Skip to main content

2022 | OriginalPaper | Buchkapitel

5. Ranking of Dental Materials and Orthopedic Constructions by Their Tendency to Fracture

verfasst von : Prof. Valentyn Skalskyi, Prof. Zinoviy Nazarchuk, Prof. Dr. Olena Stankevych

Erschienen in: Acoustic Emission

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In modern orthopedic dentistry, three types of restorative materials are used: ceramics, metals, polymers. Metals which possess high strength and rigidity are used to ensure the ability of denture to bear significant mechanical loads. Instead, ceramics and polymers have become widespread. Combinations of different chemical materials are often practiced, as none of them alone can be considered the perfect. When choosing the appropriate material for orthopedic restorations, it is necessary to have complete information about its strength. The last one can change under the influence of various factors (defects of material in critical areas; state of the restoration surface; increased loads on the construction, etc.). For effective clinical use of certain materials, it is necessary not only to consider their mechanical properties, but also to know the dynamics of fracture processes. Such information can be obtained by using in mechanical tests the AE method with signal processing by WT. This chapter considers the mechanical characteristics and peculiarities of fracture of dental polymers, ceramics, and composites; the express technique of their ranking by the energy criterion of identification of the fracture types is constructed, and the peculiarities of fracture of the tooth-endocrown system under quasi-static compression are investigated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat O’Brien, W. J. (Ed.). (2008). Dental materials and their selection (4th ed.). Quintessence Publ Co Inc. O’Brien, W. J. (Ed.). (2008). Dental materials and their selection (4th ed.). Quintessence Publ Co Inc.
2.
Zurück zum Zitat Koumjian, J. H., & Nimmo, A. (1990). Evaluation of fracture resistance of resin used for provisional restorations. The Journal of Prosthetic Dentistry, 64, 654–657.CrossRef Koumjian, J. H., & Nimmo, A. (1990). Evaluation of fracture resistance of resin used for provisional restorations. The Journal of Prosthetic Dentistry, 64, 654–657.CrossRef
3.
Zurück zum Zitat Osman, Y. I., & Owen, C. P. (1993). Flexural strength of provisional restorative materials. The Journal of Prosthetic Dentistry, 70(1), 94–96.CrossRef Osman, Y. I., & Owen, C. P. (1993). Flexural strength of provisional restorative materials. The Journal of Prosthetic Dentistry, 70(1), 94–96.CrossRef
4.
Zurück zum Zitat Ireland, M. F., Dixon, D. L., Breeding, L. C., & Ramp, M. H. (1998). In vitro mechanical property comparison of four resins used for fabrication of provisional fixed restorations. The Journal of Prosthetic Dentistry, 80, 158–162.CrossRef Ireland, M. F., Dixon, D. L., Breeding, L. C., & Ramp, M. H. (1998). In vitro mechanical property comparison of four resins used for fabrication of provisional fixed restorations. The Journal of Prosthetic Dentistry, 80, 158–162.CrossRef
5.
Zurück zum Zitat Haselton, D. R., Diaz-Arnold, A. M., & Vargas, M. A. (2002). Flexural strength of provisional crown and fixed partial denture resins. The Journal of Prosthetic Dentistry, 87(2), 225–228.CrossRef Haselton, D. R., Diaz-Arnold, A. M., & Vargas, M. A. (2002). Flexural strength of provisional crown and fixed partial denture resins. The Journal of Prosthetic Dentistry, 87(2), 225–228.CrossRef
6.
Zurück zum Zitat Lang, R., Rosentritt, M., Behr, M., & Handel, H. (2003). Fracture resistance of PMMA and resin matrix composite-based interim FPD materials. The International Journal of Prosthodontics, 16(4), 381–384. Lang, R., Rosentritt, M., Behr, M., & Handel, H. (2003). Fracture resistance of PMMA and resin matrix composite-based interim FPD materials. The International Journal of Prosthodontics, 16(4), 381–384.
7.
Zurück zum Zitat Rosentritt, M., Behr, M., Lang, R., & Handel, H. (2004). Flexural properties of prosthetic provisional polymers. The European Journal of Prosthodontics Restorative Dentistry, 12(2), 75–79. Rosentritt, M., Behr, M., Lang, R., & Handel, H. (2004). Flexural properties of prosthetic provisional polymers. The European Journal of Prosthodontics Restorative Dentistry, 12(2), 75–79.
8.
Zurück zum Zitat Balkenhol, M., Mautner, M. C., Ferger, P., & Wöstmann B. (2008). Mechanical properties of provisional crown and bridge materials: chemical-curing versus dual-curing systems. Journal of Dentistry, 36(l), 15–20. Balkenhol, M., Mautner, M. C., Ferger, P., & Wöstmann B. (2008). Mechanical properties of provisional crown and bridge materials: chemical-curing versus dual-curing systems. Journal of Dentistry, 36(l), 15–20.
9.
Zurück zum Zitat Kim, S. H., & Watts, D. C. (2007). In vitro study of edge-strength of provisional polymer-based crown and fixed partial denture materials. Dental Materials, 23(12), 1570–1573.CrossRef Kim, S. H., & Watts, D. C. (2007). In vitro study of edge-strength of provisional polymer-based crown and fixed partial denture materials. Dental Materials, 23(12), 1570–1573.CrossRef
10.
Zurück zum Zitat Scherrer, S. S., Wiskott, A. H. W., Coto-Hunziker, V., & Belser, U. C. (2003). Monotonic flexure and fatigue strength of composites for provisional and definitive restorations. The Journal of Prosthetic Dentistry, 89(6), 579–588.CrossRef Scherrer, S. S., Wiskott, A. H. W., Coto-Hunziker, V., & Belser, U. C. (2003). Monotonic flexure and fatigue strength of composites for provisional and definitive restorations. The Journal of Prosthetic Dentistry, 89(6), 579–588.CrossRef
12.
Zurück zum Zitat Arutyunov, S. D., & Chumachenko, E. N. (2005). Analiz prochnostnykh kharakteristik konstrukcyonnoho materiala “Akrodent”, ispolzuyemoho v technologii provizornych protezov (Analysis of the strength characteristics of the structural material “Acrodent” used in the technology of provisional dentures). Panorama ortopedicheskoi stomatologii (Panoramic view of orthopedic dentistry), 4, 34–37. Arutyunov, S. D., & Chumachenko, E. N. (2005). Analiz prochnostnykh kharakteristik konstrukcyonnoho materiala “Akrodent”, ispolzuyemoho v technologii provizornych protezov (Analysis of the strength characteristics of the structural material “Acrodent” used in the technology of provisional dentures). Panorama ortopedicheskoi stomatologii (Panoramic view of orthopedic dentistry), 4, 34–37.
13.
Zurück zum Zitat Polonsky, R., Penkner, K., Wender, S., Haas, M, & Bratschko, R. O. (1998). Belastbarkeit moderner provisorienkunststoffe. Deutsche Zahnärztliche Zeitschrift, 53(11), 795–799. Polonsky, R., Penkner, K., Wender, S., Haas, M, & Bratschko, R. O. (1998). Belastbarkeit moderner provisorienkunststoffe. Deutsche Zahnärztliche Zeitschrift, 53(11), 795–799.
14.
Zurück zum Zitat Frankenberger, R., Pashley, D. H., Reich, S. M., Lohbauer, U., Petschelt, A., & Tay, F. R. (2005). Characterisation of resin-dentine interfaces by compressive cyclic loading. Biomaterials, 26(14), 2043–2052.CrossRef Frankenberger, R., Pashley, D. H., Reich, S. M., Lohbauer, U., Petschelt, A., & Tay, F. R. (2005). Characterisation of resin-dentine interfaces by compressive cyclic loading. Biomaterials, 26(14), 2043–2052.CrossRef
15.
Zurück zum Zitat Lohbauer, U., Von der Host, T., Frankenberger, R., Krämer, N., & Retschelt, A. (2003). Flexural fatigue behavior of resin composite dental restoratives. Dental Materials, 19(5), 435–440.CrossRef Lohbauer, U., Von der Host, T., Frankenberger, R., Krämer, N., & Retschelt, A. (2003). Flexural fatigue behavior of resin composite dental restoratives. Dental Materials, 19(5), 435–440.CrossRef
16.
Zurück zum Zitat Yap, A. U. J., Low, J. S., & Ong, L. F. (2000). Effect of food-simulating liquids on surface characteristics of composite and polyacid-modified composite restoratives. Operative Dentistry, 25(3), 170–176. Yap, A. U. J., Low, J. S., & Ong, L. F. (2000). Effect of food-simulating liquids on surface characteristics of composite and polyacid-modified composite restoratives. Operative Dentistry, 25(3), 170–176.
17.
Zurück zum Zitat Yap, A. U. J., Tan, D. T., Goh, B. K., Kuah, H. G., & Goh, M. (2000). Effect of food-simulating liquids on the flexural strength of composite and polyacid-modified composite restoratives. Operative Dentistry, 25(3), 202–208. Yap, A. U. J., Tan, D. T., Goh, B. K., Kuah, H. G., & Goh, M. (2000). Effect of food-simulating liquids on the flexural strength of composite and polyacid-modified composite restoratives. Operative Dentistry, 25(3), 202–208.
18.
Zurück zum Zitat Yap, A. U. J., Mah, M. K. S., Lye, C. P. W., & Loh, P. H. (2004). Influence of dietary simulating solvents on the hardness of provisional restorative materials. Dental Materials, 20(4), 370–376.CrossRef Yap, A. U. J., Mah, M. K. S., Lye, C. P. W., & Loh, P. H. (2004). Influence of dietary simulating solvents on the hardness of provisional restorative materials. Dental Materials, 20(4), 370–376.CrossRef
19.
Zurück zum Zitat Akova, T., Ozkomur, A., & Uysal, H. (2006). Effect of food-simulating liquids on the mechanical properties of provisional restorative materials. Dental Materials, 22(12), 1130–1134.CrossRef Akova, T., Ozkomur, A., & Uysal, H. (2006). Effect of food-simulating liquids on the mechanical properties of provisional restorative materials. Dental Materials, 22(12), 1130–1134.CrossRef
20.
Zurück zum Zitat Korkmaz, T., Dogan, A., & Usanmaz, A. (2005). Dynamic mechanical analysis of provisional resin materials reinforced by metal oxides. Bio-Medical Materials and Engineering, 15(3), 179–188. Korkmaz, T., Dogan, A., & Usanmaz, A. (2005). Dynamic mechanical analysis of provisional resin materials reinforced by metal oxides. Bio-Medical Materials and Engineering, 15(3), 179–188.
21.
Zurück zum Zitat Saygili, G., Sahmali, S. M., & Demirel, F. (2003). The effect of placement of glass fibers and aramid fibers on the fracture resistance of provisional restorative materials. Operative Dentistry, 28(1), 80–85. Saygili, G., Sahmali, S. M., & Demirel, F. (2003). The effect of placement of glass fibers and aramid fibers on the fracture resistance of provisional restorative materials. Operative Dentistry, 28(1), 80–85.
22.
Zurück zum Zitat Kim, S. H., & Watts, D. C. (2004). Effect of glass-fiber reinforcement and water storage on fracture toughness (KIC) of polymer-based provisional crown and FPD materials. The International Journal of Prosthodontics, 17(3), 18–22. Kim, S. H., & Watts, D. C. (2004). Effect of glass-fiber reinforcement and water storage on fracture toughness (KIC) of polymer-based provisional crown and FPD materials. The International Journal of Prosthodontics, 17(3), 18–22.
23.
Zurück zum Zitat Eisenburger, M., Riechers, J., Borchers, L., & Stiesch-Schtolz, M. (2008). Load-bearing capacity of direct four unit provisional composite bridges with fibre reinforcement. Journal of Oral Rehabilitation, 35(5), 375–381.CrossRef Eisenburger, M., Riechers, J., Borchers, L., & Stiesch-Schtolz, M. (2008). Load-bearing capacity of direct four unit provisional composite bridges with fibre reinforcement. Journal of Oral Rehabilitation, 35(5), 375–381.CrossRef
24.
Zurück zum Zitat Garoushi, S. K., Vallittu, P. K., & Lassila, L. V. (2008). Short glass fiber-reinforced composite with a semi-interpenetrating polymer network matrix for temporary crowns and bridges. The Journal of Contemporary Dental Practice, 9(1), 14–21.CrossRef Garoushi, S. K., Vallittu, P. K., & Lassila, L. V. (2008). Short glass fiber-reinforced composite with a semi-interpenetrating polymer network matrix for temporary crowns and bridges. The Journal of Contemporary Dental Practice, 9(1), 14–21.CrossRef
25.
Zurück zum Zitat Merten, H. A., & Wiltfang, J. (1998). Technical improvements with wire ligatures-a clinical comparison between different paste/paste systems. Die Quintessenz, 49(4), 351–357. Merten, H. A., & Wiltfang, J. (1998). Technical improvements with wire ligatures-a clinical comparison between different paste/paste systems. Die Quintessenz, 49(4), 351–357.
26.
Zurück zum Zitat Balkenhol, M., Köhler, H., Orbach, K., & Wöstmann, B. (2009). Fracture toughness of cross-linked and non-cross-linked temporary crown and fixed partial denture materials. Dental Materials, 25(7), 917–928.CrossRef Balkenhol, M., Köhler, H., Orbach, K., & Wöstmann, B. (2009). Fracture toughness of cross-linked and non-cross-linked temporary crown and fixed partial denture materials. Dental Materials, 25(7), 917–928.CrossRef
28.
Zurück zum Zitat Fan, J., Tsui, C. P., Tang, C. J., & Chow, C. L. (2006). 3D finite element analysis of the damage effects on the dental composite subject to water sorption. Acta Mechanica Solida Sinica, 19(3), 212–222.CrossRef Fan, J., Tsui, C. P., Tang, C. J., & Chow, C. L. (2006). 3D finite element analysis of the damage effects on the dental composite subject to water sorption. Acta Mechanica Solida Sinica, 19(3), 212–222.CrossRef
29.
Zurück zum Zitat Bastioli, C., Romano, G., & Migliaresi, C. (1990). Water sorption and mechanical properties of dental composites. Biomaterials, 11(3), 219–223.CrossRef Bastioli, C., Romano, G., & Migliaresi, C. (1990). Water sorption and mechanical properties of dental composites. Biomaterials, 11(3), 219–223.CrossRef
30.
Zurück zum Zitat Carfagna, C., Guerra, G., & Nicolais, L. (1983). Effects of postcuring and water sorption on the mechanical properties of composite dental restorative materials. Biomaterials, 4(3), 228–229.CrossRef Carfagna, C., Guerra, G., & Nicolais, L. (1983). Effects of postcuring and water sorption on the mechanical properties of composite dental restorative materials. Biomaterials, 4(3), 228–229.CrossRef
31.
Zurück zum Zitat Rakhshan, V. (2015). Marginal integrity of provisional resin restoration materials: A review of the literature. The Saudi Journal for Dental Research, 6(1), 33–40.CrossRef Rakhshan, V. (2015). Marginal integrity of provisional resin restoration materials: A review of the literature. The Saudi Journal for Dental Research, 6(1), 33–40.CrossRef
32.
Zurück zum Zitat Bindl, A., & Mörmann, W. H. (1999). Clinical evaluation of adhesively placed Cerec endo-crowns after 2 years—Preliminary results. The Journal of Adhesive Dentistry, 1(3), 255–265. Bindl, A., & Mörmann, W. H. (1999). Clinical evaluation of adhesively placed Cerec endo-crowns after 2 years—Preliminary results. The Journal of Adhesive Dentistry, 1(3), 255–265.
33.
Zurück zum Zitat Biacchi, G. R., & Basting, R. T. (2012). Comparison of fracture strength of endocrowns and glass fiber post-retained conventional crowns. Operative Dentistry, 37(2), 130–136.CrossRef Biacchi, G. R., & Basting, R. T. (2012). Comparison of fracture strength of endocrowns and glass fiber post-retained conventional crowns. Operative Dentistry, 37(2), 130–136.CrossRef
34.
Zurück zum Zitat Rocca, G. T., Sedlakova, P., Saratti, C. M., Sedlacek, R., Gregor, L., Rizcalla, N., & Feilzer, A. J. (2016). Fatigue behavior of resin-modified monolithic CAD-CAM RNC crowns and endocrowns. Dental Materials, 32(12), e338–e350.CrossRef Rocca, G. T., Sedlakova, P., Saratti, C. M., Sedlacek, R., Gregor, L., Rizcalla, N., & Feilzer, A. J. (2016). Fatigue behavior of resin-modified monolithic CAD-CAM RNC crowns and endocrowns. Dental Materials, 32(12), e338–e350.CrossRef
35.
Zurück zum Zitat Güngör, M. B., Bal, B. T., Yilmaz, H., Aydin, C., & Nemli, S. K. (2017). Fracture strength of CAD/CAM fabricated lithium disilicate and resin nano ceramic restorations used for endodontically treated teeth. Dental Materials, 36(2), 135–141.CrossRef Güngör, M. B., Bal, B. T., Yilmaz, H., Aydin, C., & Nemli, S. K. (2017). Fracture strength of CAD/CAM fabricated lithium disilicate and resin nano ceramic restorations used for endodontically treated teeth. Dental Materials, 36(2), 135–141.CrossRef
36.
Zurück zum Zitat Bindl, A., Lüthy, H., & Mörnmann, W. H. (2006). Strength and fracture pattern of monolithic CAD/CAM-generated posterior crowns. Dental Materials, 22(1), 29–36.CrossRef Bindl, A., Lüthy, H., & Mörnmann, W. H. (2006). Strength and fracture pattern of monolithic CAD/CAM-generated posterior crowns. Dental Materials, 22(1), 29–36.CrossRef
37.
Zurück zum Zitat El-Damanhoury, H. M., Haj-Ali, R. N., & Platt, J. A. (2014). Fracture resistance and microleakage of endocrowns utilizing three CAD-CAM blocks. Operative Dentistry, 40(2), 201–210.CrossRef El-Damanhoury, H. M., Haj-Ali, R. N., & Platt, J. A. (2014). Fracture resistance and microleakage of endocrowns utilizing three CAD-CAM blocks. Operative Dentistry, 40(2), 201–210.CrossRef
38.
Zurück zum Zitat Lise, D. P., Ende, A. V., De Munk, Y., Suzuki, T. Y. U., Viera, L. C. C., & Meerbeek, B. V. (2017). Biomechanical behavior of endodontically treated premolars using differrent preparation designs and CAD/CAM materials. Journal of Dentistry, 59, 54–61.CrossRef Lise, D. P., Ende, A. V., De Munk, Y., Suzuki, T. Y. U., Viera, L. C. C., & Meerbeek, B. V. (2017). Biomechanical behavior of endodontically treated premolars using differrent preparation designs and CAD/CAM materials. Journal of Dentistry, 59, 54–61.CrossRef
39.
Zurück zum Zitat Gresnigt, M. M., Özcan, M., van den Houten, M. L. A., Schipper, L., & Cune, M. S. (2016). Fracture strength, failure type and Weibull characteristics of lithium disilicate and multiphase resin composite endocrowns under axial and lateral forces. Dental Materials, 32(5), 607–614.CrossRef Gresnigt, M. M., Özcan, M., van den Houten, M. L. A., Schipper, L., & Cune, M. S. (2016). Fracture strength, failure type and Weibull characteristics of lithium disilicate and multiphase resin composite endocrowns under axial and lateral forces. Dental Materials, 32(5), 607–614.CrossRef
41.
Zurück zum Zitat Dejak, B., & Młotkowski, A. (2013). 3D-Finite element analysis of molars restored with endocrowns and posts during masticatory simulation. Dental Materials, 29, 309–317.CrossRef Dejak, B., & Młotkowski, A. (2013). 3D-Finite element analysis of molars restored with endocrowns and posts during masticatory simulation. Dental Materials, 29, 309–317.CrossRef
42.
Zurück zum Zitat Zhu, J., Rong, Q., Wang, X., & Gao, X. (2017). Influence of remaining tooth structure and restorative material type on stress distribution in endodontically treated maxillary premolars: A finite element analysis. Journal of Prosthetic Dentistry, 117(5), 646–655.CrossRef Zhu, J., Rong, Q., Wang, X., & Gao, X. (2017). Influence of remaining tooth structure and restorative material type on stress distribution in endodontically treated maxillary premolars: A finite element analysis. Journal of Prosthetic Dentistry, 117(5), 646–655.CrossRef
43.
Zurück zum Zitat Hasan, I., Frentzen, M., Utz, T.-H., Hoyer, D., Langenbach, A., & Bourauel, C. (2012). Finite element analysis of adhesive endocrowns of molars at different height levels of buccally applied load. Journal of Dental Biomechanics, 3, 1–11. Hasan, I., Frentzen, M., Utz, T.-H., Hoyer, D., Langenbach, A., & Bourauel, C. (2012). Finite element analysis of adhesive endocrowns of molars at different height levels of buccally applied load. Journal of Dental Biomechanics, 3, 1–11.
44.
Zurück zum Zitat Chen, B., Ma, Y., Wu, K., Chen. H., Li. L., Liu, J., & Chen, Z. (2015). Influence of various materials on biomechanical behavior of endocrown-restored, endodontically treated mandibular first molar: A 3D-finite element analysis. Journal of WuHan University Technology. Materials Science Edition, 30(3), 643–648. Chen, B., Ma, Y., Wu, K., Chen. H., Li. L., Liu, J., & Chen, Z. (2015). Influence of various materials on biomechanical behavior of endocrown-restored, endodontically treated mandibular first molar: A 3D-finite element analysis. Journal of WuHan University Technology. Materials Science Edition, 30(3), 643–648.
45.
Zurück zum Zitat Lin, C.-L., Chang, Y.-H., & Pai, C.-A. (2011). Evaluation of failure risks in ceramic restorations for endodontically treated premolar with MOD preparation. Dental Materials, 27, 431–438.CrossRef Lin, C.-L., Chang, Y.-H., & Pai, C.-A. (2011). Evaluation of failure risks in ceramic restorations for endodontically treated premolar with MOD preparation. Dental Materials, 27, 431–438.CrossRef
46.
Zurück zum Zitat Lin, C.-L., Kuo, W.-C., Yu, J.-J., & Huang, S. F. (2013). Examination of ceramic restorative material interfacial debonding using acoustic emission and optical coherence tomography. Dental Materials, 29, 382–388.CrossRef Lin, C.-L., Kuo, W.-C., Yu, J.-J., & Huang, S. F. (2013). Examination of ceramic restorative material interfacial debonding using acoustic emission and optical coherence tomography. Dental Materials, 29, 382–388.CrossRef
47.
Zurück zum Zitat Li, H., Li, Y., Yun, X., & Fok, A. S. L. (2010). Acoustic emission measurement of micro-debonding in composite restorations during polymerization. Dental Materials, 26(2), 131.CrossRef Li, H., Li, Y., Yun, X., & Fok, A. S. L. (2010). Acoustic emission measurement of micro-debonding in composite restorations during polymerization. Dental Materials, 26(2), 131.CrossRef
48.
Zurück zum Zitat Li, H., Li, J., Yun, X., Liu, X., & Fok, A. S. L. (2011). Non-destructive examination of interfacial debonding using acoustic emission. Dental Materials, 27(10), 964–971.CrossRef Li, H., Li, J., Yun, X., Liu, X., & Fok, A. S. L. (2011). Non-destructive examination of interfacial debonding using acoustic emission. Dental Materials, 27(10), 964–971.CrossRef
49.
Zurück zum Zitat Liu, X., Li, H., Li, J., Lu, R., & Fok, A. S. L. (2011). An acoustic emission study on interfacial debonding in composite restorations. Dental Materials, 27(9), 934–941.CrossRef Liu, X., Li, H., Li, J., Lu, R., & Fok, A. S. L. (2011). An acoustic emission study on interfacial debonding in composite restorations. Dental Materials, 27(9), 934–941.CrossRef
50.
Zurück zum Zitat Yang, B., Gou, J., Huang, Q., Heo, Y., Fok, A., & Wang, Y. (2016). Acoustic properties of interfacial debonding and their relationship with shrinkage stress in Class-I restorations. Dental Materials, 32, 742–748.CrossRef Yang, B., Gou, J., Huang, Q., Heo, Y., Fok, A., & Wang, Y. (2016). Acoustic properties of interfacial debonding and their relationship with shrinkage stress in Class-I restorations. Dental Materials, 32, 742–748.CrossRef
51.
Zurück zum Zitat Lee, S.-Y., Lin, C.-T., Keh, E.-S., Pan, L.-C., Huang, H.-M., Shih, Y.-H., & Cheng, H.-C. (2000). Laser-induced acoustic emission in experimental dental composites. Biomaterials, 21(13), 1399–1408.CrossRef Lee, S.-Y., Lin, C.-T., Keh, E.-S., Pan, L.-C., Huang, H.-M., Shih, Y.-H., & Cheng, H.-C. (2000). Laser-induced acoustic emission in experimental dental composites. Biomaterials, 21(13), 1399–1408.CrossRef
52.
Zurück zum Zitat Vallittu, P. K. (2002). Use of woven glass fiber to reinforce a composite veneer. A fracture resistance and acoustic emission study. Journal of Oral Rehabilitation, 29(5), 423–429. Vallittu, P. K. (2002). Use of woven glass fiber to reinforce a composite veneer. A fracture resistance and acoustic emission study. Journal of Oral Rehabilitation, 29(5), 423–429.
53.
Zurück zum Zitat Choi, N.-S., Gu, J.-U., & Arakawa, K. (2011). Acoustic emission characterization of the marginal disintegration of dental composite restoration. Composites Part A Applied Science Manufacturing, 42(6), 604–611.CrossRef Choi, N.-S., Gu, J.-U., & Arakawa, K. (2011). Acoustic emission characterization of the marginal disintegration of dental composite restoration. Composites Part A Applied Science Manufacturing, 42(6), 604–611.CrossRef
54.
Zurück zum Zitat Kim, K.-H., Park, J.-H., Imai, Y., & Kishi, T. (1991). Fracture toughness and acoustic emission behavior of dental composite resins. Engineering Fracture Mechanics, 40(415), 811–819.CrossRef Kim, K.-H., Park, J.-H., Imai, Y., & Kishi, T. (1991). Fracture toughness and acoustic emission behavior of dental composite resins. Engineering Fracture Mechanics, 40(415), 811–819.CrossRef
55.
Zurück zum Zitat Mirsayar, M. M. (2018). On fracture analysis of dental restorative materials under combined tensile-shear loading. Theoretical and Applied Fracture Mechanics, 93, 170–176.CrossRef Mirsayar, M. M. (2018). On fracture analysis of dental restorative materials under combined tensile-shear loading. Theoretical and Applied Fracture Mechanics, 93, 170–176.CrossRef
56.
Zurück zum Zitat Yi, Y.-J., & Kelly, J. R. (2011). Failure responses of dental porcelain having three surface treatments under three stressing conditions. Dental Materials, 27, 1252–1258.CrossRef Yi, Y.-J., & Kelly, J. R. (2011). Failure responses of dental porcelain having three surface treatments under three stressing conditions. Dental Materials, 27, 1252–1258.CrossRef
57.
Zurück zum Zitat Ortega, V. I., Kaplan, A., Gomez, M. P., & Pumarega, M. I. L. (2015). Characterization of metal/ceramic interfaces in dental materials by acoustic emission. Procedia Material Science, 8, 683–692.CrossRef Ortega, V. I., Kaplan, A., Gomez, M. P., & Pumarega, M. I. L. (2015). Characterization of metal/ceramic interfaces in dental materials by acoustic emission. Procedia Material Science, 8, 683–692.CrossRef
58.
Zurück zum Zitat Ortega, V. I., Pumarega, M. I. L., Gomez, M. P., Kaplan, A., & Docimo, L. (2015). Adhesion study in metal-ceramic systems of dental restoration by acoustic emission. Procedia Material Science, 9, 477–483.CrossRef Ortega, V. I., Pumarega, M. I. L., Gomez, M. P., Kaplan, A., & Docimo, L. (2015). Adhesion study in metal-ceramic systems of dental restoration by acoustic emission. Procedia Material Science, 9, 477–483.CrossRef
59.
Zurück zum Zitat Skal’s’kyi, V. R., Makeev, V. F., Stankevych, O. M., Kyrmanov, O. S., & Vynnyts’ka, S. I. (2015). Alternation of the types of fracture for dental polymers in different stages of crack propagation. Materials Science, 50(6), 836–843. Skal’s’kyi, V. R., Makeev, V. F., Stankevych, O. M., Kyrmanov, O. S., & Vynnyts’ka, S. I. (2015). Alternation of the types of fracture for dental polymers in different stages of crack propagation. Materials Science, 50(6), 836–843.
60.
Zurück zum Zitat Skal’s’kii, V. R., Makeev, V. F., Stankevich, O. M., Kyrmanov, O. S., Vynnyts’ka, S. I., & Opanasovich, V. K. (2015). Strength evaluation of stomatologic polymers by wavelet transform of acoustic emission signals. Strength of Materials, 47(4), 566–572. Skal’s’kii, V. R., Makeev, V. F., Stankevich, O. M., Kyrmanov, O. S., Vynnyts’ka, S. I., & Opanasovich, V. K. (2015). Strength evaluation of stomatologic polymers by wavelet transform of acoustic emission signals. Strength of Materials, 47(4), 566–572.
62.
Zurück zum Zitat Pestrikov, V. M., & Morozov, E. M. (2002). Mechanika razrusheniya tverdykh tel (Fracture Mechanics of Solids). Professiya, St. Petersburg Pestrikov, V. M., & Morozov, E. M. (2002). Mechanika razrusheniya tverdykh tel (Fracture Mechanics of Solids). Professiya, St. Petersburg
63.
Zurück zum Zitat Balkenhol, M., Ferger, P., Mautner, M. C., & Wöstmann, B. (2007). Provisional crown and fixed partial denture materials: Mechanical properties and degree of conversion. Dental Materials, 23, 1574–1583.CrossRef Balkenhol, M., Ferger, P., Mautner, M. C., & Wöstmann, B. (2007). Provisional crown and fixed partial denture materials: Mechanical properties and degree of conversion. Dental Materials, 23, 1574–1583.CrossRef
64.
Zurück zum Zitat Kerby, E. R., Knobloch, L. A., Sharples, S., & Peregrina, A. (2013). Mechanical properties of urethane and bis-acryl interim resin materials. Journal of Prosthetic Dentistry, 110(1), 21–28.CrossRef Kerby, E. R., Knobloch, L. A., Sharples, S., & Peregrina, A. (2013). Mechanical properties of urethane and bis-acryl interim resin materials. Journal of Prosthetic Dentistry, 110(1), 21–28.CrossRef
65.
Zurück zum Zitat Balkenhol, M., Meyer, M., Michel, K., Ferger, P., & Wöstmann, B. (2008). Effect of surface condition and storage time on the repairability of temporary crown and fixed partial denture materials. Journal of Dentistry, 36(11), 861–872.CrossRef Balkenhol, M., Meyer, M., Michel, K., Ferger, P., & Wöstmann, B. (2008). Effect of surface condition and storage time on the repairability of temporary crown and fixed partial denture materials. Journal of Dentistry, 36(11), 861–872.CrossRef
67.
Zurück zum Zitat Stankevych, O., & Skalsky, V. (2016). Investigation and identification of fracture types of structural materials by means of acoustic emission analysis. Engineering Fracture Mechanics, 164, 24–34.CrossRef Stankevych, O., & Skalsky, V. (2016). Investigation and identification of fracture types of structural materials by means of acoustic emission analysis. Engineering Fracture Mechanics, 164, 24–34.CrossRef
68.
Zurück zum Zitat Nazarchuk, Z., Skalskyi, V., & Serhiyenko, O. (2017). Acoustic emission. Springer International Publishing AG.CrossRef Nazarchuk, Z., Skalskyi, V., & Serhiyenko, O. (2017). Acoustic emission. Springer International Publishing AG.CrossRef
69.
Zurück zum Zitat Stankevych, O., & Skalsky, V. (2017). The vibration of a half-space due to a buried mode I crack opening. Wave Motion, 72, 142–153.CrossRef Stankevych, O., & Skalsky, V. (2017). The vibration of a half-space due to a buried mode I crack opening. Wave Motion, 72, 142–153.CrossRef
70.
Zurück zum Zitat Skalskyi, V., Makeev, V., Stankevych, O., & Pavlychko, R. (2018). Features of fracture of prosthetic tooth-endocrown constructions by means of acoustic emission analysis. Dental Materials, 34(3), e46–e55.CrossRef Skalskyi, V., Makeev, V., Stankevych, O., & Pavlychko, R. (2018). Features of fracture of prosthetic tooth-endocrown constructions by means of acoustic emission analysis. Dental Materials, 34(3), e46–e55.CrossRef
71.
Zurück zum Zitat Ereifej, N., Silikas, N., & Watts, D. C. (2008). Initial versus final fracture of metal-free crowns, analyzed via acoustic emission. Dental Materials, 24, 1289–1295.CrossRef Ereifej, N., Silikas, N., & Watts, D. C. (2008). Initial versus final fracture of metal-free crowns, analyzed via acoustic emission. Dental Materials, 24, 1289–1295.CrossRef
72.
Zurück zum Zitat Liu, X., Fok, A., & Li, H. (2014). Influence of restorative material and proximal cavity design on the fracture resistance of MOD inlay restoration. Dental Materials, 30, 327–333.CrossRef Liu, X., Fok, A., & Li, H. (2014). Influence of restorative material and proximal cavity design on the fracture resistance of MOD inlay restoration. Dental Materials, 30, 327–333.CrossRef
73.
Zurück zum Zitat Wang, Y., & Darvell, B. W. (2007). Failure mode of dental restorative materials under Hertzian indentation. Dental Materials, 23, 1236–1244.CrossRef Wang, Y., & Darvell, B. W. (2007). Failure mode of dental restorative materials under Hertzian indentation. Dental Materials, 23, 1236–1244.CrossRef
74.
Zurück zum Zitat Andreykiv, O. Y., Lysak, M. V., Serhiyenko, O. M., & Skalsky, V. R. (2001). Analysis of acoustic emission caused by internal crack. Engineering Fracture Mechanics, 68(11), 1317–1333.CrossRef Andreykiv, O. Y., Lysak, M. V., Serhiyenko, O. M., & Skalsky, V. R. (2001). Analysis of acoustic emission caused by internal crack. Engineering Fracture Mechanics, 68(11), 1317–1333.CrossRef
Metadaten
Titel
Ranking of Dental Materials and Orthopedic Constructions by Their Tendency to Fracture
verfasst von
Prof. Valentyn Skalskyi
Prof. Zinoviy Nazarchuk
Prof. Dr. Olena Stankevych
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-031-11291-1_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.