Skip to main content
Erschienen in: Journal of Materials Science 9/2020

06.12.2019 | Metals & corrosion

Rapid solidification of a FeSi intermetallic compound in undercooled melts: dendrite growth and microstructure transitions

verfasst von: Jianbao Zhang, Fan Zhang, Xuan Luo, Qing Zhou, Haifeng Wang

Erschienen in: Journal of Materials Science | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Rapid solidification of a FeSi stoichiometric intermetallic compound was studied using the glass fluxing method. The recalescence process was in situ observed for the first time by the infrared high-speed high-resolution cameras. The dendrite envelope was found to be non-isothermal during the recalescence process. The growth velocity increased first, then decreased and finally held nearly constant. The average dendrite growth velocity for the recalescence process increased monotonically with undercooling and was described well by the dendrite growth model for a stoichiometric intermetallic compound. At low undercooling, the microstructure transition from coarse dendrites to refined grains was consistent with the dendrite fragmentation model and the chemical superheating model. At high undercooling, dendrite deformation triggers stress accumulation upon rapid solidification, thus providing the driving force for recrystallization. However, there were no evidences for annealing twins accompanied by recrystallization as well as random textures due to recrystallization nucleation. From the local misorientation map, the grain refinement mechanism was suggested to be stress-induced dendrite fragmentation. This study is helpful for not only understanding the intrinsic mechanisms of microstructure transitions in theory but also controlling microstructures and performance of intermetallic compounds in practical applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The transition from dendrite to dendritic seaweed was also reported for rapid solidification of Ni3Ge intermetallic compound processed by drop-tube [3335].
 
2
The compound FeSi crystallizes in cubic B20 structure, and the corresponding space group is P213. Each primitive unit cell in the B20 structure contains eight atoms (four Fe atoms and four Si atoms), and any one of the atoms is surrounded by seven nearest neighbor atoms of the opposite element. Both Fe and Si atoms occupy the Wyckoff position of 4a (x, x, x). The coordinates of the position are (u, u, u), (0.5 + u, 0.5 − u, −u), (−u, 0.5 + u, 0.5 − u), (0.5 − u, −u, 0.5 − u), where uFe = 0.173a and uSi = 0.842a with a = 449 pm [38].
 
3
This camera is equipped with a refrigerated mercury cadmium telluride detector with the ability to produce a clear thermal image of 640 × 512 pixels and a temperature difference of less than 25 mK.
 
4
The second recalescence event is so weak that it cannot be captured by the high-speed cameras.
 
5
Because we aim to study grain refinement mechanisms and dendrite growth kinetics of the FeSi intermetallic compound, further identifying the crystal structure of the secondary phase is not shown here.
 
6
It should be noted that the thermal undercooling ΔTT adopted here is for an isothermal dendrite under a steady-state condition. The dendrite envelope recorded by the infrared high-speed camera shows that it is under a non-steady-state condition and is a non-isothermal one; see Fig. 4.
 
7
\( \Delta t_{\text{pl}} \) is defined in the cooling curves as the time difference between the highest recalescence temperature and the inflection point after recalescence. It should be noted that if the overall solidification is adopted, the cooling history can be predicted, according to which \( \Delta t_{\text{pl}} \) can be obtained theoretically [22]. In this case, dendrite fragmentation in undercooled melts can be described in a self-consistent way.
 
8
A plenty of sub-grains were also found within the coarse grains for rapid solidification in an undercooled CoNi equiatomic alloy [55].
 
Literatur
1.
Zurück zum Zitat Liu CT, Stiegler JO (1989) Ductile ordered intermetallic alloys. Science 226:636–642CrossRef Liu CT, Stiegler JO (1989) Ductile ordered intermetallic alloys. Science 226:636–642CrossRef
2.
Zurück zum Zitat Yang T, Zhao YL, Tong Y et al (2018) Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science 362:933–937CrossRef Yang T, Zhao YL, Tong Y et al (2018) Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science 362:933–937CrossRef
3.
Zurück zum Zitat Hornfeck W, Kobold R, Kolbe M, Conrad M, Herlach D (2018) Quasicrystal nucleation and Z module twin growth in an intermetallic glass-forming system. Nat Commun 9:4054CrossRef Hornfeck W, Kobold R, Kolbe M, Conrad M, Herlach D (2018) Quasicrystal nucleation and Z module twin growth in an intermetallic glass-forming system. Nat Commun 9:4054CrossRef
4.
Zurück zum Zitat Zhang Z, Hu XW, Jiang XX, Li YL (2019) Influences of Mono-Ni(P) and Dual-Cu/Ni(P) plating on the interfacial microstructure evolution of solder joints. Metall Mater Trans A 50A:480–492CrossRef Zhang Z, Hu XW, Jiang XX, Li YL (2019) Influences of Mono-Ni(P) and Dual-Cu/Ni(P) plating on the interfacial microstructure evolution of solder joints. Metall Mater Trans A 50A:480–492CrossRef
5.
Zurück zum Zitat Wei XX, Xu X, Kang JL, Ferry M, Li JF (2017) Phase selection in solidification of undercooled Co–B alloys. J Mater Sci Technol 33:352–358CrossRef Wei XX, Xu X, Kang JL, Ferry M, Li JF (2017) Phase selection in solidification of undercooled Co–B alloys. J Mater Sci Technol 33:352–358CrossRef
6.
Zurück zum Zitat Yang C, Gao J, Zhang YK, Kolbe M, Herlach DM (2011) New evidence for the dual origin of anomalous eutectic structures in undercooled Ni–Sn alloys: in situ observations and EBSD characterization. Acta Mater 29:3915–3926CrossRef Yang C, Gao J, Zhang YK, Kolbe M, Herlach DM (2011) New evidence for the dual origin of anomalous eutectic structures in undercooled Ni–Sn alloys: in situ observations and EBSD characterization. Acta Mater 29:3915–3926CrossRef
8.
Zurück zum Zitat Koch CC (1998) Rapid solidification of intermetallic. Int Mater Rev 33:201–219CrossRef Koch CC (1998) Rapid solidification of intermetallic. Int Mater Rev 33:201–219CrossRef
9.
Zurück zum Zitat Chen Z, Zhang Y, Wang S, Zhang JY, Zhang P (2018) Microstructure and mechanical properties of undercooled Fe80C5Si10B5 eutectic alloy. J Alloys Compd 747:846–853CrossRef Chen Z, Zhang Y, Wang S, Zhang JY, Zhang P (2018) Microstructure and mechanical properties of undercooled Fe80C5Si10B5 eutectic alloy. J Alloys Compd 747:846–853CrossRef
10.
Zurück zum Zitat Herlach DM (1994) Non-equilibrium solidification of undercooled metallic melts. Mater Sci Eng, R 12:177–272CrossRef Herlach DM (1994) Non-equilibrium solidification of undercooled metallic melts. Mater Sci Eng, R 12:177–272CrossRef
11.
Zurück zum Zitat Wang S, Chen Z, Feng LC, Liu YY et al (2018) Nano-phase formation accompanying phase separation in undercooled CoCrCuFeNi-3 at.% Sn high entropy alloy. Mater Charact 144:516–521CrossRef Wang S, Chen Z, Feng LC, Liu YY et al (2018) Nano-phase formation accompanying phase separation in undercooled CoCrCuFeNi-3 at.% Sn high entropy alloy. Mater Charact 144:516–521CrossRef
12.
Zurück zum Zitat Liu L, Wei XX, Huang QS, Li JF et al (2012) Anomalous eutectic formation in the solidification of undercooled Co–Sn alloys. J Cryst Growth 358:20–28CrossRef Liu L, Wei XX, Huang QS, Li JF et al (2012) Anomalous eutectic formation in the solidification of undercooled Co–Sn alloys. J Cryst Growth 358:20–28CrossRef
13.
Zurück zum Zitat Eckler K, Cochrane RF, Herlach DM, Feuerbacher B (1992) Evidence for a transition from diffusion-controlled to thermally controlled solidification in metallic alloys. Phys Rev B 45:5019–5022CrossRef Eckler K, Cochrane RF, Herlach DM, Feuerbacher B (1992) Evidence for a transition from diffusion-controlled to thermally controlled solidification in metallic alloys. Phys Rev B 45:5019–5022CrossRef
14.
Zurück zum Zitat Hartmann H, Hollandmoritz D, Galenko PK et al (2009) Evidence of the transition from ordered to disordered growth during rapid solidification of an intermetallic phase. EPL 87:40007CrossRef Hartmann H, Hollandmoritz D, Galenko PK et al (2009) Evidence of the transition from ordered to disordered growth during rapid solidification of an intermetallic phase. EPL 87:40007CrossRef
15.
Zurück zum Zitat Assadi H, Barth M, Greer AL, Herlach DM (1998) Kinetics of solidification of intermetallic compounds in the Ni–Al system. Acta Mater 46:491–500CrossRef Assadi H, Barth M, Greer AL, Herlach DM (1998) Kinetics of solidification of intermetallic compounds in the Ni–Al system. Acta Mater 46:491–500CrossRef
16.
Zurück zum Zitat Assadi H, Greer AL (1996) Site-ordering effects on element partitioning during rapid solidification of alloys. Nature 383:150–152CrossRef Assadi H, Greer AL (1996) Site-ordering effects on element partitioning during rapid solidification of alloys. Nature 383:150–152CrossRef
17.
Zurück zum Zitat Assadi H, Reutzel S, Herlach DM (2006) Kinetics of solidification of B2 intermetallic phase in the Ni–Al system. Acta Mater 54:2793–2800CrossRef Assadi H, Reutzel S, Herlach DM (2006) Kinetics of solidification of B2 intermetallic phase in the Ni–Al system. Acta Mater 54:2793–2800CrossRef
18.
Zurück zum Zitat Assadi H, Oghabi M, Herlach DM (2009) Influence of ordering kinetics on dendritic growth morphology. Acta Mater 57:1639–1647CrossRef Assadi H, Oghabi M, Herlach DM (2009) Influence of ordering kinetics on dendritic growth morphology. Acta Mater 57:1639–1647CrossRef
19.
Zurück zum Zitat Herlach DM (2015) Dendrite growth kinetics in undercooled melts of intermetallic compounds. Crystals 5:355–375CrossRef Herlach DM (2015) Dendrite growth kinetics in undercooled melts of intermetallic compounds. Crystals 5:355–375CrossRef
20.
Zurück zum Zitat Wang J, Guo T, Li JS, Jia WJ, Kou HC (2018) Microstructure and mechanical properties of non-equilibrium solidified CoCrFeNi high entropy alloy. Mater Chem Phys 210:192–196CrossRef Wang J, Guo T, Li JS, Jia WJ, Kou HC (2018) Microstructure and mechanical properties of non-equilibrium solidified CoCrFeNi high entropy alloy. Mater Chem Phys 210:192–196CrossRef
21.
Zurück zum Zitat Moir SA, Eckler K, Herlach DM (1998) Evolution of microstructure resulting from dendrite growth in undercooled Fe–Cr–Ni melts. Acta Metall 46:4029–4036 Moir SA, Eckler K, Herlach DM (1998) Evolution of microstructure resulting from dendrite growth in undercooled Fe–Cr–Ni melts. Acta Metall 46:4029–4036
22.
Zurück zum Zitat Wang HF, Liu F, Tan YM (2011) Modeling grain refinement for undercooled single-phase solid-solution alloys. Acta Mater 59:4787–4797CrossRef Wang HF, Liu F, Tan YM (2011) Modeling grain refinement for undercooled single-phase solid-solution alloys. Acta Mater 59:4787–4797CrossRef
23.
Zurück zum Zitat Cochrane RF, Battersby SE, Mullis AM (2001) The mechanisms for spontaneous grain refinement in undercooled Cu–O and Cu–Sn melts. Mater Sci Eng, A 304:262–266CrossRef Cochrane RF, Battersby SE, Mullis AM (2001) The mechanisms for spontaneous grain refinement in undercooled Cu–O and Cu–Sn melts. Mater Sci Eng, A 304:262–266CrossRef
24.
Zurück zum Zitat Schwarz M, Karma A, Eckler K, Herlach DM (1994) Physical mechanism of grain refinement in solidification of undercooled melts. Phys Rev Lett 73:1380–1383CrossRef Schwarz M, Karma A, Eckler K, Herlach DM (1994) Physical mechanism of grain refinement in solidification of undercooled melts. Phys Rev Lett 73:1380–1383CrossRef
25.
Zurück zum Zitat Karma A (1998) Model of grain refinement in solidification of undercooled melts. Int J Non-Equilib Pr 11:201–233 Karma A (1998) Model of grain refinement in solidification of undercooled melts. Int J Non-Equilib Pr 11:201–233
26.
Zurück zum Zitat Li JF, Liu YC, Lu YL, Yang GC, Zhou YH (1998) Structural evolution of undercooled Ni–Cu alloys. J Cryst Growth 192:462–470CrossRef Li JF, Liu YC, Lu YL, Yang GC, Zhou YH (1998) Structural evolution of undercooled Ni–Cu alloys. J Cryst Growth 192:462–470CrossRef
27.
Zurück zum Zitat Li JF, Jie WQ, Yang GC, Zhou YH (2002) Solidification structure formation in undercooled Fe–Ni alloy. Acta Mater 50:1797–1807CrossRef Li JF, Jie WQ, Yang GC, Zhou YH (2002) Solidification structure formation in undercooled Fe–Ni alloy. Acta Mater 50:1797–1807CrossRef
28.
Zurück zum Zitat Lu SY, Li JF, Zhou YH (2007) Grain refinement in the solidification of undercooled Ni–Pd alloys. J Cryst Growth 309:103–111CrossRef Lu SY, Li JF, Zhou YH (2007) Grain refinement in the solidification of undercooled Ni–Pd alloys. J Cryst Growth 309:103–111CrossRef
29.
Zurück zum Zitat Zhou JK, Li JG (2008) Grain refinement in bulk undercooled Fe81Ga19 magnetostrictive alloy. J Alloys Compd 461:113–116CrossRef Zhou JK, Li JG (2008) Grain refinement in bulk undercooled Fe81Ga19 magnetostrictive alloy. J Alloys Compd 461:113–116CrossRef
30.
Zurück zum Zitat Wang HF, Liu F, Yang GC (2010) Experimental study of grain refinement mechanism in undercooled Ni–15at.% Cu alloy. J Mater Res 25:1963–1974CrossRef Wang HF, Liu F, Yang GC (2010) Experimental study of grain refinement mechanism in undercooled Ni–15at.% Cu alloy. J Mater Res 25:1963–1974CrossRef
31.
Zurück zum Zitat Castle EG, Mullis AM, Cochrane RF (2014) Evidence for an extensive, undercooling-mediated transition in growth orientation, and novel dendritic seaweed microstructures in Cu–8.9 wt% Ni. Acta Mater 66:378–387CrossRef Castle EG, Mullis AM, Cochrane RF (2014) Evidence for an extensive, undercooling-mediated transition in growth orientation, and novel dendritic seaweed microstructures in Cu–8.9 wt% Ni. Acta Mater 66:378–387CrossRef
32.
Zurück zum Zitat Castle EG, Mullis AM, Cochrane RF (2014) Mechanism selection for spontaneous grain refinement in undercooled metallic melts. Acta Mater 77:76–84CrossRef Castle EG, Mullis AM, Cochrane RF (2014) Mechanism selection for spontaneous grain refinement in undercooled metallic melts. Acta Mater 77:76–84CrossRef
33.
Zurück zum Zitat Haque N, Cochrane RF, Mullis AM (2017) The role of recrystallization in spontaneous grain refinement of rapidly solidified Ni3Ge. Metall Mater Trans A 48A:5424–5431CrossRef Haque N, Cochrane RF, Mullis AM (2017) The role of recrystallization in spontaneous grain refinement of rapidly solidified Ni3Ge. Metall Mater Trans A 48A:5424–5431CrossRef
34.
Zurück zum Zitat Haque N, Cochrane RF, Mullis AM (2016) Rapid solidification morphologies in Ni3Ge: spherulites, dendrites and dense-branched fractal structures. Intermetallics 76:70–77CrossRef Haque N, Cochrane RF, Mullis AM (2016) Rapid solidification morphologies in Ni3Ge: spherulites, dendrites and dense-branched fractal structures. Intermetallics 76:70–77CrossRef
35.
Zurück zum Zitat Haque N, Cochrane RF, Mullis AM (2018) Disorder-order morphologies in drop-tube processed Ni3Ge: dendritic and seaweed growth. J Alloys Compd 744:740–749CrossRef Haque N, Cochrane RF, Mullis AM (2018) Disorder-order morphologies in drop-tube processed Ni3Ge: dendritic and seaweed growth. J Alloys Compd 744:740–749CrossRef
36.
Zurück zum Zitat Lai C, Zhang JB, Zhang F et al (2017) Growth velocities and growth orientations in an undercooled melt of Ni31Si12 intermetallic compound. J Alloys Compd 712:241–249CrossRef Lai C, Zhang JB, Zhang F et al (2017) Growth velocities and growth orientations in an undercooled melt of Ni31Si12 intermetallic compound. J Alloys Compd 712:241–249CrossRef
37.
Zurück zum Zitat Zhang JB, Wang HF, Zhang F, Lu XL, Zhang YC, Zhou Q (2019) Growth kinetics and grain refinement mechanisms in an undercooled melt of a CoSi intermetallic compound. J Alloys Compd 781:13–25CrossRef Zhang JB, Wang HF, Zhang F, Lu XL, Zhang YC, Zhou Q (2019) Growth kinetics and grain refinement mechanisms in an undercooled melt of a CoSi intermetallic compound. J Alloys Compd 781:13–25CrossRef
38.
Zurück zum Zitat Salamon M, Mehrer H (1999) Diffusion in the B20-type phase FeSi. Phil Mag A 79:2137–2155CrossRef Salamon M, Mehrer H (1999) Diffusion in the B20-type phase FeSi. Phil Mag A 79:2137–2155CrossRef
39.
Zurück zum Zitat Lacaze J, Sundman B (1991) An assessment of the Fe–C–Si system. Metall Trans A 22A:2211–2223CrossRef Lacaze J, Sundman B (1991) An assessment of the Fe–C–Si system. Metall Trans A 22A:2211–2223CrossRef
40.
Zurück zum Zitat Biswas K, Phanikumarz G, Holland-moritz D, Herlach DM, Chattopadhyayy K (2007) Disorder trapping and grain refinement during solidification of undercooled Fe-18 at% Ge melts. Phil Mag 87:3817–3837CrossRef Biswas K, Phanikumarz G, Holland-moritz D, Herlach DM, Chattopadhyayy K (2007) Disorder trapping and grain refinement during solidification of undercooled Fe-18 at% Ge melts. Phil Mag 87:3817–3837CrossRef
41.
Zurück zum Zitat Barth M, Wei B, Herlach DM (1995) Crystal growth in undercooled melts of the intermetallic compounds FeSi and CoSi. Phys Rev B 51:3422–3428CrossRef Barth M, Wei B, Herlach DM (1995) Crystal growth in undercooled melts of the intermetallic compounds FeSi and CoSi. Phys Rev B 51:3422–3428CrossRef
43.
Zurück zum Zitat Wang H, Herlach DM, Liu RP (2014) Dendrite growth in Cu50Zr50 glass-forming melts, thermodynamics vs. kinetics. EPL 105:36001CrossRef Wang H, Herlach DM, Liu RP (2014) Dendrite growth in Cu50Zr50 glass-forming melts, thermodynamics vs. kinetics. EPL 105:36001CrossRef
44.
Zurück zum Zitat Kessler DA, Koplik J, Levine H (1988) Pattern selection in fingered growth phenomena. Adv Phys 37:255–339CrossRef Kessler DA, Koplik J, Levine H (1988) Pattern selection in fingered growth phenomena. Adv Phys 37:255–339CrossRef
45.
Zurück zum Zitat Brener EA, Mel’nikov VI (1991) Pattern selection in two-dimensional dendritic growth. Adv Phys 40:53–97CrossRef Brener EA, Mel’nikov VI (1991) Pattern selection in two-dimensional dendritic growth. Adv Phys 40:53–97CrossRef
46.
Zurück zum Zitat Lipton J, Kurz W, Trivedi R (1987) Rapid dendrite growth in undercooled alloys. Acta Metall 35:957–964CrossRef Lipton J, Kurz W, Trivedi R (1987) Rapid dendrite growth in undercooled alloys. Acta Metall 35:957–964CrossRef
47.
Zurück zum Zitat Zhang JB, Wang HF, Kuang WW et al (2018) Rapid solidification of non-stoichiometric intermetallic compounds: modeling and experimental verification. Acta Mater 148:86–99CrossRef Zhang JB, Wang HF, Kuang WW et al (2018) Rapid solidification of non-stoichiometric intermetallic compounds: modeling and experimental verification. Acta Mater 148:86–99CrossRef
48.
Zurück zum Zitat Hellawell A, Liu S, Lu SZ (1997) Dendrite fragmentation and the effects of fluid flow in castings. JOM 49(3):18–20CrossRef Hellawell A, Liu S, Lu SZ (1997) Dendrite fragmentation and the effects of fluid flow in castings. JOM 49(3):18–20CrossRef
49.
Zurück zum Zitat Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Elsevier, Oxford Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Elsevier, Oxford
50.
Zurück zum Zitat Dahle AK, Thevik HJ, Arnberg L, John DHS (1999) Modeling the fluid-flow-induced stress and collapse in a dendritic network. Metall Mater Trans B 30:287–293CrossRef Dahle AK, Thevik HJ, Arnberg L, John DHS (1999) Modeling the fluid-flow-induced stress and collapse in a dendritic network. Metall Mater Trans B 30:287–293CrossRef
51.
Zurück zum Zitat Zhang T, Liu F, Wang HF, Yang GC (2010) Grain refinement in highly undercooled solidification of Ni85Cu15 alloy melt: direct evidence for recrystallization mechanism. Scripta Mater 63:43–46CrossRef Zhang T, Liu F, Wang HF, Yang GC (2010) Grain refinement in highly undercooled solidification of Ni85Cu15 alloy melt: direct evidence for recrystallization mechanism. Scripta Mater 63:43–46CrossRef
52.
Zurück zum Zitat Mullis AM, Walker DJ, Batterby SE, Cochrane RF (2001) Deformation of dendrites by fluid flow during rapid solidification. Mater Sci Eng, A 245:304–306 Mullis AM, Walker DJ, Batterby SE, Cochrane RF (2001) Deformation of dendrites by fluid flow during rapid solidification. Mater Sci Eng, A 245:304–306
53.
Zurück zum Zitat Dragnevski K, Mullis AM, Walker DJ, Cochrane RF (2002) Mechanical deformation of dendrites by fluid flow during the solidification of undercooled melts. Acta Mater 50:3743–3755CrossRef Dragnevski K, Mullis AM, Walker DJ, Cochrane RF (2002) Mechanical deformation of dendrites by fluid flow during the solidification of undercooled melts. Acta Mater 50:3743–3755CrossRef
54.
Zurück zum Zitat Kozmel T, Vural M, Tin S (2015) EBSD analysis of high strain rate application Al–Cu based alloys. Mater Sci Eng, A 630:99–106CrossRef Kozmel T, Vural M, Tin S (2015) EBSD analysis of high strain rate application Al–Cu based alloys. Mater Sci Eng, A 630:99–106CrossRef
56.
Zurück zum Zitat Liu N, Chen C, Chang I, Zhou PJ, Wang XJ (2018) Compositional dependence of phase selection in CoCrCu0.1FeMoNi-based high-entropy alloy. Materials 11:1290–1300CrossRef Liu N, Chen C, Chang I, Zhou PJ, Wang XJ (2018) Compositional dependence of phase selection in CoCrCu0.1FeMoNi-based high-entropy alloy. Materials 11:1290–1300CrossRef
Metadaten
Titel
Rapid solidification of a FeSi intermetallic compound in undercooled melts: dendrite growth and microstructure transitions
verfasst von
Jianbao Zhang
Fan Zhang
Xuan Luo
Qing Zhou
Haifeng Wang
Publikationsdatum
06.12.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 9/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-04265-2

Weitere Artikel der Ausgabe 9/2020

Journal of Materials Science 9/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.