Skip to main content
Erschienen in: Rare Metals 8/2016

01.08.2016

Rare metals preparation by electro-reduction of solid compounds in high-temperature molten salts

verfasst von: Wei Xiao, Di-Hua Wang

Erschienen in: Rare Metals | Ausgabe 8/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Direct electro-reduction of solid compounds in molten salts is a simple and straightforward electrolytic metallurgical method, which outperforms traditional pyrometallurgical methods such as carbothermic and metallothermic reductions in terms of economic viability, energy efficiency and carbon footprint. To better highlight the features of the direct electro-reduction of solid compounds in molten salts in extraction of rare metals, the scope of this paper is focused on the know-how of the cathodic process of the direct electro-reduction of solid compounds in molten salts in extraction of rare refractory metals including Ti, Zr, Hf, V, Nb, Ta, Mo and W, and rare disperse metals including Ga and Ge. In line with an introduction of the basic concept of the method, the characteristics of reaction paths in different systems are summarized and the corresponding strategy on tailoring energy efficiency and microstructure of electrolytic products are rationalized. The economic competence of the method might be enhanced by extending the method to controllable production of rare metals with high added values, well-defined microstructure and intriguing functionality.

Graphical Abstract

Direct electro-reduction of solid compounds in high-temperature molten salts emerges as an affordable, green, and controllable preparation of rare metals, in which, reaction paths show a significant influence on energy efficiency, composition/microstructure of electrolytic products and the economic competence of the process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Ullmann F, Gerhartz W, Yamamoto Y, Campbell F, Pfefferkorn R, Rounsaville J. Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH; 1996. 1. Ullmann F, Gerhartz W, Yamamoto Y, Campbell F, Pfefferkorn R, Rounsaville J. Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH; 1996. 1.
[2]
Zurück zum Zitat Bard AJ, Faulkner LR. Electrochemical Methods-Fundamentals and Applications. 2nd ed. New York: Wiley; 2001. 1. Bard AJ, Faulkner LR. Electrochemical Methods-Fundamentals and Applications. 2nd ed. New York: Wiley; 2001. 1.
[3]
Zurück zum Zitat Grjotheim K, Krohn C, Malinovsky M, Matiasovsky K, Thonstad J. Aluminum Electrolysis. The Chemistry of the Hall–Heroult Process. Dusseldorf Aluminium-Verlag GmbH, 1977. 350. Grjotheim K, Krohn C, Malinovsky M, Matiasovsky K, Thonstad J. Aluminum Electrolysis. The Chemistry of the Hall–Heroult Process. Dusseldorf Aluminium-Verlag GmbH, 1977. 350.
[4]
Zurück zum Zitat Chen GZ, Fray DJ, Farthing TW. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature. 2000;407(6802):361.CrossRef Chen GZ, Fray DJ, Farthing TW. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature. 2000;407(6802):361.CrossRef
[5]
Zurück zum Zitat Xiao W, Wang DH. The electrochemical reduction processes of solid compounds in high temperature molten salts. Chem Soc Rev. 2014;43(10):3215.CrossRef Xiao W, Wang DH. The electrochemical reduction processes of solid compounds in high temperature molten salts. Chem Soc Rev. 2014;43(10):3215.CrossRef
[6]
Zurück zum Zitat Chen GZ, Gordo E, Fray DJ. Direct electrolytic preparation of chromium powder. Metall Mater Trans B. 2004;35(2):223.CrossRef Chen GZ, Gordo E, Fray DJ. Direct electrolytic preparation of chromium powder. Metall Mater Trans B. 2004;35(2):223.CrossRef
[7]
Zurück zum Zitat Jiang K, Hu XH, Ma M, Wang DH, Qiu GH, Jin XB, Chen GZ. “Perovskitization”-assisted electrochemical reduction of solid TiO2 in molten CaCl2. Angew Chem Int Ed. 2006;45(3):428.CrossRef Jiang K, Hu XH, Ma M, Wang DH, Qiu GH, Jin XB, Chen GZ. “Perovskitization”-assisted electrochemical reduction of solid TiO2 in molten CaCl2. Angew Chem Int Ed. 2006;45(3):428.CrossRef
[8]
Zurück zum Zitat Suzuki RO, Aizawa M, Ono K. Calcium-deoxidation of niobium and titanium in Ca-saturated CaCl2 molten salt. J Alloys Compd. 1999;288(1):173.CrossRef Suzuki RO, Aizawa M, Ono K. Calcium-deoxidation of niobium and titanium in Ca-saturated CaCl2 molten salt. J Alloys Compd. 1999;288(1):173.CrossRef
[9]
Zurück zum Zitat Ono K, Suzuki RO. A new concept for producing Ti sponge: calciothermic reduction. JOM. 2002;54(2):59.CrossRef Ono K, Suzuki RO. A new concept for producing Ti sponge: calciothermic reduction. JOM. 2002;54(2):59.CrossRef
[10]
Zurück zum Zitat Suzuki RO, Inoue S. Calciothermic reduction of titanium oxide in molten CaCl2. Metall Mater Trans B. 2003;34(3):277.CrossRef Suzuki RO, Inoue S. Calciothermic reduction of titanium oxide in molten CaCl2. Metall Mater Trans B. 2003;34(3):277.CrossRef
[11]
Zurück zum Zitat Choi EY, Jeong SM. Electrochemical processing of spent nuclear fuels: an overview of oxide reduction in pyroprocessing technology. Prog Nat Sci. 2015;25:572.CrossRef Choi EY, Jeong SM. Electrochemical processing of spent nuclear fuels: an overview of oxide reduction in pyroprocessing technology. Prog Nat Sci. 2015;25:572.CrossRef
[12]
Zurück zum Zitat Wang DH, Jin XB, Chen GZ. Solid state reactions: an electrochemical approach in molten salts. Ann Rep Sect C (Phys Chem). 2008;104:89. Wang DH, Jin XB, Chen GZ. Solid state reactions: an electrochemical approach in molten salts. Ann Rep Sect C (Phys Chem). 2008;104:89.
[13]
Zurück zum Zitat Abdelkader AM, Kilby KT, Cox A, Fray DJ. DC voltammetry of electro-deoxidation of solid oxides. Chem Rev. 2013;113(5):2863.CrossRef Abdelkader AM, Kilby KT, Cox A, Fray DJ. DC voltammetry of electro-deoxidation of solid oxides. Chem Rev. 2013;113(5):2863.CrossRef
[14]
Zurück zum Zitat Wang DH, Xiao W. 9—Inert anode development for high-temperature molten salts. In: Lantelme F, Groult H, editors. Molten Salts Chemistry. Oxford: Elsevier; 2013. 171. Wang DH, Xiao W. 9—Inert anode development for high-temperature molten salts. In: Lantelme F, Groult H, editors. Molten Salts Chemistry. Oxford: Elsevier; 2013. 171.
[15]
Zurück zum Zitat Jin XB, Gao P, Wang DH, Hu XH, Chen GZ. Electrochemical preparation of silicon and its alloys from solid oxides in molten calcium chloride. Angew Chem Int Ed. 2004;43(116):733.CrossRef Jin XB, Gao P, Wang DH, Hu XH, Chen GZ. Electrochemical preparation of silicon and its alloys from solid oxides in molten calcium chloride. Angew Chem Int Ed. 2004;43(116):733.CrossRef
[16]
Zurück zum Zitat Li W, Jin XB, Huang FL, Chen GZ. Metal-to-oxide molar volume ratio: the overlooked barrier to solid-state electroreduction and a “green” bypass through recyclable NH4HCO3. Angew Chem Int Ed. 2010;49(18):3203.CrossRef Li W, Jin XB, Huang FL, Chen GZ. Metal-to-oxide molar volume ratio: the overlooked barrier to solid-state electroreduction and a “green” bypass through recyclable NH4HCO3. Angew Chem Int Ed. 2010;49(18):3203.CrossRef
[17]
Zurück zum Zitat Xiao W, Jin XB, Deng Y, Wang DH, Hu XH, Chen GZ. Electrochemically driven three-phase interlines into insulator compounds: electroreduction of solid SiO2 in molten CaCl2. ChemPhysChem. 2006;7(8):1750.CrossRef Xiao W, Jin XB, Deng Y, Wang DH, Hu XH, Chen GZ. Electrochemically driven three-phase interlines into insulator compounds: electroreduction of solid SiO2 in molten CaCl2. ChemPhysChem. 2006;7(8):1750.CrossRef
[18]
Zurück zum Zitat Ma M, Wang DH, Hu XH, Jin XB, Chen GZ. A direct electrochemical route from ilmenite to hydrogen-storage ferrotitanium alloys. Chem Eur J. 2006;12(19):5075.CrossRef Ma M, Wang DH, Hu XH, Jin XB, Chen GZ. A direct electrochemical route from ilmenite to hydrogen-storage ferrotitanium alloys. Chem Eur J. 2006;12(19):5075.CrossRef
[19]
Zurück zum Zitat Zhu Y, Ma M, Wang DH, Jiang K, Hu XH, Jin XB, Chen GZ. Electrolytic reduction of mixed solid oxides in molten salts for energy efficient production of the TiNi alloy. Chin Sci Bull. 2006;51(20):2535.CrossRef Zhu Y, Ma M, Wang DH, Jiang K, Hu XH, Jin XB, Chen GZ. Electrolytic reduction of mixed solid oxides in molten salts for energy efficient production of the TiNi alloy. Chin Sci Bull. 2006;51(20):2535.CrossRef
[20]
Zurück zum Zitat Peng JJ, Chen HL, Jin XB, Wang T, Wang DH, Chen GZ. Phase-tunable fabrication of consolidated (alpha plus beta)-TiZr alloys for biomedical applications through molten salt electrolysis of solid oxides. Chem Mater. 2009;21(21):5187.CrossRef Peng JJ, Chen HL, Jin XB, Wang T, Wang DH, Chen GZ. Phase-tunable fabrication of consolidated (alpha plus beta)-TiZr alloys for biomedical applications through molten salt electrolysis of solid oxides. Chem Mater. 2009;21(21):5187.CrossRef
[21]
Zurück zum Zitat Peng JJ, Zhu Y, Wang DH, Jin XB, Chen GZ. Direct and low energy electrolytic co-reduction of mixed oxides to zirconium-based multi-phase hydrogen storage alloys in molten salts. J Mater Chem. 2009;19(18):2803.CrossRef Peng JJ, Zhu Y, Wang DH, Jin XB, Chen GZ. Direct and low energy electrolytic co-reduction of mixed oxides to zirconium-based multi-phase hydrogen storage alloys in molten salts. J Mater Chem. 2009;19(18):2803.CrossRef
[22]
Zurück zum Zitat Peng JJ, Jiang K, Xiao W, Wang DH, Jin XB, Chen GZ. Electrochemical conversion of oxide precursors to consolidated Zr and Zr–2.5Nb tubes. Chem Mater. 2008;20(23):7274.CrossRef Peng JJ, Jiang K, Xiao W, Wang DH, Jin XB, Chen GZ. Electrochemical conversion of oxide precursors to consolidated Zr and Zr–2.5Nb tubes. Chem Mater. 2008;20(23):7274.CrossRef
[23]
Zurück zum Zitat Hu D, Xiao W, Chen GZ. Near-net-shape production of hollow titanium alloy components via electrochemical reduction of metal oxide precursors in molten salts. Metall Mater Trans B. 2013;44(2):272.CrossRef Hu D, Xiao W, Chen GZ. Near-net-shape production of hollow titanium alloy components via electrochemical reduction of metal oxide precursors in molten salts. Metall Mater Trans B. 2013;44(2):272.CrossRef
[24]
Zurück zum Zitat Zou XL, Lu XG, Zhou ZF, Xiao W, Zhong QD, Li CH, Ding WZ. Electrochemical extraction of Ti5Si3 silicide from multicomponent Ti/Si-containing metal oxide compounds in molten salt. J Mater Chem A. 2014;2(20):7421.CrossRef Zou XL, Lu XG, Zhou ZF, Xiao W, Zhong QD, Li CH, Ding WZ. Electrochemical extraction of Ti5Si3 silicide from multicomponent Ti/Si-containing metal oxide compounds in molten salt. J Mater Chem A. 2014;2(20):7421.CrossRef
[25]
Zurück zum Zitat Tang DD, Xiao W, Tian LF, Wang DH. Electrosynthesis of Ti2CO n from TiO2/C composite in molten CaCl2: effect of electrolysis voltage and duration. J Electrochem Soc. 2013;160(11):F1192.CrossRef Tang DD, Xiao W, Tian LF, Wang DH. Electrosynthesis of Ti2CO n from TiO2/C composite in molten CaCl2: effect of electrolysis voltage and duration. J Electrochem Soc. 2013;160(11):F1192.CrossRef
[26]
Zurück zum Zitat Abdelkader AM, Fray DJ. Electrochemical synthesis of hafnium carbide powder in molten chloride bath and its densification. J Eur Ceram Soc. 2012;32(16):4481.CrossRef Abdelkader AM, Fray DJ. Electrochemical synthesis of hafnium carbide powder in molten chloride bath and its densification. J Eur Ceram Soc. 2012;32(16):4481.CrossRef
[27]
Zurück zum Zitat Abdelkader AM, Fray DJ. Electro-deoxidation of hafnium dioxide and niobia-doped hafnium dioxide in molten calcium chloride. Electrochim Acta. 2012;64:10.CrossRef Abdelkader AM, Fray DJ. Electro-deoxidation of hafnium dioxide and niobia-doped hafnium dioxide in molten calcium chloride. Electrochim Acta. 2012;64:10.CrossRef
[28]
Zurück zum Zitat Wang BX, Bhagat R, Lan XZ, Dashwood RJ. Production of Ni–35Ti–15Hf alloy via the FFC Cambridge process. J Electrochem Soc. 2011;158(10):D595.CrossRef Wang BX, Bhagat R, Lan XZ, Dashwood RJ. Production of Ni–35Ti–15Hf alloy via the FFC Cambridge process. J Electrochem Soc. 2011;158(10):D595.CrossRef
[29]
Zurück zum Zitat Jiao SQ, Zhang LL, Zhu HM, Fray DJ. Production of NiTi shape memory alloys via electro-deoxidation utilizing an inert anode. Electrochim Acta. 2010;55(23):7016.CrossRef Jiao SQ, Zhang LL, Zhu HM, Fray DJ. Production of NiTi shape memory alloys via electro-deoxidation utilizing an inert anode. Electrochim Acta. 2010;55(23):7016.CrossRef
[30]
Zurück zum Zitat Abdelkader AM, Fray DJ. Direct electrochemical preparation of Nb–10Hf–1Ti alloy. Electrochim Acta. 2010;55(8):2924.CrossRef Abdelkader AM, Fray DJ. Direct electrochemical preparation of Nb–10Hf–1Ti alloy. Electrochim Acta. 2010;55(8):2924.CrossRef
[31]
Zurück zum Zitat Bhagat R, Jackson M, Inman D, Dashwood R. The production of Ti–Mo alloys from mixed oxide precursors via the FFC cambridge process. J Electrochem Soc. 2008;155(6):E63.CrossRef Bhagat R, Jackson M, Inman D, Dashwood R. The production of Ti–Mo alloys from mixed oxide precursors via the FFC cambridge process. J Electrochem Soc. 2008;155(6):E63.CrossRef
[32]
Zurück zum Zitat Dring K, Bhagat R, Jackson M, Dashwood R, Inman D. Direct electrochemical production of Ti–10W alloys from mixed oxide preform precursors. J Alloys Compd. 2006;419(1):103.CrossRef Dring K, Bhagat R, Jackson M, Dashwood R, Inman D. Direct electrochemical production of Ti–10W alloys from mixed oxide preform precursors. J Alloys Compd. 2006;419(1):103.CrossRef
[33]
Zurück zum Zitat Yan XY, Fray DJ. Electrosynthesis of NbTi and Nb3Sn superconductors from oxide precursors in CaCl2-based melts. Adv Funct Mater. 2005;15(11):1757.CrossRef Yan XY, Fray DJ. Electrosynthesis of NbTi and Nb3Sn superconductors from oxide precursors in CaCl2-based melts. Adv Funct Mater. 2005;15(11):1757.CrossRef
[34]
Zurück zum Zitat Wu T, Jin XB, Xiao W, Hu XH, Wang DH, Chen GZ. Thin pellets: fast electrochemical preparation of capacitor tantalum powders. Chem Mater. 2007;19(2):153.CrossRef Wu T, Jin XB, Xiao W, Hu XH, Wang DH, Chen GZ. Thin pellets: fast electrochemical preparation of capacitor tantalum powders. Chem Mater. 2007;19(2):153.CrossRef
[35]
Zurück zum Zitat Wu T, Xiao W, Jin XB, Liu C, Wang DH, Chen GZ. Computer-aided control of electrolysis of solid Nb2O5 in molten CaCl2. Phys Chem Chem Phys. 2008;10(13):1809.CrossRef Wu T, Xiao W, Jin XB, Liu C, Wang DH, Chen GZ. Computer-aided control of electrolysis of solid Nb2O5 in molten CaCl2. Phys Chem Chem Phys. 2008;10(13):1809.CrossRef
[36]
Zurück zum Zitat Cai ZF, Zhang ZM, Guo ZC, Tang HQ. Direct electrochemical reduction of solid vanadium oxide to metal vanadium at low temperature in molten CaCl2–NaCl. Int J Miner Metall Mater. 2012;19(6):499.CrossRef Cai ZF, Zhang ZM, Guo ZC, Tang HQ. Direct electrochemical reduction of solid vanadium oxide to metal vanadium at low temperature in molten CaCl2–NaCl. Int J Miner Metall Mater. 2012;19(6):499.CrossRef
[37]
Zurück zum Zitat Lang XC, Xie HW, Zhai YC, Zou XY. Preparation and the reaction mechanism of vanadium carbide by electrochemical reduction of the cathode self-sintered in molten CaCl2 salt. Rare Metal Mater Eng. 2014;43(10):2515. Lang XC, Xie HW, Zhai YC, Zou XY. Preparation and the reaction mechanism of vanadium carbide by electrochemical reduction of the cathode self-sintered in molten CaCl2 salt. Rare Metal Mater Eng. 2014;43(10):2515.
[38]
Zurück zum Zitat Meng FK, Lu HM. Direct electrochemical preparation of NbSi alloys from mixed oxide preform precursors. Adv Eng Mater. 2009;11(3):198.CrossRef Meng FK, Lu HM. Direct electrochemical preparation of NbSi alloys from mixed oxide preform precursors. Adv Eng Mater. 2009;11(3):198.CrossRef
[39]
Zurück zum Zitat Wang T, Gao HP, Jin XB, Chen HL, Peng JJ, Chen GZ. Electrolysis of solid metal sulfide to metal and sulfur in molten NaCl–KCl. Electrochem Commun. 2011;13(12):1492.CrossRef Wang T, Gao HP, Jin XB, Chen HL, Peng JJ, Chen GZ. Electrolysis of solid metal sulfide to metal and sulfur in molten NaCl–KCl. Electrochem Commun. 2011;13(12):1492.CrossRef
[40]
Zurück zum Zitat Li GM, Wang DH, Jin XB, Chen GZ. Electrolysis of solid MoS2 in molten CaCl2 for Mo extraction without CO2 emission. Electrochem Commun. 2007;9(8):1951.CrossRef Li GM, Wang DH, Jin XB, Chen GZ. Electrolysis of solid MoS2 in molten CaCl2 for Mo extraction without CO2 emission. Electrochem Commun. 2007;9(8):1951.CrossRef
[41]
Zurück zum Zitat Gao HP, Tan MS, Rong LB, Wang ZY, Peng JJ, Jin XB, Chen GZ. Preparation of Mo nanopowders through electroreduction of solid MoS2 in molten KCl–NaCl. Phys Chem Chem Phys. 2014;16(36):19514.CrossRef Gao HP, Tan MS, Rong LB, Wang ZY, Peng JJ, Jin XB, Chen GZ. Preparation of Mo nanopowders through electroreduction of solid MoS2 in molten KCl–NaCl. Phys Chem Chem Phys. 2014;16(36):19514.CrossRef
[42]
Zurück zum Zitat Tang DD, Xiao W, Yin HY, Tian LF, Wang DH. Production of fine tungsten powder by electrolytic reduction of solid CaWO4 in molten salt. J Electrochem Soc. 2012;159(6):E139.CrossRef Tang DD, Xiao W, Yin HY, Tian LF, Wang DH. Production of fine tungsten powder by electrolytic reduction of solid CaWO4 in molten salt. J Electrochem Soc. 2012;159(6):E139.CrossRef
[43]
Zurück zum Zitat Erdogan M, Karakaya I. Electrochemical reduction of tungsten compounds to produce tungsten powder. Metall Mater Trans B. 2010;41(4):798.CrossRef Erdogan M, Karakaya I. Electrochemical reduction of tungsten compounds to produce tungsten powder. Metall Mater Trans B. 2010;41(4):798.CrossRef
[44]
Zurück zum Zitat Erdogan M, Karakaya I. On the electrochemical reduction mechanism of CaWO4 to W powder. Metall Mater Trans B. 2012;43(4):667.CrossRef Erdogan M, Karakaya I. On the electrochemical reduction mechanism of CaWO4 to W powder. Metall Mater Trans B. 2012;43(4):667.CrossRef
[45]
Zurück zum Zitat Ge XL, Wang XD, Seetharaman S. Copper extraction from copper ore by electro-reduction in molten CaCl2–NaCl. Acta Electrochim. 2009;54(18):4397.CrossRef Ge XL, Wang XD, Seetharaman S. Copper extraction from copper ore by electro-reduction in molten CaCl2–NaCl. Acta Electrochim. 2009;54(18):4397.CrossRef
[46]
Zurück zum Zitat Muir Wood AJ, Copcutt RC, Chen GZ, Fray DJ. Electrochemical fabrication of nickel manganese gallium alloy powder. Adv Eng Mater. 2003;5(9):650.CrossRef Muir Wood AJ, Copcutt RC, Chen GZ, Fray DJ. Electrochemical fabrication of nickel manganese gallium alloy powder. Adv Eng Mater. 2003;5(9):650.CrossRef
[47]
Zurück zum Zitat Xiao W, Jin XB, Chen GZ. Up-scalable and controllable electrolytic production of photo-responsive nanostructured silicon. J Mater Chem A. 2013;1(35):10243.CrossRef Xiao W, Jin XB, Chen GZ. Up-scalable and controllable electrolytic production of photo-responsive nanostructured silicon. J Mater Chem A. 2013;1(35):10243.CrossRef
[48]
Zurück zum Zitat Xiao W, Jin XB, Deng Y, Wang DH, Chen GZ. Rationalisation and optimisation of solid state electro-reduction of SiO2 to Si in molten CaCl2 in accordance with dynamic three-phase interlines based voltammetry. J Electroanal Chem. 2010;639(1):130.CrossRef Xiao W, Jin XB, Deng Y, Wang DH, Chen GZ. Rationalisation and optimisation of solid state electro-reduction of SiO2 to Si in molten CaCl2 in accordance with dynamic three-phase interlines based voltammetry. J Electroanal Chem. 2010;639(1):130.CrossRef
[49]
Zurück zum Zitat Xiao W, Wang X, Yin HY, Zhu H, Mao XH, Wang DH. Verification and implications of the dissolution-electrodeposition process during the electro-reduction of solid silica in molten CaCl2. RSC Adv. 2012;2(19):7588.CrossRef Xiao W, Wang X, Yin HY, Zhu H, Mao XH, Wang DH. Verification and implications of the dissolution-electrodeposition process during the electro-reduction of solid silica in molten CaCl2. RSC Adv. 2012;2(19):7588.CrossRef
[50]
Zurück zum Zitat Yang JY, Lu SG, Kan SR, Zhang XJ, Du J. Electrochemical preparation of silicon nanowires from nanometre silica in molten calcium chloride. Chem Commun. 2009;22:3273.CrossRef Yang JY, Lu SG, Kan SR, Zhang XJ, Du J. Electrochemical preparation of silicon nanowires from nanometre silica in molten calcium chloride. Chem Commun. 2009;22:3273.CrossRef
[51]
Zurück zum Zitat Yin HY, Xiao W, Mao XH, Zhu H, Wang DH. Preparation of a porous nanostructured germanium from GeO2 via a “reduction–alloying–dealloying” approach. J Mater Chem A. 2015;3(4):1427.CrossRef Yin HY, Xiao W, Mao XH, Zhu H, Wang DH. Preparation of a porous nanostructured germanium from GeO2 via a “reduction–alloying–dealloying” approach. J Mater Chem A. 2015;3(4):1427.CrossRef
[52]
Zurück zum Zitat Yin HY, Xiao W, Mao XH, Wei WF, Zhu H, Wang DH. Template-free electrosynthesis of crystalline germanium nanowires from solid germanium oxide in molten CaCl2–NaCl. Electrochim Acta. 2013;102:369.CrossRef Yin HY, Xiao W, Mao XH, Wei WF, Zhu H, Wang DH. Template-free electrosynthesis of crystalline germanium nanowires from solid germanium oxide in molten CaCl2–NaCl. Electrochim Acta. 2013;102:369.CrossRef
[53]
Zurück zum Zitat Zhao J, Li J, Ying P, Zhang W, Meng L, Li C. Facile synthesis of freestanding Si nanowire arrays by one-step template-free electro-deoxidation of SiO2 in a molten salt. Chem Commun. 2013;49(40):4477.CrossRef Zhao J, Li J, Ying P, Zhang W, Meng L, Li C. Facile synthesis of freestanding Si nanowire arrays by one-step template-free electro-deoxidation of SiO2 in a molten salt. Chem Commun. 2013;49(40):4477.CrossRef
[54]
Zurück zum Zitat Rong LB, He R, Wang ZY, Peng JJ, Jin XB, Chen GZ. Investigation of electrochemical reduction of GeO2 to Ge in molten CaCl2–NaCl. Electrochim Acta. 2014;147:352.CrossRef Rong LB, He R, Wang ZY, Peng JJ, Jin XB, Chen GZ. Investigation of electrochemical reduction of GeO2 to Ge in molten CaCl2–NaCl. Electrochim Acta. 2014;147:352.CrossRef
Metadaten
Titel
Rare metals preparation by electro-reduction of solid compounds in high-temperature molten salts
verfasst von
Wei Xiao
Di-Hua Wang
Publikationsdatum
01.08.2016
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 8/2016
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-016-0778-4

Weitere Artikel der Ausgabe 8/2016

Rare Metals 8/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.