Skip to main content
Erschienen in: Neural Processing Letters 1/2020

13.09.2019

Random Regrouping and Factorization in Cooperative Particle Swarm Optimization Based Large-Scale Neural Network Training

verfasst von: Cody Dennis, Beatrice M. Ombuki-Berman, Andries P. Engelbrecht

Erschienen in: Neural Processing Letters | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Previous studies have shown that factorization and random regrouping significantly improve the performance of the cooperative particle swarm optimization (CPSO) algorithm. However, few studies have examined whether this trend continues when CPSO is applied to the training of feed forward neural networks. Neural network training problems often have very high dimensionality and introduce the issue of saturation, which has been shown to significantly affect the behavior of particles in the swarm; thus it should not be assumed that these trends hold. This study identifies the benefits of random regrouping and factorization to CPSO based neural network training, and proposes a number of approaches to problem decomposition for use in neural network training. Experiments are performed on 11 problems with sizes ranging from 35 up to 32,811 weights and biases, using a number of general approaches to problem decomposition, and state of the art algorithms taken from the literature. This study found that the impact of factorization and random regrouping on solution quality and swarm behavior depends heavily on the general approach to problem decomposition. It is shown that a random problem decomposition is effective in feed forward neural network training. A random problem decomposition has the benefit of reducing the issue of problem decomposition to the tuning of a single parameter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bai X, Gao X, Xue B (2018) Particle swarm optimization based two-stage feature selection in text mining. In: Proceedings of the congress on evolutionary computation. IEEE, pp 1–8 Bai X, Gao X, Xue B (2018) Particle swarm optimization based two-stage feature selection in text mining. In: Proceedings of the congress on evolutionary computation. IEEE, pp 1–8
3.
Zurück zum Zitat Bishop C (1995) Neural networks for pattern recognition. Oxford University Press, Oxford Bishop C (1995) Neural networks for pattern recognition. Oxford University Press, Oxford
4.
Zurück zum Zitat Carlisle A, Dozier G (2001) An off-the-shelf pso. In: Proceedings of the workshop on particle swarm optimization, vol 1. Technology IUPUI, Indianapolis, IN, USA, pp 1–6 Carlisle A, Dozier G (2001) An off-the-shelf pso. In: Proceedings of the workshop on particle swarm optimization, vol 1. Technology IUPUI, Indianapolis, IN, USA, pp 1–6
5.
Zurück zum Zitat Chen A, Huang S, Hong P, Cheng C, Lin E (2011) HDPS: heart disease prediction system. In: Computing in cardiology, pp 557–560 Chen A, Huang S, Hong P, Cheng C, Lin E (2011) HDPS: heart disease prediction system. In: Computing in cardiology, pp 557–560
6.
Zurück zum Zitat Chen A, Ren Z, Yang Y, Liang Y, Pang B (2018) A historical interdependency based differential grouping algorithm for large scale global optimization. In: Proceedings of the genetic and evolutionary computation conference companion, GECCO ’18. ACM, New York, NY, USA, pp 1711–1715. https://doi.org/10.1145/3205651.3208278 Chen A, Ren Z, Yang Y, Liang Y, Pang B (2018) A historical interdependency based differential grouping algorithm for large scale global optimization. In: Proceedings of the genetic and evolutionary computation conference companion, GECCO ’18. ACM, New York, NY, USA, pp 1711–1715. https://​doi.​org/​10.​1145/​3205651.​3208278
9.
Zurück zum Zitat Das M, Dulger L (2009) Signature vecification (SV) toolbox: applications of PSO-NN. Eng Appl Artif Intell 22(4):688–694 Das M, Dulger L (2009) Signature vecification (SV) toolbox: applications of PSO-NN. Eng Appl Artif Intell 22(4):688–694
10.
Zurück zum Zitat Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30 Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
11.
Zurück zum Zitat Douglas J (2018) Efficient merging and decomposition variants of cooperative particle swarm optimization for large scale problems. Master’s thesis, Brock University Douglas J (2018) Efficient merging and decomposition variants of cooperative particle swarm optimization for large scale problems. Master’s thesis, Brock University
12.
Zurück zum Zitat Eberhart R, Shi Y (2000) Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the congress on evolutionary computation, vol 1. IEEE, pp 84–88 Eberhart R, Shi Y (2000) Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the congress on evolutionary computation, vol 1. IEEE, pp 84–88
17.
Zurück zum Zitat Helwig S, Wanka R (2008) Theoretical analysis of initial particle swarm behavior. In: Rudolph G, Jansen T, Beume N, Lucas S, Poloni C (eds) Parallel Problem Solving from Nature—PPSN X. Springer, Berlin, pp 889–898 Helwig S, Wanka R (2008) Theoretical analysis of initial particle swarm behavior. In: Rudolph G, Jansen T, Beume N, Lucas S, Poloni C (eds) Parallel Problem Solving from Nature—PPSN X. Springer, Berlin, pp 889–898
18.
Zurück zum Zitat Hu C, Wu X, Wang Y, Xie F (2009) Multi-swarm particle swarm optimizer with cauchy mutation for dynamic optimization problems. In: Cai Z, Li Z, Kang Z, Liu Y (eds) Advances in Computation and Intelligence. Springer, Berlin, pp 443–453 Hu C, Wu X, Wang Y, Xie F (2009) Multi-swarm particle swarm optimizer with cauchy mutation for dynamic optimization problems. In: Cai Z, Li Z, Kang Z, Liu Y (eds) Advances in Computation and Intelligence. Springer, Berlin, pp 443–453
19.
Zurück zum Zitat Ismail A, Engelbrecht AP (2012) Measuring diversity in the cooperative particle swarm optimizer. In: Dorigo M, et al (eds) Proceedings of the international conference on swarm intelligence. Springer, Berlin, pp 97–108 Ismail A, Engelbrecht AP (2012) Measuring diversity in the cooperative particle swarm optimizer. In: Dorigo M, et al (eds) Proceedings of the international conference on swarm intelligence. Springer, Berlin, pp 97–108
22.
Zurück zum Zitat Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: Proceedings of the international congress on evolutionary computation, vol 2. IEEE Computer Society, Washington, DC, USA, pp 1671–1676 Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: Proceedings of the international congress on evolutionary computation, vol 2. IEEE Computer Society, Washington, DC, USA, pp 1671–1676
23.
Zurück zum Zitat Lawrence S, Tsoi A, Back A (1996) Function approximation with neural networks and local methods: bias, variance and smoothness. In: Proceedings of the australian conference on neural networks, vol 1621. Australian National University Lawrence S, Tsoi A, Back A (1996) Function approximation with neural networks and local methods: bias, variance and smoothness. In: Proceedings of the australian conference on neural networks, vol 1621. Australian National University
25.
Zurück zum Zitat Lensen A, Xue B, Zhang M (2017) Using particle swarm optimisation and the silhouette metric to estimate the number of clusters, select features, and perform clustering. In: Proceedings of the European conference on the applications of evolutionary computation. Springer, pp 538–554 Lensen A, Xue B, Zhang M (2017) Using particle swarm optimisation and the silhouette metric to estimate the number of clusters, select features, and perform clustering. In: Proceedings of the European conference on the applications of evolutionary computation. Springer, pp 538–554
31.
Zurück zum Zitat Oldewage E (2018) The perils of particle swarm optimization in high dimensional problem spaces. Master’s thesis, University of Pretoria Oldewage E (2018) The perils of particle swarm optimization in high dimensional problem spaces. Master’s thesis, University of Pretoria
33.
Zurück zum Zitat Oldewage E, Engelbrecht A, Cleghorn C (2018) The importance of component-wise stochasticity in particle swarm optimization. In: International conference on swarm intelligence. Springer, pp 264–276 Oldewage E, Engelbrecht A, Cleghorn C (2018) The importance of component-wise stochasticity in particle swarm optimization. In: International conference on swarm intelligence. Springer, pp 264–276
41.
Zurück zum Zitat Ren Z, Chen A, Wang L, Liang Y, Pang B (2017) An efficient vector-growth decomposition algorithm for cooperative coevolution in solving large scale problems. In: Proceedings of the genetic and evolutionary computation conference companion, GECCO ’17, ACM, New York, NY, USA, pp 41–42. https://doi.org/10.1145/3067695.3082048 Ren Z, Chen A, Wang L, Liang Y, Pang B (2017) An efficient vector-growth decomposition algorithm for cooperative coevolution in solving large scale problems. In: Proceedings of the genetic and evolutionary computation conference companion, GECCO ’17, ACM, New York, NY, USA, pp 41–42. https://​doi.​org/​10.​1145/​3067695.​3082048
42.
Zurück zum Zitat Röbel A (1994) The dynamic pattern selection algorithm: effective training and controlled generalization of backpropagation neural networks. Technical report, Technische Universität Berlin Röbel A (1994) The dynamic pattern selection algorithm: effective training and controlled generalization of backpropagation neural networks. Technical report, Technische Universität Berlin
43.
Zurück zum Zitat Sexton RS, Dorsey RE (2000) Reliable classification using neural networks: a genetic algorithm and backpropagation comparison. Decis Support Syst 30(1):11–22 Sexton RS, Dorsey RE (2000) Reliable classification using neural networks: a genetic algorithm and backpropagation comparison. Decis Support Syst 30(1):11–22
46.
Zurück zum Zitat Sun L, Yoshida S, Cheng X, Liang Y (2012) A cooperative particle swarm optimizer with statistical variable interdependence learning. Inf Sci 186(1):20–39 Sun L, Yoshida S, Cheng X, Liang Y (2012) A cooperative particle swarm optimizer with statistical variable interdependence learning. Inf Sci 186(1):20–39
47.
Zurück zum Zitat Sun Y, Kirley M, Halgamuge SK (2018) A recursive decomposition method for large scale continuous optimization. IEEE Trans Evol Comput 22(5):647–661 Sun Y, Kirley M, Halgamuge SK (2018) A recursive decomposition method for large scale continuous optimization. IEEE Trans Evol Comput 22(5):647–661
48.
Zurück zum Zitat Tang R, Li X (2018) Adaptive multi-context cooperatively coevolving in differential evolution. Appl Intell 48(9):2719–2729 Tang R, Li X (2018) Adaptive multi-context cooperatively coevolving in differential evolution. Appl Intell 48(9):2719–2729
49.
Zurück zum Zitat Tang R, Wu Z, Fang Y (2017) Adaptive multi-context cooperatively coevolving particle swarm optimization for large-scale problems. Soft Comput 21(16):4735–4754 Tang R, Wu Z, Fang Y (2017) Adaptive multi-context cooperatively coevolving particle swarm optimization for large-scale problems. Soft Comput 21(16):4735–4754
50.
Zurück zum Zitat Tang R, Li X, Lai J (2018) A novel optimal energy-management strategy for a maritime hybrid energy system based on large-scale global optimization. Appl Energy 228:254–264 Tang R, Li X, Lai J (2018) A novel optimal energy-management strategy for a maritime hybrid energy system based on large-scale global optimization. Appl Energy 228:254–264
51.
Zurück zum Zitat Van den Bergh F (2001) An analysis of particle swarm optimizers. PhD thesis, University of Pretoria Van den Bergh F (2001) An analysis of particle swarm optimizers. PhD thesis, University of Pretoria
52.
Zurück zum Zitat Van den Bergh F, Engelbrecht AP (2000) Cooperative learning in neural networks using particle swarm optimizers. S Afr Comput J 2000(26):84–90 Van den Bergh F, Engelbrecht AP (2000) Cooperative learning in neural networks using particle swarm optimizers. S Afr Comput J 2000(26):84–90
53.
Zurück zum Zitat Van den Bergh F, Engelbrecht AP (2004) A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput 8(3):225–239 Van den Bergh F, Engelbrecht AP (2004) A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput 8(3):225–239
57.
Zurück zum Zitat Volschenk A, Engelbrecht AP (2016) An analysis of competitive coevolutionary particle swarm optimizers to train neural network game tree evaluation functions. In: Tan Y, Shi Y, Niu B (eds) Advances in Swarm Intelligence. Springer, Cham, pp 369–380 Volschenk A, Engelbrecht AP (2016) An analysis of competitive coevolutionary particle swarm optimizers to train neural network game tree evaluation functions. In: Tan Y, Shi Y, Niu B (eds) Advances in Swarm Intelligence. Springer, Cham, pp 369–380
60.
Zurück zum Zitat Xu X, Tang Y, Li J, Hua C, Guan X (2015) Dynamic multi-swarm particle swarm optimizer with cooperative learning strategy. Appl Soft Comput 29:169–183 Xu X, Tang Y, Li J, Hua C, Guan X (2015) Dynamic multi-swarm particle swarm optimizer with cooperative learning strategy. Appl Soft Comput 29:169–183
Metadaten
Titel
Random Regrouping and Factorization in Cooperative Particle Swarm Optimization Based Large-Scale Neural Network Training
verfasst von
Cody Dennis
Beatrice M. Ombuki-Berman
Andries P. Engelbrecht
Publikationsdatum
13.09.2019
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 1/2020
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-019-10112-x

Weitere Artikel der Ausgabe 1/2020

Neural Processing Letters 1/2020 Zur Ausgabe

Neuer Inhalt