Skip to main content
Erschienen in: Intelligent Service Robotics 4/2019

20.09.2019 | Original Research Paper

Rapid coverage of regions of interest for environmental monitoring

verfasst von: Nantawat Pinkam, Abdullah Al Redwan Newaz, Sungmoon Jeong, Nak Young Chong

Erschienen in: Intelligent Service Robotics | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a framework for rapidly determining regions of interest (ROIs) from an unknown intensity distribution, particularly in radiation fields. The vast majority of studies on area coverage path planning for mobile robots do not investigate the identification of ROIs. In a radiation field, the use of ROIs can limit the required range of exploration and mitigate the monitoring problem. However, considering that an unmanned aerial vehicle (UAV) has limited resources as a mobile measurement system, it is challenging to determine ROIs in unknown radiation fields. Given a target area, we attempt to plan a path that facilitates the localization of ROIs with a single UAV while minimizing the exploration cost. To reduce the complexity of a large-scale environment exploration, entire areas are initially adaptively decomposed using two hierarchical methods based on recursive quadratic subdivision and Voronoi-based subdivision. Once an informative decomposed subarea is selected by maximizing a utility function, the robot heuristically reaches contaminated areas, and a boundary estimation algorithm is adopted to estimate the environmental boundaries. The properties of this boundary estimation algorithm are theoretically analyzed in this paper. Finally, the detailed boundaries of the ROIs of the target area are approximated by ellipses, and a set of procedures are iterated to sequentially cover all areas. The simulation results demonstrate that our framework allows a single UAV to efficiently explore a given target area and maximize the localization rate for ROIs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Acar EU, Choset H, Lee JY (2006) Sensor-based coverage with extended range detectors. IEEE Trans Robot 22:189–198CrossRef Acar EU, Choset H, Lee JY (2006) Sensor-based coverage with extended range detectors. IEEE Trans Robot 22:189–198CrossRef
2.
Zurück zum Zitat Acar EU, Choset H, Zhang Y, Schervish M (2003) Path planning for robotic demining: robust sensor-based coverage of unstructured environments and probabilistic methods. Int J Robot Res 22:441–466CrossRef Acar EU, Choset H, Zhang Y, Schervish M (2003) Path planning for robotic demining: robust sensor-based coverage of unstructured environments and probabilistic methods. Int J Robot Res 22:441–466CrossRef
3.
Zurück zum Zitat Andersson SB (2007) Curve tracking for rapid imaging in AFM. IEEE Trans Nanobiosci 6:354–361CrossRef Andersson SB (2007) Curve tracking for rapid imaging in AFM. IEEE Trans Nanobiosci 6:354–361CrossRef
4.
Zurück zum Zitat Arslan O, Koditschek DE (2016) Voronoi-based coverage control of heterogeneous disk-shaped robots. In: IEEE international conference on robotics and automation, pp 4259–4266 Arslan O, Koditschek DE (2016) Voronoi-based coverage control of heterogeneous disk-shaped robots. In: IEEE international conference on robotics and automation, pp 4259–4266
5.
Zurück zum Zitat Barat C, Rendas MJ (2003) Benthic boundary tracking using a profiler sonar. In: Iros 2003: proceedings of the 2003 Ieee/Rsj international conference on intelligent robots and systems, vol. 1–4, pp 830–835 Barat C, Rendas MJ (2003) Benthic boundary tracking using a profiler sonar. In: Iros 2003: proceedings of the 2003 Ieee/Rsj international conference on intelligent robots and systems, vol. 1–4, pp 830–835
6.
Zurück zum Zitat Burgard W, Moors M, Stachniss C, Schneider FE (2005) Coordinated multi-robot exploration. IEEE Trans Robot 21(3):376–386 Burgard W, Moors M, Stachniss C, Schneider FE (2005) Coordinated multi-robot exploration. IEEE Trans Robot 21(3):376–386
7.
Zurück zum Zitat Choset H (2001) Coverage for robotics–a survey of recent results. Ann Math Artif Intell 31:113–126CrossRef Choset H (2001) Coverage for robotics–a survey of recent results. Ann Math Artif Intell 31:113–126CrossRef
8.
Zurück zum Zitat Cortes J, Martinez S, Karatas T, Bullo F (2004) Coverage control for mobile sensing networks. IEEE Trans Robot Autom 20:243–255CrossRef Cortes J, Martinez S, Karatas T, Bullo F (2004) Coverage control for mobile sensing networks. IEEE Trans Robot Autom 20:243–255CrossRef
9.
Zurück zum Zitat Dames P, Kumar V (2015) Autonomous localization of an unknown number of targets without data association using teams of mobile sensors. IEEE Trans Autom Sci Eng 12:850–864CrossRef Dames P, Kumar V (2015) Autonomous localization of an unknown number of targets without data association using teams of mobile sensors. IEEE Trans Autom Sci Eng 12:850–864CrossRef
11.
Zurück zum Zitat Gabriely Y, Rimon E (2001) Spanning-tree based coverage of continuous areas by a mobile robot. Ann Math Artif Intell 31(1):77–98CrossRef Gabriely Y, Rimon E (2001) Spanning-tree based coverage of continuous areas by a mobile robot. Ann Math Artif Intell 31(1):77–98CrossRef
12.
Zurück zum Zitat Galceran E, Carreras M (2013) A survey on coverage path planning for robotics. Robot Auton Syst 61:1258–1276CrossRef Galceran E, Carreras M (2013) A survey on coverage path planning for robotics. Robot Auton Syst 61:1258–1276CrossRef
13.
Zurück zum Zitat Garcia E, de Santos PG (2004) Mobile-robot navigation with complete coverage of unstructured environments. Robot Auton Syst 46(4):195–204CrossRef Garcia E, de Santos PG (2004) Mobile-robot navigation with complete coverage of unstructured environments. Robot Auton Syst 46(4):195–204CrossRef
14.
Zurück zum Zitat Guillen-Climent ML, Zarco-Tejada PJ, Berni JAJ, North PRJ, Villalobos FJ (2012) Mapping radiation interception in row-structured orchards using 3d simulation and high-resolution airborne imagery acquired from a uav. Precis Agric 13:473–500CrossRef Guillen-Climent ML, Zarco-Tejada PJ, Berni JAJ, North PRJ, Villalobos FJ (2012) Mapping radiation interception in row-structured orchards using 3d simulation and high-resolution airborne imagery acquired from a uav. Precis Agric 13:473–500CrossRef
15.
Zurück zum Zitat Guruprasad KR, Ghose D (2011) Automated multi-agent search using centroidal voronoi configuration. IEEE Trans Autom Sci Eng 8:420–423CrossRef Guruprasad KR, Ghose D (2011) Automated multi-agent search using centroidal voronoi configuration. IEEE Trans Autom Sci Eng 8:420–423CrossRef
16.
Zurück zum Zitat Guruprasad KR, Ranjitha TD (2015) ST-CTC: A spanning tree-based competitive and truly complete coverage algorithm for mobile robots. In: Proceedings of the 2015 conference on advances in robotics, AIR ’15, pp 43:1–43:6. ACM, New York, NY, USA Guruprasad KR, Ranjitha TD (2015) ST-CTC: A spanning tree-based competitive and truly complete coverage algorithm for mobile robots. In: Proceedings of the 2015 conference on advances in robotics, AIR ’15, pp 43:1–43:6. ACM, New York, NY, USA
17.
Zurück zum Zitat Han J, Xu Y, Di L, Chen Y (2013) Low-cost multi-UAV technologies for contour mapping of nuclear radiation field. J Intell Robot Syst 70:401–410CrossRef Han J, Xu Y, Di L, Chen Y (2013) Low-cost multi-UAV technologies for contour mapping of nuclear radiation field. J Intell Robot Syst 70:401–410CrossRef
18.
Zurück zum Zitat Horváth E, Pozna C, Precup RE (2018) Robot coverage path planning based on iterative structured orientation. Acta Polytechnica Hungarica 15:231–249 Horváth E, Pozna C, Precup RE (2018) Robot coverage path planning based on iterative structured orientation. Acta Polytechnica Hungarica 15:231–249
19.
Zurück zum Zitat Kim YH, Shell DA (2014) Distributed robotic sampling of non-homogeneous spatio-temporal fields via recursive geometric sub-division. In: Proceedings—IEEE international conference on robotics and automation, pp 557–562 Kim YH, Shell DA (2014) Distributed robotic sampling of non-homogeneous spatio-temporal fields via recursive geometric sub-division. In: Proceedings—IEEE international conference on robotics and automation, pp 557–562
20.
Zurück zum Zitat Lahijanian M, Maly MR, Fried D, Kavraki LE, Kress-gazit H, Member S, Vardi MY (2016) Environments with partial satisfaction guarantees. IEEE Trans Robot 32(3):583–599CrossRef Lahijanian M, Maly MR, Fried D, Kavraki LE, Kress-gazit H, Member S, Vardi MY (2016) Environments with partial satisfaction guarantees. IEEE Trans Robot 32(3):583–599CrossRef
21.
Zurück zum Zitat Lavalle SM (1998) Rapidly–exploring random trees: a new tool for path planning. Tech. rep. Lavalle SM (1998) Rapidly–exploring random trees: a new tool for path planning. Tech. rep.
22.
Zurück zum Zitat Lee SK, Fekete SP, McLurkin J (2016) Structured triangulation in multi-robot systems: coverage, patrolling, voronoi partitions, and geodesic centers. Int J Robot Res 35:1234–1260CrossRef Lee SK, Fekete SP, McLurkin J (2016) Structured triangulation in multi-robot systems: coverage, patrolling, voronoi partitions, and geodesic centers. Int J Robot Res 35:1234–1260CrossRef
23.
Zurück zum Zitat Lin L, Goodrich MA (2014) Hierarchical heuristic search using a Gaussian mixture model for UAV coverage planning. IEEE Trans Cybern 44:2532–2544CrossRef Lin L, Goodrich MA (2014) Hierarchical heuristic search using a Gaussian mixture model for UAV coverage planning. IEEE Trans Cybern 44:2532–2544CrossRef
24.
Zurück zum Zitat Little JD, Murty KG, Sweeney DW, Karel C (1963) An algorithm for the traveling salesman problem. Oper Res 11:972–989CrossRef Little JD, Murty KG, Sweeney DW, Karel C (1963) An algorithm for the traveling salesman problem. Oper Res 11:972–989CrossRef
25.
Zurück zum Zitat Marthaler D, Bertozzi AL (2004) Tracking environmental level sets with autonomous vehicles. Springer, Berlin, pp 317–332 Marthaler D, Bertozzi AL (2004) Tracking environmental level sets with autonomous vehicles. Springer, Berlin, pp 317–332
26.
Zurück zum Zitat Matveev AS, Hoy MC, Ovchinnikov K, Anisimov A, Savkin AV (2015) Robot navigation for monitoring unsteady environmental boundaries without field gradient estimation. Automatica 62:227–235MathSciNetCrossRef Matveev AS, Hoy MC, Ovchinnikov K, Anisimov A, Savkin AV (2015) Robot navigation for monitoring unsteady environmental boundaries without field gradient estimation. Automatica 62:227–235MathSciNetCrossRef
27.
Zurück zum Zitat Mitchell D, Chakraborty N, Sycara K, Michael N (2015) Multi-robot persistent coverage with stochastic task costs. In: IEEE international conference on intelligent robots and systems, pp 3401–3406 Mitchell D, Chakraborty N, Sycara K, Michael N (2015) Multi-robot persistent coverage with stochastic task costs. In: IEEE international conference on intelligent robots and systems, pp 3401–3406
28.
Zurück zum Zitat Mitchell D, Corah M, Chakraborty N, Sycara K, Michael N (2015) Multi-robot long-term persistent coverage with fuel constrained robots. In: 2015 IEEE international conference on robotics and automation (ICRA), pp. 1093–1099 Mitchell D, Corah M, Chakraborty N, Sycara K, Michael N (2015) Multi-robot long-term persistent coverage with fuel constrained robots. In: 2015 IEEE international conference on robotics and automation (ICRA), pp. 1093–1099
29.
Zurück zum Zitat Okabe A (2000) Spatial tessellations: concepts and applications of Voronoi diagrams. Wiley series in probability and statistics: Applied probability and statistics. Wiley, Hoboken Okabe A (2000) Spatial tessellations: concepts and applications of Voronoi diagrams. Wiley series in probability and statistics: Applied probability and statistics. Wiley, Hoboken
30.
Zurück zum Zitat Paull L, Seto M, Li H (2014) Area coverage planning that accounts for pose uncertainty with an AUV seabed surveying application. In: Proceedings—IEEE international conference on robotics and automation, pp 6592–6599 Paull L, Seto M, Li H (2014) Area coverage planning that accounts for pose uncertainty with an AUV seabed surveying application. In: Proceedings—IEEE international conference on robotics and automation, pp 6592–6599
31.
Zurück zum Zitat Paull L, Thibault C, Nagaty A, Seto M, Li H (2014) Sensor-driven area coverage for an autonomous fixed-wing unmanned aerial vehicle. IEEE Trans Cybern 44:1605–1618CrossRef Paull L, Thibault C, Nagaty A, Seto M, Li H (2014) Sensor-driven area coverage for an autonomous fixed-wing unmanned aerial vehicle. IEEE Trans Cybern 44:1605–1618CrossRef
32.
Zurück zum Zitat Pham H, Moore P (2018) Robot coverage path planning under uncertainty using knowledge inference and hedge algebras. Machines 6:46CrossRef Pham H, Moore P (2018) Robot coverage path planning under uncertainty using knowledge inference and hedge algebras. Machines 6:46CrossRef
33.
Zurück zum Zitat Pham HV, Moore P, Truong DX (2019) Proposed smooth-STC algorithm for enhanced coverage path planning performance in mobile robot applications. Robotics 8(2):44CrossRef Pham HV, Moore P, Truong DX (2019) Proposed smooth-STC algorithm for enhanced coverage path planning performance in mobile robot applications. Robotics 8(2):44CrossRef
34.
Zurück zum Zitat Pinkam N, Jeong S, Chong NY (2016) Exploration of a group of mobile robots for multiple radiation sources estimation. In: 2016 IEEE international symposium on robotics and intelligent sensors (IRIS), pp 199–206 Pinkam N, Jeong S, Chong NY (2016) Exploration of a group of mobile robots for multiple radiation sources estimation. In: 2016 IEEE international symposium on robotics and intelligent sensors (IRIS), pp 199–206
35.
Zurück zum Zitat Pinkam N, Newaz AAR, Jeong S, Chong NY (2019) Rapid coverage of regions of interest for environmental monitoring. In: Kim JH, Myung H, Kim J, Xu W, Matson ET, Jung JW, Choi HL (eds) Robot intelligence technology and applications 5. Springer, Cham, pp 195–209CrossRef Pinkam N, Newaz AAR, Jeong S, Chong NY (2019) Rapid coverage of regions of interest for environmental monitoring. In: Kim JH, Myung H, Kim J, Xu W, Matson ET, Jung JW, Choi HL (eds) Robot intelligence technology and applications 5. Springer, Cham, pp 195–209CrossRef
36.
Zurück zum Zitat Saldaña D, Assunção R, Campos MFM (2016) Predicting environmental boundary behaviors with a mobile robot. IEEE Robot Autom Lett 1:1133–1139CrossRef Saldaña D, Assunção R, Campos MFM (2016) Predicting environmental boundary behaviors with a mobile robot. IEEE Robot Autom Lett 1:1133–1139CrossRef
37.
Zurück zum Zitat Soltero DE, Schwager M, Rus D (2014) Decentralized path planning for coverage tasks using gradient descent adaptive control. Int J Robot Res 33:401–425CrossRef Soltero DE, Schwager M, Rus D (2014) Decentralized path planning for coverage tasks using gradient descent adaptive control. Int J Robot Res 33:401–425CrossRef
38.
Zurück zum Zitat Strimel GP, Veloso MM (2014) Coverage planning with finite resources. In: IEEE international conference on intelligent robots and systems, pp 2950–2956 Strimel GP, Veloso MM (2014) Coverage planning with finite resources. In: IEEE international conference on intelligent robots and systems, pp 2950–2956
39.
Zurück zum Zitat Susca S, Bullo F, Martinez S (2008) Monitoring environmental boundaries with a robotic sensor network. IEEE Trans Control Syst Technol 16:288–296CrossRef Susca S, Bullo F, Martinez S (2008) Monitoring environmental boundaries with a robotic sensor network. IEEE Trans Control Syst Technol 16:288–296CrossRef
40.
Zurück zum Zitat Tiwari K, Jeong S, Chong NY (2018) Point-wise fusion of distributed gaussian process experts (fudge) using a fully decentralized robot team operating in communication-devoid environment. IEEE Trans Robot 34(3):820–828CrossRef Tiwari K, Jeong S, Chong NY (2018) Point-wise fusion of distributed gaussian process experts (fudge) using a fully decentralized robot team operating in communication-devoid environment. IEEE Trans Robot 34(3):820–828CrossRef
41.
Zurück zum Zitat Van Pham H, Asadi F, Abut N, Kandilli I (2019) Hybrid spiral STC-hedge algebras model in knowledge reasonings for robot coverage path planning and its applications. Appl Sci 9(9):1909CrossRef Van Pham H, Asadi F, Abut N, Kandilli I (2019) Hybrid spiral STC-hedge algebras model in knowledge reasonings for robot coverage path planning and its applications. Appl Sci 9(9):1909CrossRef
42.
43.
Zurück zum Zitat Xu L (2011) Graph planning for environmental coverage. Carnegie Mellon University (August), 135 Xu L (2011) Graph planning for environmental coverage. Carnegie Mellon University (August), 135
44.
Zurück zum Zitat Yamauchi B (1997) A frontier-based approach for autonomous exploration. In: Proceedings 1997 IEEE international symposium on computational intelligence in robotics and automation, 1997. CIRA’97, IEEE, pp 146–151 Yamauchi B (1997) A frontier-based approach for autonomous exploration. In: Proceedings 1997 IEEE international symposium on computational intelligence in robotics and automation, 1997. CIRA’97, IEEE, pp 146–151
45.
Zurück zum Zitat Yehoshua R, Agmon N, Kaminka GA (2016) Robotic adversarial coverage of known environments. Int J Robot Res 35:1–26CrossRef Yehoshua R, Agmon N, Kaminka GA (2016) Robotic adversarial coverage of known environments. Int J Robot Res 35:1–26CrossRef
46.
Zurück zum Zitat Zafar MN, Mohanta J (2018) Methodology for path planning and optimization of mobile robots: a review. Procedia Comput Sci 133:141–152CrossRef Zafar MN, Mohanta J (2018) Methodology for path planning and optimization of mobile robots: a review. Procedia Comput Sci 133:141–152CrossRef
47.
Zurück zum Zitat Zucker M, Kuffner J, Branicky M (2007) Multipartite rrts for rapid replanning in dynamic environments. In: 2007 IEEE international conference on robotics and automation, pp 1603–1609. IEEE Zucker M, Kuffner J, Branicky M (2007) Multipartite rrts for rapid replanning in dynamic environments. In: 2007 IEEE international conference on robotics and automation, pp 1603–1609. IEEE
Metadaten
Titel
Rapid coverage of regions of interest for environmental monitoring
verfasst von
Nantawat Pinkam
Abdullah Al Redwan Newaz
Sungmoon Jeong
Nak Young Chong
Publikationsdatum
20.09.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Intelligent Service Robotics / Ausgabe 4/2019
Print ISSN: 1861-2776
Elektronische ISSN: 1861-2784
DOI
https://doi.org/10.1007/s11370-019-00290-x

Weitere Artikel der Ausgabe 4/2019

Intelligent Service Robotics 4/2019 Zur Ausgabe

Neuer Inhalt