling, pp. 30–35. Fraunhofer IRB, Freiburg (2006) Conti, S.: Relaxation of single-slip single-crystal plasticity with linear hardening. In: Gumbsch, P. (ed.) Multiscale Materials Modeling, pp. 30–35. Fraunhofer IRB, Freiburg (2006)
8.
Zurück zum Zitat Conti, S.: Quasiconvex functions incorporating volumetric constraints are rank-one convex. J. Math. Pures Appl. 90, 15–30 (2008)MathSciNetCrossRef Conti, S.: Quasiconvex functions incorporating volumetric constraints are rank-one convex. J. Math. Pures Appl. 90, 15–30 (2008)MathSciNetCrossRef
9.
Zurück zum Zitat Conti, S., Dolzmann, G.: Rank-one convexity of quasiconvex functions with determinant constraints (in preparation) Conti, S., Dolzmann, G.: Rank-one convexity of quasiconvex functions with determinant constraints (in preparation)
10.
Zurück zum Zitat Conti, S., Dolzmann, G.: On the theory of relaxation in nonlinear elasticity with constraints on the determinant. Arch. Ration. Mech. Anal. 217, 413–437 (2015)MathSciNetCrossRef Conti, S., Dolzmann, G.: On the theory of relaxation in nonlinear elasticity with constraints on the determinant. Arch. Ration. Mech. Anal. 217, 413–437 (2015)MathSciNetCrossRef
11.
Zurück zum Zitat Conti, S., Dolzmann, G.: Relaxation in crystal plasticity with three active slip systems. Contin. Mech. Thermodyn. 28, 1477–1494 (2016)ADSMathSciNetCrossRef Conti, S., Dolzmann, G.: Relaxation in crystal plasticity with three active slip systems. Contin. Mech. Thermodyn. 28, 1477–1494 (2016)ADSMathSciNetCrossRef
13.
Zurück zum Zitat Conti, S., Dolzmann, G.: Optimal laminates in single-slip elastoplasticity. Disc. Cont. Dyn. Syst. Ser. (2019) (in press) Conti, S., Dolzmann, G.: Optimal laminates in single-slip elastoplasticity. Disc. Cont. Dyn. Syst. Ser. (2019) (in press)
14.
Zurück zum Zitat Conti, S., Dolzmann, G., Kreisbeck, C.: Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity. SIAM J. Math. Anal. 43, 2337–2353 (2011)MathSciNetCrossRef Conti, S., Dolzmann, G., Kreisbeck, C.: Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity. SIAM J. Math. Anal. 43, 2337–2353 (2011)MathSciNetCrossRef
15.
Zurück zum Zitat Conti, S., Dolzmann, G., Kreisbeck, C.: Relaxation and microstructure in a model for finite crystal plasticity with one slip system in three dimensions. Discrete Contin. Dyn. Syst. Ser. 6, 1–16 (2013)MathSciNetMATH Conti, S., Dolzmann, G., Kreisbeck, C.: Relaxation and microstructure in a model for finite crystal plasticity with one slip system in three dimensions. Discrete Contin. Dyn. Syst. Ser. 6, 1–16 (2013)MathSciNetMATH
16.
Zurück zum Zitat Conti, S., Theil, F.: Single-slip elastoplastic microstructures. Arch. Ration. Mech. Anal. 178, 125–148 (2005)MathSciNetCrossRef Conti, S., Theil, F.: Single-slip elastoplastic microstructures. Arch. Ration. Mech. Anal. 178, 125–148 (2005)MathSciNetCrossRef
17.
Zurück zum Zitat Dacorogna, B.: Direct Methods in the Calculus of Variations. Applied Mathematical Sciences, vol. 78. Springer, Berlin (1989)CrossRef Dacorogna, B.: Direct Methods in the Calculus of Variations. Applied Mathematical Sciences, vol. 78. Springer, Berlin (1989)CrossRef
18.
Zurück zum Zitat Davoli, E., Francfort, G.A.: A critical revisiting of finite elasto-plasticity. SIAM J. Math. Anal. 47(1), 526–565 (2015)MathSciNetCrossRef Davoli, E., Francfort, G.A.: A critical revisiting of finite elasto-plasticity. SIAM J. Math. Anal. 47(1), 526–565 (2015)MathSciNetCrossRef
19.
Zurück zum Zitat Fonseca, I.: The lower quasiconvex envelope of the stored energy function for an elastic crystal. J. Math. Pures Appl. 67, 175–195 (1988)MathSciNetMATH Fonseca, I.: The lower quasiconvex envelope of the stored energy function for an elastic crystal. J. Math. Pures Appl. 67, 175–195 (1988)MathSciNetMATH
20.
Zurück zum Zitat Kochmann, D., Hackl, K.: The evolution of laminates in finite crystal plasticity: a variational approach. Contin. Mech. Thermodyn. 23, 63–85 (2011)ADSMathSciNetCrossRef Kochmann, D., Hackl, K.: The evolution of laminates in finite crystal plasticity: a variational approach. Contin. Mech. Thermodyn. 23, 63–85 (2011)ADSMathSciNetCrossRef
21.
Zurück zum Zitat Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4, 273–334 (1960)MathSciNetCrossRef Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4, 273–334 (1960)MathSciNetCrossRef
22.
Zurück zum Zitat Lee, E.H.: Elastic–plastic deformation at finite strains. J. Appl. Mech. 36, 1–6 (1969)ADSCrossRef Lee, E.H.: Elastic–plastic deformation at finite strains. J. Appl. Mech. 36, 1–6 (1969)ADSCrossRef
23.
Zurück zum Zitat Miehe, C., Lambrecht, M., Gürses, E.: Analysis of material instabilities in inelastic solids by incremental energy minimization and relaxation methods: evolving deformation microstructures in finite plasticity. J. Mech. Phys. Solids 52, 2725–2769 (2004)ADSMathSciNetCrossRef Miehe, C., Lambrecht, M., Gürses, E.: Analysis of material instabilities in inelastic solids by incremental energy minimization and relaxation methods: evolving deformation microstructures in finite plasticity. J. Mech. Phys. Solids 52, 2725–2769 (2004)ADSMathSciNetCrossRef
24.
Zurück zum Zitat Müller, S.: Variational models for microstructure and phase transitions. In: Bethuel F. et al. (eds.) Calculus of Variations and Geometric Evolution Problems. Springer Lecture Notes in Mathematics, vol. 1713, pp. 85–210. Springer (1999) Müller, S.: Variational models for microstructure and phase transitions. In: Bethuel F. et al. (eds.) Calculus of Variations and Geometric Evolution Problems. Springer Lecture Notes in Mathematics, vol. 1713, pp. 85–210. Springer (1999)
25.
Zurück zum Zitat Müller, S., Šverák, V.: Convex integration with constraints and applications to phase transitions and partial differential equations. J. Eur. Math. Soc. 1, 393–442 (1999)MathSciNetCrossRef Müller, S., Šverák, V.: Convex integration with constraints and applications to phase transitions and partial differential equations. J. Eur. Math. Soc. 1, 393–442 (1999)MathSciNetCrossRef
26.
Zurück zum Zitat Ortiz, M., Repetto, E.A.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47(2), 397–462 (1999)ADSMathSciNetCrossRef Ortiz, M., Repetto, E.A.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47(2), 397–462 (1999)ADSMathSciNetCrossRef
27.
Zurück zum Zitat Reina, C., Conti, S.: Kinematic description of crystal plasticity in the finite kinematic framework: a micromechanical understanding of \(F=F^e F^p\). J. Mech. Phys. Solids 67, 40–61 (2014)ADSMathSciNetCrossRef Reina, C., Conti, S.: Kinematic description of crystal plasticity in the finite kinematic framework: a micromechanical understanding of \(F=F^e F^p\). J. Mech. Phys. Solids 67, 40–61 (2014)ADSMathSciNetCrossRef
Metadaten
Titel
Quasiconvex envelope for a model of finite elastoplasticity with one active slip system and linear hardening
verfasst von
Sergio Conti
Georg Dolzmann
Publikationsdatum
13.09.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Continuum Mechanics and Thermodynamics / Ausgabe 4/2020
Print ISSN: 0935-1175
Elektronische ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-019-00825-8

Weitere Artikel der Ausgabe 4/2020

Continuum Mechanics and Thermodynamics 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.