Skip to main content
Erschienen in: Mobile Networks and Applications 4/2020

12.11.2019

Radar Signal Recognition Based on Transfer Learning and Feature Fusion

verfasst von: Yihan Xiao, Wenjian Liu, Lipeng Gao

Erschienen in: Mobile Networks and Applications | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study proposes a system for the automatic recognition of radar waveforms. This system mainly uses the obvious difference in Choi–Williams distribution (CWD) images of different modulated signals. We successfully convert problems related to radar signal recognition into problems related to image recognition. The classification system uses CWD time–frequency analysis of the detected radar signal to obtain its CWD image, which can be recognized by deep neural networks. To verify this method, a database containing 1800 images and 8 types of radar signal CWD images is established. Although a convolutional neural network exhibits strong expression, it is not suitable for training a small-scale database. To solve this inadequacy, an image classification algorithm based on transfer learning and design experiments is proposed. This algorithm is intended to fine-tune three different pre-training models. This study also integrates the texture features of the image with the depth features extracted using the depth neural network to compensate for the shortcomings of the depth features in expressing image information. The simulation results indicate that the method can still be used to effectively recognize radar signals at a low SNR.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Tang B, Tu Y, Zhang S et al (2018) Digital signal modulation classification with data augmentation using generative adversarial nets in cognitive radio networks[J]. IEEE Access PP(99):1 Tang B, Tu Y, Zhang S et al (2018) Digital signal modulation classification with data augmentation using generative adversarial nets in cognitive radio networks[J]. IEEE Access PP(99):1
2.
Zurück zum Zitat Ding G, Wu Q, Zhang L et al (2018) An amateur drone surveillance system based on cognitive internet of things. IEEE Commun Mag 56(1):29–35CrossRef Ding G, Wu Q, Zhang L et al (2018) An amateur drone surveillance system based on cognitive internet of things. IEEE Commun Mag 56(1):29–35CrossRef
3.
Zurück zum Zitat Chen G, Zhu W (2012) Signal denoising using neighbouring dual-tree complex wavelet coefficients. IET Signal Process 6(2):143–147MathSciNetCrossRef Chen G, Zhu W (2012) Signal denoising using neighbouring dual-tree complex wavelet coefficients. IET Signal Process 6(2):143–147MathSciNetCrossRef
4.
Zurück zum Zitat Tian R, Zhang G, Zhou R, et al (2016) Detection of Polyphase codes radar signals in low SNR. Math Probl Eng: 1–6 Tian R, Zhang G, Zhou R, et al (2016) Detection of Polyphase codes radar signals in low SNR. Math Probl Eng: 1–6
5.
Zurück zum Zitat Lin Y, Wang C, Wang J et al (2016) A novel dynamic Spectrum access framework based on reinforcement learning for cognitive radio sensor networks[J]. Sensors 16(10):1–22CrossRef Lin Y, Wang C, Wang J et al (2016) A novel dynamic Spectrum access framework based on reinforcement learning for cognitive radio sensor networks[J]. Sensors 16(10):1–22CrossRef
6.
Zurück zum Zitat Zhang T, Pan W, Zou X et al (2013) High-spectral-efficiency photonic frequency Down-conversion using optical frequency comb and SSB modulation. Photon J 5(2):1–7 Zhang T, Pan W, Zou X et al (2013) High-spectral-efficiency photonic frequency Down-conversion using optical frequency comb and SSB modulation. Photon J 5(2):1–7
7.
Zurück zum Zitat Zhao KK, Yang CZ (2016) LPI radar signal identification based on WCPF and FRFT. Modern Defence Technol 44(3):56–59 Zhao KK, Yang CZ (2016) LPI radar signal identification based on WCPF and FRFT. Modern Defence Technol 44(3):56–59
8.
Zurück zum Zitat PHILLIP E P (2012) Detecting and classifying low probability of intercept radar (second edition) Norwood, MA, USA, Artech house: 92–111 PHILLIP E P (2012) Detecting and classifying low probability of intercept radar (second edition) Norwood, MA, USA, Artech house: 92–111
9.
Zurück zum Zitat Ho KM, Vaz C, Daut DG (2010) Automatic classification of amplitude, frequency and phase shift keyed signals in the wavelet domain IEEE Sarnoff symposium. New Jersey, USA IEEE Press:1–6 Ho KM, Vaz C, Daut DG (2010) Automatic classification of amplitude, frequency and phase shift keyed signals in the wavelet domain IEEE Sarnoff symposium. New Jersey, USA IEEE Press:1–6
10.
Zurück zum Zitat Zhu J, Zhao Y, Tang J (2013) Automatic recognition of radar signals based on time-frequency image character. Radar Conference, IET International, IET: 1–6 Zhu J, Zhao Y, Tang J (2013) Automatic recognition of radar signals based on time-frequency image character. Radar Conference, IET International, IET: 1–6
11.
Zurück zum Zitat Lundén J, Koivunen V (2007) Automatic radar waveform recognition. IEEE J Select Topics Signal Process 1(1):124–136CrossRef Lundén J, Koivunen V (2007) Automatic radar waveform recognition. IEEE J Select Topics Signal Process 1(1):124–136CrossRef
12.
Zurück zum Zitat Xiao S, Pan T, Ren FJ (2016) Facial expression recognition using ROI-KNN deep convolutional neural networks. Acta Automat Sin 42(6):883–891 Xiao S, Pan T, Ren FJ (2016) Facial expression recognition using ROI-KNN deep convolutional neural networks. Acta Automat Sin 42(6):883–891
13.
Zurück zum Zitat Xue Z, Wang J, Ding G et al (2018) Device-to-device communications underlying UAV-supported social networking. IEEE Access 6(1):34488–34502CrossRef Xue Z, Wang J, Ding G et al (2018) Device-to-device communications underlying UAV-supported social networking. IEEE Access 6(1):34488–34502CrossRef
14.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef
15.
Zurück zum Zitat George D, Shen H, Huerta E (2017) Deep transfer learning: A new deep learning glitch classification method for advanced ligo arXiv preprint arXiv:1706.07446 George D, Shen H, Huerta E (2017) Deep transfer learning: A new deep learning glitch classification method for advanced ligo arXiv preprint arXiv:1706.07446
16.
Zurück zum Zitat Zhang M, Liu L, Diao M (2016) LPI radar waveform recognition based on time-frequency distribution. Sensors 16(10):1682CrossRef Zhang M, Liu L, Diao M (2016) LPI radar waveform recognition based on time-frequency distribution. Sensors 16(10):1682CrossRef
17.
Zurück zum Zitat Liu Y, Xiao P, Wu H et al (2015) LPI radar signal detection based on radial integration of Choi-Williams time-frequency image. J Syst Eng Electron 26(5):973–981CrossRef Liu Y, Xiao P, Wu H et al (2015) LPI radar signal detection based on radial integration of Choi-Williams time-frequency image. J Syst Eng Electron 26(5):973–981CrossRef
18.
Zurück zum Zitat Lin Y, Zhu X, Zheng Z et al (2017) The individual identification method of wireless device based on dimensionality reduction and machine learning. J Supercomput (5):1–18 Lin Y, Zhu X, Zheng Z et al (2017) The individual identification method of wireless device based on dimensionality reduction and machine learning. J Supercomput (5):1–18
19.
Zurück zum Zitat Tu Y, Lin Y, Wang J et al (2018) Semi-supervised learning with generative adversarial networks on digital signal modulation classification. CMC-Comput Mater Continua 55(2):243–254 Tu Y, Lin Y, Wang J et al (2018) Semi-supervised learning with generative adversarial networks on digital signal modulation classification. CMC-Comput Mater Continua 55(2):243–254
20.
Zurück zum Zitat Zhang M, Diao M, Guo L (2017) Convolutional neural networks for automatic cognitive radio waveform recognition. IEEE Access: 11074–11082 Zhang M, Diao M, Guo L (2017) Convolutional neural networks for automatic cognitive radio waveform recognition. IEEE Access: 11074–11082
21.
Zurück zum Zitat Lin Y, Wang C, Ma C et al (2016) A new combination method for multisensor conflict information. J Supercomput 72(7):2874–2890CrossRef Lin Y, Wang C, Ma C et al (2016) A new combination method for multisensor conflict information. J Supercomput 72(7):2874–2890CrossRef
22.
Zurück zum Zitat Wang Y, Li Y (2012) A grid fundamental and harmonic components detection method for single-phase systems. 2012 IEEE Energy Conversion Congress and Exposition (ECCE): 4738–4745 Wang Y, Li Y (2012) A grid fundamental and harmonic components detection method for single-phase systems. 2012 IEEE Energy Conversion Congress and Exposition (ECCE): 4738–4745
23.
Zurück zum Zitat Ding G, Wu Q, Yao Y-D et al (2013) Kernel-based learning for statistical signal processing in cognitive radio networks: theoretical foundations, example applications, and future directions: 133–135, IEEE Ding G, Wu Q, Yao Y-D et al (2013) Kernel-based learning for statistical signal processing in cognitive radio networks: theoretical foundations, example applications, and future directions: 133–135, IEEE
24.
Zurück zum Zitat Huang JT, Li J, Yu D, Deng L, Gong Y (2013) Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers. Acoustics, speech and signal processing (ICASSP), 2013 IEEE international conference on. pp. 7304–7308. IEEE Huang JT, Li J, Yu D, Deng L, Gong Y (2013) Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers. Acoustics, speech and signal processing (ICASSP), 2013 IEEE international conference on. pp. 7304–7308. IEEE
25.
Zurück zum Zitat Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks?. Adv Neural Inf Proces Syst: 3320–3328 Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks?. Adv Neural Inf Proces Syst: 3320–3328
26.
Zurück zum Zitat Gonzalez RC, Woods RE, Eddins SL (2014) Digital image processing using MATLAB second edition: 273–279 Gonzalez RC, Woods RE, Eddins SL (2014) Digital image processing using MATLAB second edition: 273–279
27.
Zurück zum Zitat Liu S, M L, Liu G et al (2017) A novel distance metric: generalized relative entropy [J]. Entropy 19(6):269–269CrossRef Liu S, M L, Liu G et al (2017) A novel distance metric: generalized relative entropy [J]. Entropy 19(6):269–269CrossRef
28.
Zurück zum Zitat S Liu WF, He* L et al (2017) Distribution of primary additional errors in fractal encoding method [J]. Multimed Tools Appl 76(4):5787–5802CrossRef S Liu WF, He* L et al (2017) Distribution of primary additional errors in fractal encoding method [J]. Multimed Tools Appl 76(4):5787–5802CrossRef
29.
Zurück zum Zitat Palushani E, Hansen Mulvad HC, Galili M et al (2012) OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical Fourier transformation. IEEE J Select Topics Quantum Electron 18(2):681–688CrossRef Palushani E, Hansen Mulvad HC, Galili M et al (2012) OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical Fourier transformation. IEEE J Select Topics Quantum Electron 18(2):681–688CrossRef
30.
Zurück zum Zitat Liu S, Z Pan WF, Cheng* X (2017) Fractal generation method based on asymptote family of generalized Mandelbrot set and its application [J]. J Nonlinear Sci Appl 10(3):1148–1161MathSciNetMATHCrossRef Liu S, Z Pan WF, Cheng* X (2017) Fractal generation method based on asymptote family of generalized Mandelbrot set and its application [J]. J Nonlinear Sci Appl 10(3):1148–1161MathSciNetMATHCrossRef
31.
Zurück zum Zitat Tsai Y-R, Huang H-Y, Chen Y-C et al (2013) Simultaneous multiple carrier frequency offsets estimation for coordinated multi-point transmission in OFDM systems. IEEE Trans Wirel Commun 12(9):4558–4568CrossRef Tsai Y-R, Huang H-Y, Chen Y-C et al (2013) Simultaneous multiple carrier frequency offsets estimation for coordinated multi-point transmission in OFDM systems. IEEE Trans Wirel Commun 12(9):4558–4568CrossRef
Metadaten
Titel
Radar Signal Recognition Based on Transfer Learning and Feature Fusion
verfasst von
Yihan Xiao
Wenjian Liu
Lipeng Gao
Publikationsdatum
12.11.2019
Verlag
Springer US
Erschienen in
Mobile Networks and Applications / Ausgabe 4/2020
Print ISSN: 1383-469X
Elektronische ISSN: 1572-8153
DOI
https://doi.org/10.1007/s11036-019-01360-1

Weitere Artikel der Ausgabe 4/2020

Mobile Networks and Applications 4/2020 Zur Ausgabe

Neuer Inhalt