Skip to main content

2018 | OriginalPaper | Buchkapitel

26. Radiative Properties of Gases

verfasst von : Vladimir P. Solovjov, Brent W. Webb, Frederic Andre

Erschienen in: Handbook of Thermal Science and Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Radiation transfer in high-temperature gas systems is critical in many engineering applications. Understanding the fundamental physical phenomena associated with radiative transfer in these environments is thus critical to predicting the physical phenomena. This chapter seeks to present the fundamental physics of radiative transfer in high-temperature gases and review the viable methods for predicting the associated radiative transfer. The general physical statements of gas radiation are first formulated. It is shown that the principal properties of molecular gases needed for the radiative transfer equation are the gas spectral absorption cross section and the spectral absorption coefficient. Radiation constants and equations are explicitly written in terms of wavenumber for gas radiation.
The fundamentals of the physical nature of gas radiation are presented to contextualize the spectral properties – what defines positions, strength, and shape of spectral lines at given temperature and pressure. The chapter provides the information needed to find and to read spectroscopic databases such as HITRAN and HITEMP and how to use the compiled data to assemble the gas absorption spectra for both the gas absorption cross section and the gas absorption coefficient.
The principles of narrow band models and global models of gas radiation are formulated. The statistical narrow band model with Malkmus’ distribution function of line strength for an array of Lorentz lines is presented, and its application for modeling of radiation transfer in nonuniform media is explained. The wide range of global models of gas radiation starting from gray model and weighted-sum-of-gray-gases model and their development into more advanced models such as SLW, ADF, and FSK is described. While more detailed attention is given to the SLW model, its relation to the FSK and ADF models is outlined. Finally, the application of global models for prediction of radiative transfer in nonuniform gaseous medium is presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat André F (2016a) The ℓ-distribution method for modeling non-gray absorption in uniform and non-uniform gaseous media. J Quant Spectrosc Radiat Transf 179:19–32CrossRef André F (2016a) The -distribution method for modeling non-gray absorption in uniform and non-uniform gaseous media. J Quant Spectrosc Radiat Transf 179:19–32CrossRef
Zurück zum Zitat André F (2016b) A polynomial chaos approach to narrow band modeling of radiative heat transfer in non-uniform gaseous media. J Quant Spectrosc Radiat Transf 175:17–29CrossRef André F (2016b) A polynomial chaos approach to narrow band modeling of radiative heat transfer in non-uniform gaseous media. J Quant Spectrosc Radiat Transf 175:17–29CrossRef
Zurück zum Zitat André F (2017) Symmetry issues in the ℓ-distribution method for modeling of non-gray absorption in uniform and non-uniform gaseous medium. J Quant Spectrosc Radiat Transf 190:78–87CrossRef André F (2017) Symmetry issues in the -distribution method for modeling of non-gray absorption in uniform and non-uniform gaseous medium. J Quant Spectrosc Radiat Transf 190:78–87CrossRef
Zurück zum Zitat André F, Vaillon R (2007) The k-moment method for modeling the blackbody weighted transmission function for narrow and wide band radiative properties of gases. J Quant Spectrosc Radiat Transf 108:1–16CrossRef André F, Vaillon R (2007) The k-moment method for modeling the blackbody weighted transmission function for narrow and wide band radiative properties of gases. J Quant Spectrosc Radiat Transf 108:1–16CrossRef
Zurück zum Zitat Andre F, Vaillon R (2008) The spectral-line moment-based (SLMB) modeling of the wide band and global blackbody-weighted transmission function and cumulative distribution function of the absorption coefficient in uniform gaseous media. J Quant Spectrosc Radiat Transf 109:2401–2416CrossRef Andre F, Vaillon R (2008) The spectral-line moment-based (SLMB) modeling of the wide band and global blackbody-weighted transmission function and cumulative distribution function of the absorption coefficient in uniform gaseous media. J Quant Spectrosc Radiat Transf 109:2401–2416CrossRef
Zurück zum Zitat André F, Vaillon R (2012) Generalization of the k-moment method using the maximum entropy principle. Application to the NBKM and full spectrum SLMB gas radiation models. J Quant Spectrosc Radiat Transf 113:1508–1520CrossRef André F, Vaillon R (2012) Generalization of the k-moment method using the maximum entropy principle. Application to the NBKM and full spectrum SLMB gas radiation models. J Quant Spectrosc Radiat Transf 113:1508–1520CrossRef
Zurück zum Zitat André F, Vaillon R, Galizzi C, Guo H, Gicquel O (2011) A multi-spectral reordering technique for the full spectrum SLMB modeling of radiative heat transfer in nonuniform media. J Quant Spectrosc Radiat Transf 112:394–411CrossRef André F, Vaillon R, Galizzi C, Guo H, Gicquel O (2011) A multi-spectral reordering technique for the full spectrum SLMB modeling of radiative heat transfer in nonuniform media. J Quant Spectrosc Radiat Transf 112:394–411CrossRef
Zurück zum Zitat André F, Hou L, Roger M, Vaillon R (2014) The multispectral gas radiation modeling: a new theoretical framework based on a multidimensional approach to k-distribution methods. J Quant Spectrosc Radiat Transf 147:178–195CrossRef André F, Hou L, Roger M, Vaillon R (2014) The multispectral gas radiation modeling: a new theoretical framework based on a multidimensional approach to k-distribution methods. J Quant Spectrosc Radiat Transf 147:178–195CrossRef
Zurück zum Zitat Andre F, Solovjov VP, Lemonnier D, Webb BW (2017) Comonotonic global spectral models of gas radiation in non-uniform media based on arbitrary probability measures. Appl Math Model 50:741–754MathSciNetCrossRef Andre F, Solovjov VP, Lemonnier D, Webb BW (2017) Comonotonic global spectral models of gas radiation in non-uniform media based on arbitrary probability measures. Appl Math Model 50:741–754MathSciNetCrossRef
Zurück zum Zitat Berk A (2013) Voigt equivalent widths. J Quant Spectrosc Radiat Transf 118:102–120CrossRef Berk A (2013) Voigt equivalent widths. J Quant Spectrosc Radiat Transf 118:102–120CrossRef
Zurück zum Zitat Bernath PF (2005) Spectra of atoms and molecules. Oxford University Press, New York Bernath PF (2005) Spectra of atoms and molecules. Oxford University Press, New York
Zurück zum Zitat Centeno FR, Brittes R, França FHR, Ofodike, Ezekoye OA (2015) Evaluation of gas radiation heat transfer in a 2D axisymmetric geometry using the line-by-line integration and WSGG models. J Quant Spectrosc Radiat Transf 156:1–11CrossRef Centeno FR, Brittes R, França FHR, Ofodike, Ezekoye OA (2015) Evaluation of gas radiation heat transfer in a 2D axisymmetric geometry using the line-by-line integration and WSGG models. J Quant Spectrosc Radiat Transf 156:1–11CrossRef
Zurück zum Zitat Denison MK, Webb BW (1993a) A spectral line based weighted-sum-of-gray-gases model for arbitrary RTE solvers. ASME J Heat Transfer 115:1004–1012CrossRef Denison MK, Webb BW (1993a) A spectral line based weighted-sum-of-gray-gases model for arbitrary RTE solvers. ASME J Heat Transfer 115:1004–1012CrossRef
Zurück zum Zitat Denison MK, Webb BW (1993b) An absorption-line blackbody distribution function for efficient calculation of total gas radiative transfer. J Quant Spectrosc Radiat Transf 50:499–510CrossRef Denison MK, Webb BW (1993b) An absorption-line blackbody distribution function for efficient calculation of total gas radiative transfer. J Quant Spectrosc Radiat Transf 50:499–510CrossRef
Zurück zum Zitat Denison MK, Webb BW (1994) k-distributions and weighted-sum-of-gray-gases – a hybrid Model. ASME J Heat Transfer 2:19–24 Denison MK, Webb BW (1994) k-distributions and weighted-sum-of-gray-gases – a hybrid Model. ASME J Heat Transfer 2:19–24
Zurück zum Zitat Denison MK, Webb BW (1995a) The spectral line based weighted-sum-of-gray-gases model in non-isothermal non-homogeneous media. ASME J Heat Transfer 117:359–365CrossRef Denison MK, Webb BW (1995a) The spectral line based weighted-sum-of-gray-gases model in non-isothermal non-homogeneous media. ASME J Heat Transfer 117:359–365CrossRef
Zurück zum Zitat Denison MK, Webb BW (1995b) Development and application of an absorption-line blackbody distribution function for CO2. Int J Heat Mass Transfer 38:1813–1821CrossRef Denison MK, Webb BW (1995b) Development and application of an absorption-line blackbody distribution function for CO2. Int J Heat Mass Transfer 38:1813–1821CrossRef
Zurück zum Zitat Denison MK, Webb BW (1995c) The spectral-line weighted-sum-of-gray-gases model for H2O/CO2 mixtures. ASME J Heat Transfer 117:788–792CrossRef Denison MK, Webb BW (1995c) The spectral-line weighted-sum-of-gray-gases model for H2O/CO2 mixtures. ASME J Heat Transfer 117:788–792CrossRef
Zurück zum Zitat Domoto GA (1974) Frequency integration for radiative transfer problems involving homogeneous non-gray gases: the inverse transmission function. J Quant Spectrosc Radiat Transf 14:935–942CrossRef Domoto GA (1974) Frequency integration for radiative transfer problems involving homogeneous non-gray gases: the inverse transmission function. J Quant Spectrosc Radiat Transf 14:935–942CrossRef
Zurück zum Zitat Godson WL (1953) The evaluation of infrared radiative fluxes due to atmospheric water vapour. Q J R Meteorol Soc 79:367–379CrossRef Godson WL (1953) The evaluation of infrared radiative fluxes due to atmospheric water vapour. Q J R Meteorol Soc 79:367–379CrossRef
Zurück zum Zitat Goody RM, Yung YL (1989) Atmospheric radiation. Oxford University Press, New York Goody RM, Yung YL (1989) Atmospheric radiation. Oxford University Press, New York
Zurück zum Zitat Harris CH, Bertolucci MD (1978) Symmetry and spectroscopy. Oxford University Press, New York Harris CH, Bertolucci MD (1978) Symmetry and spectroscopy. Oxford University Press, New York
Zurück zum Zitat Herzberg G (1950) Molecular spectra and molecular structure. D. Van Nostrand, Princeton Herzberg G (1950) Molecular spectra and molecular structure. D. Van Nostrand, Princeton
Zurück zum Zitat Hill C, Gordon IE, Kochanov RV, Barrett L, Wilzewski JS, Rothman LS (2016) HITANonline: an online interface and the flexible representation of spectroscopic data in the HITRAN database. J Quant Spectrosc Radiat Transf 177:4–14CrossRef Hill C, Gordon IE, Kochanov RV, Barrett L, Wilzewski JS, Rothman LS (2016) HITANonline: an online interface and the flexible representation of spectroscopic data in the HITRAN database. J Quant Spectrosc Radiat Transf 177:4–14CrossRef
Zurück zum Zitat Hottel HC (1954) Radiant heat transmission. In: McAdams WH (ed) Heat transmission. McGraw-Hill Book Company, New York Hottel HC (1954) Radiant heat transmission. In: McAdams WH (ed) Heat transmission. McGraw-Hill Book Company, New York
Zurück zum Zitat Hottel HC, Sarofim AF (1967) Radiative transfer. McGraw-Hill, New York Hottel HC, Sarofim AF (1967) Radiative transfer. McGraw-Hill, New York
Zurück zum Zitat Howell JR, Siegel R, Mengüç MP (2011) Thermal radiation heat transfer, 5th edn. CRC Press, New York Howell JR, Siegel R, Mengüç MP (2011) Thermal radiation heat transfer, 5th edn. CRC Press, New York
Zurück zum Zitat Howell JR, Mengüç MP, Siegel R (2016) Thermal radiation heat transfer, 6th edn. CRC Press, New York Howell JR, Mengüç MP, Siegel R (2016) Thermal radiation heat transfer, 6th edn. CRC Press, New York
Zurück zum Zitat Kochanov RV, Gordon IE, Rothman LS, Wcislo P, Wilzewski JS (2016) HITRAN Application Programming Interface (HAPI): a comprehensive approach to working with spectroscopic data. J Quant Spectrosc Radiat Transf 177:15–30CrossRef Kochanov RV, Gordon IE, Rothman LS, Wcislo P, Wilzewski JS (2016) HITRAN Application Programming Interface (HAPI): a comprehensive approach to working with spectroscopic data. J Quant Spectrosc Radiat Transf 177:15–30CrossRef
Zurück zum Zitat Lacis A, Oinas V (1991) A description of the correlated k-distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J Geophys Res 96:9027–9063CrossRef Lacis A, Oinas V (1991) A description of the correlated k-distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J Geophys Res 96:9027–9063CrossRef
Zurück zum Zitat Letchworth KL, Benner DC (2007) Rapid and accurate calculation of the Voigt function. J Quant Spectrosc Radiat Transf 107:173–192CrossRef Letchworth KL, Benner DC (2007) Rapid and accurate calculation of the Voigt function. J Quant Spectrosc Radiat Transf 107:173–192CrossRef
Zurück zum Zitat Levi Di Leon R, Taine J (1986) A fictive gas-method for accurate computations of low-resolution IR gas transmissivities: application to the 4.3 μm CO2 band. Rev Phys Appl 21:825–531CrossRef Levi Di Leon R, Taine J (1986) A fictive gas-method for accurate computations of low-resolution IR gas transmissivities: application to the 4.3 μm CO2 band. Rev Phys Appl 21:825–531CrossRef
Zurück zum Zitat Levine IN (1975) Molecular spectroscopy. Wiley, New York Levine IN (1975) Molecular spectroscopy. Wiley, New York
Zurück zum Zitat Lindquist GH, Simmons FS (1972) A band model formulation for very nonuniform paths. J Quant Spectrosc Radiat Transf 12:807–820CrossRef Lindquist GH, Simmons FS (1972) A band model formulation for very nonuniform paths. J Quant Spectrosc Radiat Transf 12:807–820CrossRef
Zurück zum Zitat Liu F, Smallwood GJ, Gülder ÖL (2001) Application of the statistical narrow-band correlated-k method to non-grey radiation in CO2-H2O mixtures: approximate treatment of overlapping bands. J Quant Spectrosc Radiat Transf 68:401–417CrossRef Liu F, Smallwood GJ, Gülder ÖL (2001) Application of the statistical narrow-band correlated-k method to non-grey radiation in CO2-H2O mixtures: approximate treatment of overlapping bands. J Quant Spectrosc Radiat Transf 68:401–417CrossRef
Zurück zum Zitat Ludwig CB, Malkmus W, Reardon JE, Thomson JAL (1973) Handbook of infrared radiation from combustion gases. Technical report NASA SP-3080, Washington, DC Ludwig CB, Malkmus W, Reardon JE, Thomson JAL (1973) Handbook of infrared radiation from combustion gases. Technical report NASA SP-3080, Washington, DC
Zurück zum Zitat Malkmus W (1967) Random Lorentz band model with exponential-tailed S-1 line intensity distribution function. J Opt Soc Am 57:323–329CrossRef Malkmus W (1967) Random Lorentz band model with exponential-tailed S-1 line intensity distribution function. J Opt Soc Am 57:323–329CrossRef
Zurück zum Zitat Mlawer EJ, Payne VH, Moncet J-L, Delamere JS, Alvarado MJ, Tobin DC (2012) Development and recent evaluation of the MT-CKD model of continuum absorption. Philos Trans R Soc A 370:2520–2556CrossRef Mlawer EJ, Payne VH, Moncet J-L, Delamere JS, Alvarado MJ, Tobin DC (2012) Development and recent evaluation of the MT-CKD model of continuum absorption. Philos Trans R Soc A 370:2520–2556CrossRef
Zurück zum Zitat Modest MF (2013) Radiative heat transfer, 3rd edn. Academic, ASME, New York Modest MF (2013) Radiative heat transfer, 3rd edn. Academic, ASME, New York
Zurück zum Zitat Modest MF, Haworth DC (2016) Radiative heat transfer in turbulent combustion systems. Theory and applications. Springer, New YorkCrossRef Modest MF, Haworth DC (2016) Radiative heat transfer in turbulent combustion systems. Theory and applications. Springer, New YorkCrossRef
Zurück zum Zitat Modest MF, Zhang H (2000) The full-spectrum correlated-k distribution and its relationship to the weighted-sum-of-gray-gases method. In: Proceedings of 2000 IMECE HTD-366-1 Orlando, New York, pp 75–84 Modest MF, Zhang H (2000) The full-spectrum correlated-k distribution and its relationship to the weighted-sum-of-gray-gases method. In: Proceedings of 2000 IMECE HTD-366-1 Orlando, New York, pp 75–84
Zurück zum Zitat Pearson JT (2013) The development of updated and improved SLW model parameters and its application to comprehensive combustion prediction. PhD dissertation, Brigham Young University, Provo, Utah, USA Pearson JT (2013) The development of updated and improved SLW model parameters and its application to comprehensive combustion prediction. PhD dissertation, Brigham Young University, Provo, Utah, USA
Zurück zum Zitat Pearson JT, Webb BW, Solovjov VP, Ma J (2014) Efficient representation of the absorption line blackbody distribution function for H2O, CO2, and CO at variable temperature, mole fraction, and total pressure. J Quant Spectrosc Radiat Transf 138:82–96CrossRef Pearson JT, Webb BW, Solovjov VP, Ma J (2014) Efficient representation of the absorption line blackbody distribution function for H2O, CO2, and CO at variable temperature, mole fraction, and total pressure. J Quant Spectrosc Radiat Transf 138:82–96CrossRef
Zurück zum Zitat Penner SS (1959) Quantitative molecular spectroscopy and gas emissivities. Addison-Wesley Publishing Company, London Penner SS (1959) Quantitative molecular spectroscopy and gas emissivities. Addison-Wesley Publishing Company, London
Zurück zum Zitat Perrin MY, Hartmann JM (1989) Temperature-dependent measurements and modeling of absorption by CO2-N2 mixtures in the far line-wings of the 4.3 μm CO2 band. J Quant Spectrosc Radiat Transf 42:311–317CrossRef Perrin MY, Hartmann JM (1989) Temperature-dependent measurements and modeling of absorption by CO2-N2 mixtures in the far line-wings of the 4.3 μm CO2 band. J Quant Spectrosc Radiat Transf 42:311–317CrossRef
Zurück zum Zitat Pierrot L (1997) Développent, étude critique et validation de modèles de propriétés radiatives infrarouges de CO2 et H2O à hautes températures. Application au calcul des transferts dans les chambres aéronautiques et à la télédétection. PhD thesis, Ecole Centrale Paris Pierrot L (1997) Développent, étude critique et validation de modèles de propriétés radiatives infrarouges de CO2 et H2O à hautes températures. Application au calcul des transferts dans les chambres aéronautiques et à la télédétection. PhD thesis, Ecole Centrale Paris
Zurück zum Zitat Pierrot L, Rivière PH, Soufiani A, Taine J (1999) A fictitious-gas-based absorption distribution function global model for radiative transfer in hot gases. J Quant Spectrosc Radiat Transf 62:609–624CrossRef Pierrot L, Rivière PH, Soufiani A, Taine J (1999) A fictitious-gas-based absorption distribution function global model for radiative transfer in hot gases. J Quant Spectrosc Radiat Transf 62:609–624CrossRef
Zurück zum Zitat Rivière PH, Soufiani A (2012) Updated band model parameters for H2O, CO2, CH4 and CO radiation at high temperature. J Quant Spectrosc Radiat Transf 55:3349–3358 Rivière PH, Soufiani A (2012) Updated band model parameters for H2O, CO2, CH4 and CO radiation at high temperature. J Quant Spectrosc Radiat Transf 55:3349–3358
Zurück zum Zitat Rivière PH, Soufiani A, Taine J (1992) Correlated-k and fictitious gas methods for H2O near 2.7 μm. J Quant Spectrosc Radiat Transf 48:187–203CrossRef Rivière PH, Soufiani A, Taine J (1992) Correlated-k and fictitious gas methods for H2O near 2.7 μm. J Quant Spectrosc Radiat Transf 48:187–203CrossRef
Zurück zum Zitat Rothman LS, Gamache RR, Tipping RH, Rinsland CP, Smith MAH, Chris Benner D, Malathy Devi V, Flaud JM, Camy-Peyret C, Perrin A, Goldman A, Massie ST, Brown LR (1992) The HITRAN molecular database: editions of 1991 and 1992a. J Quant Spectrosc Radiat Transf 48:469–507CrossRef Rothman LS, Gamache RR, Tipping RH, Rinsland CP, Smith MAH, Chris Benner D, Malathy Devi V, Flaud JM, Camy-Peyret C, Perrin A, Goldman A, Massie ST, Brown LR (1992) The HITRAN molecular database: editions of 1991 and 1992a. J Quant Spectrosc Radiat Transf 48:469–507CrossRef
Zurück zum Zitat Rothman LS, Rinsland CP, Goldman A, Massie ST, Edwards DP, Flaud JM, Perrin A, Camy-Peyret C, Dana V, Mandin JY, Schroeder J, Mccann A, Gamache RR, Wattson RB, Yoshino K, Chance KV, Jucks KW, Brown LR, Nemtchinov V, Varanasi P (1998) The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition. J Quant Spectrosc Radiat Transf 60:665–710CrossRef Rothman LS, Rinsland CP, Goldman A, Massie ST, Edwards DP, Flaud JM, Perrin A, Camy-Peyret C, Dana V, Mandin JY, Schroeder J, Mccann A, Gamache RR, Wattson RB, Yoshino K, Chance KV, Jucks KW, Brown LR, Nemtchinov V, Varanasi P (1998) The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition. J Quant Spectrosc Radiat Transf 60:665–710CrossRef
Zurück zum Zitat Rothman LS, Gordon IE, Barbe A, ChrisBenner D, Bernath PF, Birk M, Boudon V, Brown LR, Campargue A, Champion J-P, Chance K, Coudert LH, Danaj V, Devi VM, Fally S, Flaud J-M, Gamache RR, Goldmanm A, Jacquemart D, Kleiner I, Lacome N, Lafferty WJ, Mandin J-Y, Massie ST, Mikhailenko SN, Miller CE, Moazzen-Ahmadi N, Naumenko OV, Nikitin AV, Orphal J, Perevalov VI, Perrin A, Predoi-Cross A, Rinsland CP, Rotger M, Simeckova M, Smith MAH, Sung K, Tashkun SA, Tennyson J, Toth RA, Vandaele AC, VanderAuwera J (2009) The HITRAN 2008 molecular spectroscopic database. J Quant Spectrosc Radiat Transf 110:533–572CrossRef Rothman LS, Gordon IE, Barbe A, ChrisBenner D, Bernath PF, Birk M, Boudon V, Brown LR, Campargue A, Champion J-P, Chance K, Coudert LH, Danaj V, Devi VM, Fally S, Flaud J-M, Gamache RR, Goldmanm A, Jacquemart D, Kleiner I, Lacome N, Lafferty WJ, Mandin J-Y, Massie ST, Mikhailenko SN, Miller CE, Moazzen-Ahmadi N, Naumenko OV, Nikitin AV, Orphal J, Perevalov VI, Perrin A, Predoi-Cross A, Rinsland CP, Rotger M, Simeckova M, Smith MAH, Sung K, Tashkun SA, Tennyson J, Toth RA, Vandaele AC, VanderAuwera J (2009) The HITRAN 2008 molecular spectroscopic database. J Quant Spectrosc Radiat Transf 110:533–572CrossRef
Zurück zum Zitat Rothman LS, Gordon LE, Barber RJ, Dothe H, Gamache RR, Goldman A, Perevalov VI, Tashkun SA, Tennyson J (2010) HITEMP, the high-temperature molecular spectroscopic database. J Quant Spectrosc Radiat Transf 111:2139–2150CrossRef Rothman LS, Gordon LE, Barber RJ, Dothe H, Gamache RR, Goldman A, Perevalov VI, Tashkun SA, Tennyson J (2010) HITEMP, the high-temperature molecular spectroscopic database. J Quant Spectrosc Radiat Transf 111:2139–2150CrossRef
Zurück zum Zitat Rothman LS, Gordon IE, Babikov Y, Barbe A, ChrisBenner D, Bernath PF, Birk M, Bizzocchi L, Boudon V, Brown LR, Campargue A, Chance K, Cohen EA, Coudert LH, Devi VM, Drouin BJ, Fayt A, Flaud J-M, Gamache RR, Harrison JJ, Hartmann J-M, Hill C, Hodges JT, Jacquemart D, Jolly A, Lamouroux J, LeRoy RJ, Li G, Long DA, Lyulin OM, Mackie CJ, Massie ST, Mikhailenko S, Müller HSP, Naumenko OV, Nikitin AV, Orphal J, Perevalov V, Perrin A, Polovtseva ER, Richard C, Smith MAH, Starikova E, Sung K, Tashkun S, Tennyson J, Toon GC, Tyuterev VG, Wagner G (2013) The HITRAN2012 molecular spectroscopic database. J Quant Spectrosc Radiat Transf 130:4–50CrossRef Rothman LS, Gordon IE, Babikov Y, Barbe A, ChrisBenner D, Bernath PF, Birk M, Bizzocchi L, Boudon V, Brown LR, Campargue A, Chance K, Cohen EA, Coudert LH, Devi VM, Drouin BJ, Fayt A, Flaud J-M, Gamache RR, Harrison JJ, Hartmann J-M, Hill C, Hodges JT, Jacquemart D, Jolly A, Lamouroux J, LeRoy RJ, Li G, Long DA, Lyulin OM, Mackie CJ, Massie ST, Mikhailenko S, Müller HSP, Naumenko OV, Nikitin AV, Orphal J, Perevalov V, Perrin A, Polovtseva ER, Richard C, Smith MAH, Starikova E, Sung K, Tashkun S, Tennyson J, Toon GC, Tyuterev VG, Wagner G (2013) The HITRAN2012 molecular spectroscopic database. J Quant Spectrosc Radiat Transf 130:4–50CrossRef
Zurück zum Zitat Smith TF, Shen ZF, Friedman JN (1982) Evaluation of coefficients for the weighted sum of gray gases model. ASME J Heat Transfer 104:602–608CrossRef Smith TF, Shen ZF, Friedman JN (1982) Evaluation of coefficients for the weighted sum of gray gases model. ASME J Heat Transfer 104:602–608CrossRef
Zurück zum Zitat Solovjov VP, Webb BW (1998) Radiative transfer model parameters for carbon monoxide at high temperature. J Proc11th Int Heat Transfer Conf Kyongju, Korea 7:445–450 Solovjov VP, Webb BW (1998) Radiative transfer model parameters for carbon monoxide at high temperature. J Proc11th Int Heat Transfer Conf Kyongju, Korea 7:445–450
Zurück zum Zitat Solovjov VP, Webb BW (2000) SLW modeling of radiative transfer in multicomponent gas mixtures. J Quant Spectrosc Radiat Transf 65:655–672CrossRef Solovjov VP, Webb BW (2000) SLW modeling of radiative transfer in multicomponent gas mixtures. J Quant Spectrosc Radiat Transf 65:655–672CrossRef
Zurück zum Zitat Solovjov VP, Webb BW (2001) An efficient method for modeling of radiative transfer in multicomponent gas mixtures with soot particles. ASME J Heat Transfer 123:450–457CrossRef Solovjov VP, Webb BW (2001) An efficient method for modeling of radiative transfer in multicomponent gas mixtures with soot particles. ASME J Heat Transfer 123:450–457CrossRef
Zurück zum Zitat Solovjov VP, Webb BW (2005) The cumulative wavenumber method for modeling radiative transfer in gas mixtures with soot. J Quant Spectrosc Radiat Transf 93:273–287CrossRef Solovjov VP, Webb BW (2005) The cumulative wavenumber method for modeling radiative transfer in gas mixtures with soot. J Quant Spectrosc Radiat Transf 93:273–287CrossRef
Zurück zum Zitat Solovjov VP, Webb BW (2008) Multilayer modeling of radiative transfer by SLW and CW methods in non-isothermal gaseous media. J Quant Spectrosc Radiat Transf 109:245–257CrossRef Solovjov VP, Webb BW (2008) Multilayer modeling of radiative transfer by SLW and CW methods in non-isothermal gaseous media. J Quant Spectrosc Radiat Transf 109:245–257CrossRef
Zurück zum Zitat Solovjov VP, Webb BW (2011) Global spectral methods in gas radiation: the exact limit of the SLW model and its relationship to the ADF and FSK methods. ASME J Heat Transfer 133:88–798 Solovjov VP, Webb BW (2011) Global spectral methods in gas radiation: the exact limit of the SLW model and its relationship to the ADF and FSK methods. ASME J Heat Transfer 133:88–798
Zurück zum Zitat Solovjov VP, Lemonnier D, Webb BW (2011a) The SLW-1 model for efficient prediction of radiative transfer in high temperature gases. J Quant Spectrosc Radiat Transf 112:1205–1212CrossRef Solovjov VP, Lemonnier D, Webb BW (2011a) The SLW-1 model for efficient prediction of radiative transfer in high temperature gases. J Quant Spectrosc Radiat Transf 112:1205–1212CrossRef
Zurück zum Zitat Solovjov VP, Lemonnier D, Webb BW (2011b) SLW-1 modeling of radiative heat transfer in nonisothermal nonhomogeneous gas mixtures with soot. ASME J Heat Transfer 133:102701–3-9CrossRef Solovjov VP, Lemonnier D, Webb BW (2011b) SLW-1 modeling of radiative heat transfer in nonisothermal nonhomogeneous gas mixtures with soot. ASME J Heat Transfer 133:102701–3-9CrossRef
Zurück zum Zitat Solovjov VP, Lemonnier D, Webb BW (2013) Efficient cumulative wavenumber method – the CW-1 Model of radiative transfer in the gaseous medium bounded by non-gray walls. J Quant Spectrosc Radiat Transf 63:2–9e Solovjov VP, Lemonnier D, Webb BW (2013) Efficient cumulative wavenumber method – the CW-1 Model of radiative transfer in the gaseous medium bounded by non-gray walls. J Quant Spectrosc Radiat Transf 63:2–9e
Zurück zum Zitat Solovjov VP, Lemonnier D, Webb BW (2014) Extension of the exact SLW model to non- isothermal gaseous media. J Quant Spectrosc Radiat Transf 143:83–91CrossRef Solovjov VP, Lemonnier D, Webb BW (2014) Extension of the exact SLW model to non- isothermal gaseous media. J Quant Spectrosc Radiat Transf 143:83–91CrossRef
Zurück zum Zitat Solovjov VP, Andre F, Lemonnier D, Webb BW (2016a) The rank correlated SLW model of gas radiation in non uniform media. In: Proceedings of RAD-16, Begell House Solovjov VP, Andre F, Lemonnier D, Webb BW (2016a) The rank correlated SLW model of gas radiation in non uniform media. In: Proceedings of RAD-16, Begell House
Zurück zum Zitat Solovjov VP, Andre F, Lemonnier D, Webb BW (2016b) The generalized SLW model. Eurotherm conference 105: computational thermal radiation in participating media V. J Phys Conf Ser 676:1–36. 012022CrossRef Solovjov VP, Andre F, Lemonnier D, Webb BW (2016b) The generalized SLW model. Eurotherm conference 105: computational thermal radiation in participating media V. J Phys Conf Ser 676:1–36. 012022CrossRef
Zurück zum Zitat Solovjov VP, Andre F, Lemonnier D, Webb BW (2017b) The scaled SLW model of gas radiation in non uniform media. In: Proceedings of CHT-17. ICHMT international symposium on advances in computational heat transfer. May 28–June 1, 2017, Napoli Solovjov VP, Andre F, Lemonnier D, Webb BW (2017b) The scaled SLW model of gas radiation in non uniform media. In: Proceedings of CHT-17. ICHMT international symposium on advances in computational heat transfer. May 28–June 1, 2017, Napoli
Zurück zum Zitat Song TH, Viskanta R (1986) Development of application of a spectral-group model to radiative heat transfer. ASME Paper No. 86-WA/HT-36 Song TH, Viskanta R (1986) Development of application of a spectral-group model to radiative heat transfer. ASME Paper No. 86-WA/HT-36
Zurück zum Zitat Soufiani A, Taine J (1999) High temperature gas radiative property parameters of statistical narrow-band model for H2O, CO2 and CO and correlated-k (CK) model for H2O and CO2. Int J Heat Mass Transf 40:987–991CrossRef Soufiani A, Taine J (1999) High temperature gas radiative property parameters of statistical narrow-band model for H2O, CO2 and CO and correlated-k (CK) model for H2O and CO2. Int J Heat Mass Transf 40:987–991CrossRef
Zurück zum Zitat Soufiani A, Hartmann J-M, Taine J (1985) Validity of band-model calculations for CO2 and H2O applied to radiative properties and conductive-radiative transfer. J Quant Spectrosc Radiat Transf 33:243–257CrossRef Soufiani A, Hartmann J-M, Taine J (1985) Validity of band-model calculations for CO2 and H2O applied to radiative properties and conductive-radiative transfer. J Quant Spectrosc Radiat Transf 33:243–257CrossRef
Zurück zum Zitat Soufiani A, André F, Taine J (2002) A fictitious-gas based statistical narrow-band model for IR long-range sensing of H2O at high temperature. J Quant Spectrosc Radiat Transf 73:339–347CrossRef Soufiani A, André F, Taine J (2002) A fictitious-gas based statistical narrow-band model for IR long-range sensing of H2O at high temperature. J Quant Spectrosc Radiat Transf 73:339–347CrossRef
Zurück zum Zitat Taine J, Soufiani A (1999) Gas IR radiative properties: from spectroscopic data to approximate models. Adv Heat Transfer 33:295–414CrossRef Taine J, Soufiani A (1999) Gas IR radiative properties: from spectroscopic data to approximate models. Adv Heat Transfer 33:295–414CrossRef
Zurück zum Zitat Vidler M, Tennyson J (2000) Accurate partition function and thermodynamic data for water. J Chem Phys 113:9766–9771CrossRef Vidler M, Tennyson J (2000) Accurate partition function and thermodynamic data for water. J Chem Phys 113:9766–9771CrossRef
Zurück zum Zitat Viskanta R (2005) Radiative transfer in combustion systems: fundamentals and application. Begell House, New York Viskanta R (2005) Radiative transfer in combustion systems: fundamentals and application. Begell House, New York
Zurück zum Zitat Wang C, Modest MF, He B (2016) Full-spectrum k-distribution look-up table for nonhomogeneous gas–soot mixtures. J Quant Spectrosc Radiat Transf 176:129–136CrossRef Wang C, Modest MF, He B (2016) Full-spectrum k-distribution look-up table for nonhomogeneous gas–soot mixtures. J Quant Spectrosc Radiat Transf 176:129–136CrossRef
Zurück zum Zitat West R, Crisp D, Chen L (1990) Mapping transformations for broadband atmospheric radiation calculations. J Quant Spectrosc Radiat Transf 43:191–199CrossRef West R, Crisp D, Chen L (1990) Mapping transformations for broadband atmospheric radiation calculations. J Quant Spectrosc Radiat Transf 43:191–199CrossRef
Zurück zum Zitat Young SJ (1975) Band model formulation for inhomogeneous optical paths. J Quant Spectrosc Radiat Transf 15:483–501CrossRef Young SJ (1975) Band model formulation for inhomogeneous optical paths. J Quant Spectrosc Radiat Transf 15:483–501CrossRef
Zurück zum Zitat Young SJ (1977) Non isothermal band model theory. J Quant Spectrosc Radiat Transf 18:1–28CrossRef Young SJ (1977) Non isothermal band model theory. J Quant Spectrosc Radiat Transf 18:1–28CrossRef
Zurück zum Zitat Zhang H, Modest MF (2003) Scalable multi-group full-spectrum correlated-k distributions for radiative transfer calculations. ASME J Heat Transfer 125:454–461CrossRef Zhang H, Modest MF (2003) Scalable multi-group full-spectrum correlated-k distributions for radiative transfer calculations. ASME J Heat Transfer 125:454–461CrossRef
Metadaten
Titel
Radiative Properties of Gases
verfasst von
Vladimir P. Solovjov
Brent W. Webb
Frederic Andre
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-26695-4_59

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.