Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

05.04.2019 | Industrial and commercial application | Ausgabe 4/2019

Pattern Analysis and Applications 4/2019

RACMF: robust attention convolutional matrix factorization for rating prediction

Zeitschrift:
Pattern Analysis and Applications > Ausgabe 4/2019
Autoren:
Biqing Zeng, Qi Shang, Xuli Han, Feng Zeng, Min Zhang
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Matrix factorization is widely used in collaborative filtering, especially when the data are extremely large and sparse. To deal with the scale and sparsity problem of data, several recommender models adopt users and items’ side information to improve the recommendation results. However, some existing works do not perform well enough for they are not effectively use the side information. For example, using bag-of-words model, topic model to gain the latent representation of words or merely utilizing items or users’ side information, leads to the result that the performance deteriorates, especially when rating dataset is extremely large and sparse. To overcome the data sparsity problem, we present a hybrid model named robust attention convolutional matrix factorization (RACMF) model, which is composed of attention convolutional neural network (ACNN) and additional stacked denoising autoencoder (aSDAE); ACNN and aSDAE are used to extract the items’ and users’ latent factors, respectively. The experimental results show that our RACMF model has good prediction ability, even when the rating data are sparse or the scale of rating data is large. What’s more, compared with the state-of-the-art model PHD, the present model RACMF increased the accuracy rate on ML-100k, ML-1m, ML-10m and AIV-6 datasets by 4.80%, 0.57%, 1.98% and 3.67%, respectively.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2019

Pattern Analysis and Applications 4/2019 Zur Ausgabe

Premium Partner

    Bildnachweise