Skip to main content
Erschienen in: Journal of Materials Science 17/2020

04.03.2020 | Energy materials

Rapid fabrication of pure p-type filled skutterudites with enhanced thermoelectric properties via a reactive liquid-phase sintering

verfasst von: Jian Yu, Wanting Zhu, Wenyu Zhao, Qi Luo, Zhiyuan Liu, Hong Chen

Erschienen in: Journal of Materials Science | Ausgabe 17/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Filled skutterudites have great potential for power generation. However, the conventional melting–quenching–annealing–sintering process requires a time-consuming annealing process to accomplish the phase transformation. A new strategy to realize the complete phase transformation in a short time is an urgent need for filled skutterudite. In this study, a modifying reactive liquid-phase sintering enabled by introducing the extra BaSb3 in the spark plasma sintering process was successfully applied to fabricate pure BaFe4Sb12 skutterudites in less than 30 h. It is found that increasing BaSb3 liquid content can effectively promote the phase transformation to BaFe4Sb12 skutterudite through accelerating the chemical reaction between the quenched mixtures during the sintering process. However, an abnormal grain growth would take place with further increasing the liquid content. An optimal ZT value of 0.62 at 800 K was achieved for the BaFe4Sb12 skutterudite due to the enhanced Seebeck coefficient and the increased electrical conductivity as well as the decreased lattice thermal conductivity induced by the single-phase composition. This work demonstrates that pure filled skutterudite with enhanced TE performance can be fabricated by the simple and efficient reactive liquid-phase sintering without longtime annealing process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321:1457–1461CrossRef Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321:1457–1461CrossRef
2.
Zurück zum Zitat Sales BC, Mandrus D, Williams RK (1996) Filled skutterudite antimonides: a new class of thermoelectric materials. Science 272:1325–1328CrossRef Sales BC, Mandrus D, Williams RK (1996) Filled skutterudite antimonides: a new class of thermoelectric materials. Science 272:1325–1328CrossRef
3.
Zurück zum Zitat Zhang QH, Huang XY, Bai SQ, Shi X, Uher C, Chen LD (2016) Thermoelectric devices for power generation: recent progress and future challenges. Adv Energy Mater 18:194–213CrossRef Zhang QH, Huang XY, Bai SQ, Shi X, Uher C, Chen LD (2016) Thermoelectric devices for power generation: recent progress and future challenges. Adv Energy Mater 18:194–213CrossRef
4.
Zurück zum Zitat Qin D, Wu H, Cai S, Zhu J, Cui B, Yin L, Qin H, Shi W, Zhang Y, Zhang Q, Liu W, Cao J, Pennycook SJ, Cai W, Sui J (2019) Enhanced thermoelectric and mechanical properties in Yb0.3Co4Sb12 with in situ formed CoSi nanoprecipitates. Adv Energy Mater 9:1902435CrossRef Qin D, Wu H, Cai S, Zhu J, Cui B, Yin L, Qin H, Shi W, Zhang Y, Zhang Q, Liu W, Cao J, Pennycook SJ, Cai W, Sui J (2019) Enhanced thermoelectric and mechanical properties in Yb0.3Co4Sb12 with in situ formed CoSi nanoprecipitates. Adv Energy Mater 9:1902435CrossRef
5.
Zurück zum Zitat Zhang Q, Zhou Z, Dylla M, Agne MT, Pei Y, Wang L, Tang Y, Liao J, Li J, Bai S, Jiang W, Chen L, Snyder GJ (2017) Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites. Nano Energy 41:501–510CrossRef Zhang Q, Zhou Z, Dylla M, Agne MT, Pei Y, Wang L, Tang Y, Liao J, Li J, Bai S, Jiang W, Chen L, Snyder GJ (2017) Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites. Nano Energy 41:501–510CrossRef
6.
Zurück zum Zitat Zong P, Hanus R, Dylla M, Tang Y, Liao J, Zhang Q, Snyder GJ, Chen L (2017) Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device. Energy Environ Sci 10:183–191CrossRef Zong P, Hanus R, Dylla M, Tang Y, Liao J, Zhang Q, Snyder GJ, Chen L (2017) Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device. Energy Environ Sci 10:183–191CrossRef
7.
Zurück zum Zitat Nie G, Li W, Guo J, Yamamoto A, Kimura K, Zhang X, Isaacs EB, Dravid V, Wolverton C, Kanatzidis MG, Priya S (2019) High performance thermoelectric module through isotype bulk heterojunction engineering of skutterudite materials. Nano Energy 66:104193CrossRef Nie G, Li W, Guo J, Yamamoto A, Kimura K, Zhang X, Isaacs EB, Dravid V, Wolverton C, Kanatzidis MG, Priya S (2019) High performance thermoelectric module through isotype bulk heterojunction engineering of skutterudite materials. Nano Energy 66:104193CrossRef
8.
Zurück zum Zitat Li W, Stokes D, Poudel B, Saparamadu U, Nozariasbmarz A, Kang HB, Priya S (2019) High-efficiency skutterudite modules at a low temperature gradient. Energies 12:4292CrossRef Li W, Stokes D, Poudel B, Saparamadu U, Nozariasbmarz A, Kang HB, Priya S (2019) High-efficiency skutterudite modules at a low temperature gradient. Energies 12:4292CrossRef
9.
Zurück zum Zitat Guo JQ, Geng HY, Ochi T, Suzuki S, Kikuchi M, Yamaguchi Y, Ito S (2012) Development of skutterudite thermoelectric materials and modules. J Electron Mater 41:1036–1042CrossRef Guo JQ, Geng HY, Ochi T, Suzuki S, Kikuchi M, Yamaguchi Y, Ito S (2012) Development of skutterudite thermoelectric materials and modules. J Electron Mater 41:1036–1042CrossRef
10.
Zurück zum Zitat Nie G, Suzuki S, Tomida T, Sumiyoshi A, Ochi T, Mukaiyama K, Kikuchi M, Guo JQ, Yamamoto A, Obara H (2017) Performance of skutterudite-based modules. J Electron Mater 46:2640–2644CrossRef Nie G, Suzuki S, Tomida T, Sumiyoshi A, Ochi T, Mukaiyama K, Kikuchi M, Guo JQ, Yamamoto A, Obara H (2017) Performance of skutterudite-based modules. J Electron Mater 46:2640–2644CrossRef
11.
Zurück zum Zitat Yu J, Zhao W, Zhou H, Wei P, Zhang Q (2013) Rapid preparation and thermoelectric properties of Ba and In double-filled p-type skutterudite bulk materials. Scr Mater 68:643–646CrossRef Yu J, Zhao W, Zhou H, Wei P, Zhang Q (2013) Rapid preparation and thermoelectric properties of Ba and In double-filled p-type skutterudite bulk materials. Scr Mater 68:643–646CrossRef
12.
Zurück zum Zitat Chen F, Liu R, Yao Z, Xing Y, Bai S, Chen L (2018) Scanning laser melting for rapid and massive fabrication of filled skutterudites with high thermoelectric performance. J Mater Chem A 6:6772–6779CrossRef Chen F, Liu R, Yao Z, Xing Y, Bai S, Chen L (2018) Scanning laser melting for rapid and massive fabrication of filled skutterudites with high thermoelectric performance. J Mater Chem A 6:6772–6779CrossRef
13.
Zurück zum Zitat Yao Z, Qiu P-F, Li X-Y, Chen L-D (2016) Investigation on quick fabrication of n-type filled skutterudites. J Inorg Mater 31:1375–1382CrossRef Yao Z, Qiu P-F, Li X-Y, Chen L-D (2016) Investigation on quick fabrication of n-type filled skutterudites. J Inorg Mater 31:1375–1382CrossRef
14.
Zurück zum Zitat Shi X, Yang J, Salvador JR, Chi M, Cho JY, Wang H, Bai S, Yang J, Zhang W, Chen L (2011) Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J Am Chem Soc 133:7837–7846CrossRef Shi X, Yang J, Salvador JR, Chi M, Cho JY, Wang H, Bai S, Yang J, Zhang W, Chen L (2011) Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J Am Chem Soc 133:7837–7846CrossRef
15.
Zurück zum Zitat Li H, Tang X, Su X, Zhang Q (2008) Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure. Appl Phys Lett 92:202114CrossRef Li H, Tang X, Su X, Zhang Q (2008) Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure. Appl Phys Lett 92:202114CrossRef
16.
Zurück zum Zitat Tan G, Liu W, Wang S, Yan Y, Li H, Tang X, Uher C (2013) Rapid preparation of CeFe4Sb12 skutterudite by melt spinning: rich nanostructures and high thermoelectric performance. J Mater Chem A 1:12657–12668CrossRef Tan G, Liu W, Wang S, Yan Y, Li H, Tang X, Uher C (2013) Rapid preparation of CeFe4Sb12 skutterudite by melt spinning: rich nanostructures and high thermoelectric performance. J Mater Chem A 1:12657–12668CrossRef
17.
Zurück zum Zitat Lee S, Lee KH, Kim Y-M, Kim HS, Snyder GJ, Baik S, Kim SW (2018) Simple and efficient synthesis of nanograin structured single phase filled skutterudite for high thermoelectric performance. Acta Mater 142:8–17CrossRef Lee S, Lee KH, Kim Y-M, Kim HS, Snyder GJ, Baik S, Kim SW (2018) Simple and efficient synthesis of nanograin structured single phase filled skutterudite for high thermoelectric performance. Acta Mater 142:8–17CrossRef
18.
Zurück zum Zitat Jie Q, Wang H, Liu W, Wang H, Chen G, Ren Z (2013) Fast phase formation of double-filled p-type skutterudites by ball-milling and hot-pressing. Phys Chem Chem Phys 15:6809–6816CrossRef Jie Q, Wang H, Liu W, Wang H, Chen G, Ren Z (2013) Fast phase formation of double-filled p-type skutterudites by ball-milling and hot-pressing. Phys Chem Chem Phys 15:6809–6816CrossRef
19.
Zurück zum Zitat Yu J, Zhao WY, Wei P, Tang DG, Zhang QJ (2012) Effects of excess Sb on thermoelectric properties of barium and indium double-filled iron-based p-type skutterudite materials. J Electron Mater 41:1414–1420CrossRef Yu J, Zhao WY, Wei P, Tang DG, Zhang QJ (2012) Effects of excess Sb on thermoelectric properties of barium and indium double-filled iron-based p-type skutterudite materials. J Electron Mater 41:1414–1420CrossRef
21.
Zurück zum Zitat Kim SI, Lee KH, Mun HA, Kim HS, Hwang SW, Roh JW, Yang DJ, Shin WH, Li XS, Lee YH, Snyder GJ, Kim SW (2015) Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348:109–114CrossRef Kim SI, Lee KH, Mun HA, Kim HS, Hwang SW, Roh JW, Yang DJ, Shin WH, Li XS, Lee YH, Snyder GJ, Kim SW (2015) Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348:109–114CrossRef
22.
Zurück zum Zitat Zhang C, Mata MDL, Li Z, Belarre FJ, Arbiol J, Khor KA, Poletti D, Zhu B, Yan Q, Xiong Q (2016) Enhanced thermoelectric performance of solution-derived bismuth telluride based nanocomposites via liquid-phase sintering. Nano Energy 30:630–638CrossRef Zhang C, Mata MDL, Li Z, Belarre FJ, Arbiol J, Khor KA, Poletti D, Zhu B, Yan Q, Xiong Q (2016) Enhanced thermoelectric performance of solution-derived bismuth telluride based nanocomposites via liquid-phase sintering. Nano Energy 30:630–638CrossRef
23.
Zurück zum Zitat Zhang C, Ng H, Li Z, Khor KA, Xiong Q (2017) Minority carrier blocking to enhance the thermoelectric performance of solution-processed BixSb2−xTe3 nanocomposites via a liquid-phase sintering process. ACS Appl Mater Interfaces 9:12501–12510CrossRef Zhang C, Ng H, Li Z, Khor KA, Xiong Q (2017) Minority carrier blocking to enhance the thermoelectric performance of solution-processed BixSb2−xTe3 nanocomposites via a liquid-phase sintering process. ACS Appl Mater Interfaces 9:12501–12510CrossRef
24.
Zurück zum Zitat Meng X, Liu Z, Cui B, Qin D, Geng H, Cai W, Fu L, He J, Ren Z, Sui J (2017) Grain boundary engineering for achieving high thermoelectric performance in n-type skutterudites. Adv Energy Mater 7:1602582CrossRef Meng X, Liu Z, Cui B, Qin D, Geng H, Cai W, Fu L, He J, Ren Z, Sui J (2017) Grain boundary engineering for achieving high thermoelectric performance in n-type skutterudites. Adv Energy Mater 7:1602582CrossRef
25.
Zurück zum Zitat Meng X, Liu Y, Cui B, Qin D, Cao J, Liu W, Liu Z, Cai W, Sui J (2018) High thermoelectric performance of single phase p-type cerium-filled skutterudites by dislocation engineering. J Mater Chem A 6:20128–20137CrossRef Meng X, Liu Y, Cui B, Qin D, Cao J, Liu W, Liu Z, Cai W, Sui J (2018) High thermoelectric performance of single phase p-type cerium-filled skutterudites by dislocation engineering. J Mater Chem A 6:20128–20137CrossRef
27.
Zurück zum Zitat Valant M, Suvorov D, Pullar RC, Sarma K, Alford NM (2006) A mechanism for low-temperature sintering. J Eur Ceram Soc 26:2777–2783CrossRef Valant M, Suvorov D, Pullar RC, Sarma K, Alford NM (2006) A mechanism for low-temperature sintering. J Eur Ceram Soc 26:2777–2783CrossRef
28.
Zurück zum Zitat Yao Z, Li XY, Tang YS, Chen LD (2015) Genomic effects of the quenching process on the microstructure and thermoelectric properties of Yb0.3Co4Sb12. J Electron Mater 44:1890–1895CrossRef Yao Z, Li XY, Tang YS, Chen LD (2015) Genomic effects of the quenching process on the microstructure and thermoelectric properties of Yb0.3Co4Sb12. J Electron Mater 44:1890–1895CrossRef
29.
Zurück zum Zitat Fisher JG, Kang S-JL (2019) Strategies and practices for suppressing abnormal grain growth during liquid phase sintering. J Am Ceram Soc 102:717–735 Fisher JG, Kang S-JL (2019) Strategies and practices for suppressing abnormal grain growth during liquid phase sintering. J Am Ceram Soc 102:717–735
30.
Zurück zum Zitat Lee S-H, Kim D-Y, Hwang NM (2002) Effect of anorthite liquid on the abnormal grain growth of alumina. J Eur Ceram Soc 22:317–321CrossRef Lee S-H, Kim D-Y, Hwang NM (2002) Effect of anorthite liquid on the abnormal grain growth of alumina. J Eur Ceram Soc 22:317–321CrossRef
31.
Zurück zum Zitat Katsuyama S, Kanayama Y, Ito M, Majima K, Nagai H (2000) Thermoelectric properties of CoSb3 with dispersed FeSb2 particles. J Appl Phys 88:3483–3489CrossRef Katsuyama S, Kanayama Y, Ito M, Majima K, Nagai H (2000) Thermoelectric properties of CoSb3 with dispersed FeSb2 particles. J Appl Phys 88:3483–3489CrossRef
32.
Zurück zum Zitat Saunders GA, Öktü Ö (1968) The Seebeck coefficient and the fermi surface of antimony single crystals. J Phys Chem Solids 29:327–333CrossRef Saunders GA, Öktü Ö (1968) The Seebeck coefficient and the fermi surface of antimony single crystals. J Phys Chem Solids 29:327–333CrossRef
33.
Zurück zum Zitat Sales BC, Mandrus D, Chakoumakos BC, Keppens V, Thompson JR (1997) Filled skutterudite antimonides: electron crystals and phonon glasses. Phys Rev B Condens Matter 56:15081–15089CrossRef Sales BC, Mandrus D, Chakoumakos BC, Keppens V, Thompson JR (1997) Filled skutterudite antimonides: electron crystals and phonon glasses. Phys Rev B Condens Matter 56:15081–15089CrossRef
34.
Zurück zum Zitat Qiu PF, Yang J, Liu RH, Shi X, Huang XY, Snyder GJ, Zhang W, Chen LD (2011) High-temperature electrical and thermal transport properties of fully filled skutterudites RFe4Sb12 (R = Ca, Sr, Ba, La, Ce, Pr, Nd, Eu, and Yb). J Appl Phys 109:063713CrossRef Qiu PF, Yang J, Liu RH, Shi X, Huang XY, Snyder GJ, Zhang W, Chen LD (2011) High-temperature electrical and thermal transport properties of fully filled skutterudites RFe4Sb12 (R = Ca, Sr, Ba, La, Ce, Pr, Nd, Eu, and Yb). J Appl Phys 109:063713CrossRef
Metadaten
Titel
Rapid fabrication of pure p-type filled skutterudites with enhanced thermoelectric properties via a reactive liquid-phase sintering
verfasst von
Jian Yu
Wanting Zhu
Wenyu Zhao
Qi Luo
Zhiyuan Liu
Hong Chen
Publikationsdatum
04.03.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 17/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04523-8

Weitere Artikel der Ausgabe 17/2020

Journal of Materials Science 17/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.