Skip to main content

2013 | OriginalPaper | Buchkapitel

11. Reactive Dynamics in Confined Water by Reversed Micelles

verfasst von : Minako Kondo, Ismael A. Heisler, Stephen R. Meech

Erschienen in: Nanodroplets

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The excited state reactive dynamics of the fluorescence dye molecule, Auramine O, were studied in the confined water environment in reversed micelles formed by ionic and nonionic surfactants. The fluorescence decays were measured by the fluorescence up-conversion method with a time resolution of <70 fs. The time-resolved fluorescence spectra were recreated and analysed using a one-dimensional generalised Smoluchowski equation assuming a time-dependent diffusion coefficient. The fluorescence decay times measured showed a dependence on water droplet sizes, and the reaction time was significantly slowed down in the smallest reversed micelles by both ionic AOT and nonionic surfactant. The reactive friction estimated from the Smoluchowski analysis was enhanced in the confined media which shows good agreement with the reaction times. Therefore, we found out that the interfacial charges are not required for the suppression of the reaction. Interestingly, the slower reaction dynamics were measured in nonionic surfactant reversed micelles than that in reversed micelles by AOT, even when Auramine O is in a similar size of water droplet.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ball, P.: Life’s Matrix: A Biography of Water. Farrar, Straus and Grioux, New York, NY (1999) Ball, P.: Life’s Matrix: A Biography of Water. Farrar, Straus and Grioux, New York, NY (1999)
2.
Zurück zum Zitat Ball, P.: Water as an active constituent in cell biology. Chem. Rev. 108(1), 74–108 (2008)CrossRef Ball, P.: Water as an active constituent in cell biology. Chem. Rev. 108(1), 74–108 (2008)CrossRef
3.
Zurück zum Zitat Ball, P.: Water: water – an enduring mystery. Nature 452(7185), 291–292 (2008)CrossRef Ball, P.: Water: water – an enduring mystery. Nature 452(7185), 291–292 (2008)CrossRef
4.
Zurück zum Zitat Bakker, H.J., Skinner, J.L.: Vibrational spectroscopy as a probe of structure and dynamics in liquid water. Chem. Rev. 110(3), 1498–1517 (2010)CrossRef Bakker, H.J., Skinner, J.L.: Vibrational spectroscopy as a probe of structure and dynamics in liquid water. Chem. Rev. 110(3), 1498–1517 (2010)CrossRef
5.
Zurück zum Zitat Laage, D., Hynes, J.T.: A molecular jump mechanism of water reorientation. Science 311(5762), 832–835 (2006)CrossRef Laage, D., Hynes, J.T.: A molecular jump mechanism of water reorientation. Science 311(5762), 832–835 (2006)CrossRef
6.
Zurück zum Zitat Modig, K., et al.: Water dynamics in the large cavity of three lipid-binding proteins monitored by O-17 magnetic relaxation dispersion. J. Mol. Biol. 332(4), 965–977 (2003)CrossRef Modig, K., et al.: Water dynamics in the large cavity of three lipid-binding proteins monitored by O-17 magnetic relaxation dispersion. J. Mol. Biol. 332(4), 965–977 (2003)CrossRef
7.
Zurück zum Zitat Mallick, A., Haldar, B., Chattopadhyay, N.: Spectroscopic investigation on the interaction of ICT probe 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinolizine with serum albumins. J. Phys. Chem. B 109(30), 14683–14690 (2005)CrossRef Mallick, A., Haldar, B., Chattopadhyay, N.: Spectroscopic investigation on the interaction of ICT probe 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinolizine with serum albumins. J. Phys. Chem. B 109(30), 14683–14690 (2005)CrossRef
8.
Zurück zum Zitat Mellman, I.: Endocytosis and molecular sorting. Annu. Rev. Cell Dev. Biol. 12, 575–625 (1996)CrossRef Mellman, I.: Endocytosis and molecular sorting. Annu. Rev. Cell Dev. Biol. 12, 575–625 (1996)CrossRef
9.
Zurück zum Zitat Sawant, P.D., Ramaniah, L.M., Manohar, C.: Capacity of nano-reactors of AOT micro-emulsions to form and sustain ultra small semiconductor quantum dots. J. Nanosci. Nanotechnol. 6(1), 241–247 (2006) Sawant, P.D., Ramaniah, L.M., Manohar, C.: Capacity of nano-reactors of AOT micro-emulsions to form and sustain ultra small semiconductor quantum dots. J. Nanosci. Nanotechnol. 6(1), 241–247 (2006)
10.
Zurück zum Zitat Petit, C., et al.: Oil-in-water micellar solution used to synthesize CdS particles – structural study and photoelectron transfer-reaction. Langmuir 10(12), 4446–4450 (1994)CrossRef Petit, C., et al.: Oil-in-water micellar solution used to synthesize CdS particles – structural study and photoelectron transfer-reaction. Langmuir 10(12), 4446–4450 (1994)CrossRef
11.
Zurück zum Zitat Pileni, M.P.: Reverse micelles as microreactors. J. Phys. Chem. 97(27), 6961–6973 (1993)CrossRef Pileni, M.P.: Reverse micelles as microreactors. J. Phys. Chem. 97(27), 6961–6973 (1993)CrossRef
12.
Zurück zum Zitat Wang, W.Z., et al.: Synthesis of US nanoparticles by a novel and simple one-step, solid-state reaction in the presence of a nonionic surfactant. Mater. Lett. 57(18), 2755–2760 (2003)CrossRef Wang, W.Z., et al.: Synthesis of US nanoparticles by a novel and simple one-step, solid-state reaction in the presence of a nonionic surfactant. Mater. Lett. 57(18), 2755–2760 (2003)CrossRef
13.
Zurück zum Zitat Oldfield, C., Freedman, R.B., Robinson, B.H.: Enzyme hyperactivity in AOT water-in-oil microemulsions is induced by ‘lone’ sodium counterions in the water-pool. Faraday Discuss. 129, 247–263 (2005)CrossRef Oldfield, C., Freedman, R.B., Robinson, B.H.: Enzyme hyperactivity in AOT water-in-oil microemulsions is induced by ‘lone’ sodium counterions in the water-pool. Faraday Discuss. 129, 247–263 (2005)CrossRef
14.
Zurück zum Zitat Cringus, D., et al.: Ultrafast energy transfer in water-AOT reverse micelles. J. Phys. Chem. B 111(51), 14193–14207 (2007)CrossRef Cringus, D., et al.: Ultrafast energy transfer in water-AOT reverse micelles. J. Phys. Chem. B 111(51), 14193–14207 (2007)CrossRef
15.
Zurück zum Zitat Mallick, A., Purkayastha, P., Chattopadhyay, N.: Photoprocesses of excited molecules in confined liquid environments: an overview. J. Photochem. Photobiol. C Photochem. Rev. 8(3), 109–127 (2007)CrossRef Mallick, A., Purkayastha, P., Chattopadhyay, N.: Photoprocesses of excited molecules in confined liquid environments: an overview. J. Photochem. Photobiol. C Photochem. Rev. 8(3), 109–127 (2007)CrossRef
16.
Zurück zum Zitat Bhattacharyya, K.: Solvation dynamics and proton transfer in supramolecular assemblies. Acc. Chem. Res. 36(2), 95–101 (2003)CrossRef Bhattacharyya, K.: Solvation dynamics and proton transfer in supramolecular assemblies. Acc. Chem. Res. 36(2), 95–101 (2003)CrossRef
17.
Zurück zum Zitat Bhattacharyya, K., Bagchi, B.: Slow dynamics of constrained water in complex geometries. J. Phys. Chem. A 104(46), 10603–10613 (2000)CrossRef Bhattacharyya, K., Bagchi, B.: Slow dynamics of constrained water in complex geometries. J. Phys. Chem. A 104(46), 10603–10613 (2000)CrossRef
18.
Zurück zum Zitat Persson, E., Halle, B.: Cell water dynamics on multiple time scales. Proc. Natl. Acad. Sci. USA 105(17), 6266–6271 (2008)CrossRef Persson, E., Halle, B.: Cell water dynamics on multiple time scales. Proc. Natl. Acad. Sci. USA 105(17), 6266–6271 (2008)CrossRef
19.
Zurück zum Zitat Heisler, I.A., Kondo, M., Meech, S.R.: Reactive dynamics in confined liquids: ultrafast torsional dynamics of Auramine O in nanoconfined water in aerosol OT reverse micelles. J. Phys. Chem. B 113(6), 1623–1631 (2009)CrossRef Heisler, I.A., Kondo, M., Meech, S.R.: Reactive dynamics in confined liquids: ultrafast torsional dynamics of Auramine O in nanoconfined water in aerosol OT reverse micelles. J. Phys. Chem. B 113(6), 1623–1631 (2009)CrossRef
20.
Zurück zum Zitat Kondo, M., Heisler, I.A., Meech, S.R.: Ultrafast reaction dynamics in nanoscale water droplets confined by ionic surfactants. Faraday Discuss. 145, 185–203 (2010)CrossRef Kondo, M., Heisler, I.A., Meech, S.R.: Ultrafast reaction dynamics in nanoscale water droplets confined by ionic surfactants. Faraday Discuss. 145, 185–203 (2010)CrossRef
21.
Zurück zum Zitat Kondo, M., Heisler, I.A., Meech, S.R.: Reactive dynamics in micelles: Auramine O in solution and adsorbed on regular micelles. J. Phys. Chem. B 114(40), 12859–12865 (2010)CrossRef Kondo, M., Heisler, I.A., Meech, S.R.: Reactive dynamics in micelles: Auramine O in solution and adsorbed on regular micelles. J. Phys. Chem. B 114(40), 12859–12865 (2010)CrossRef
22.
Zurück zum Zitat Kondo, M., et al.: Reactive dynamics in confined liquids: interfacial charge effects on ultrafast torsional dynamics in water nanodroplets. J. Phys. Chem. B 113(6), 1632–1639 (2009)CrossRef Kondo, M., et al.: Reactive dynamics in confined liquids: interfacial charge effects on ultrafast torsional dynamics in water nanodroplets. J. Phys. Chem. B 113(6), 1632–1639 (2009)CrossRef
23.
Zurück zum Zitat Chen, S.H.: Small-angle neutron-scattering studies of the structure and interaction in micellar and microemulsion systems. Annu. Rev. Phys. Chem. 37, 351–399 (1986)CrossRef Chen, S.H.: Small-angle neutron-scattering studies of the structure and interaction in micellar and microemulsion systems. Annu. Rev. Phys. Chem. 37, 351–399 (1986)CrossRef
24.
Zurück zum Zitat Clint, J.H.: Surfactant Aggregation (1992) Clint, J.H.: Surfactant Aggregation (1992)
25.
Zurück zum Zitat Riter, R.E., Undiks, E.P., Levinger, N.E.: Impact of counterion on water motion in aerosol OT reverse micelles. J. Am. Chem. Soc. 120(24), 6062–6067 (1998)CrossRef Riter, R.E., Undiks, E.P., Levinger, N.E.: Impact of counterion on water motion in aerosol OT reverse micelles. J. Am. Chem. Soc. 120(24), 6062–6067 (1998)CrossRef
26.
Zurück zum Zitat Piletic, I.R., Tan, H.S., Fayer, M.D.: Dynamics of nanoscopic water: vibrational echo and infrared pump-probe studies of reverse micelles. J. Phys. Chem. B 109(45), 21273–21284 (2005)CrossRef Piletic, I.R., Tan, H.S., Fayer, M.D.: Dynamics of nanoscopic water: vibrational echo and infrared pump-probe studies of reverse micelles. J. Phys. Chem. B 109(45), 21273–21284 (2005)CrossRef
27.
Zurück zum Zitat Piletic, I.R., et al.: Testing the core/shell model of nanoconfined water in reverse micelles using linear and nonlinear IR spectroscopy. J. Phys. Chem. A 110(15), 4985–4999 (2006)CrossRef Piletic, I.R., et al.: Testing the core/shell model of nanoconfined water in reverse micelles using linear and nonlinear IR spectroscopy. J. Phys. Chem. A 110(15), 4985–4999 (2006)CrossRef
28.
Zurück zum Zitat Harpham, M.R., Ladanyi, B.M., Levinger, N.E.: The effect of the counterion on water mobility in reverse micelles studied by molecular dynamics simulations. J. Phys. Chem. B 109(35), 16891–16900 (2005)CrossRef Harpham, M.R., Ladanyi, B.M., Levinger, N.E.: The effect of the counterion on water mobility in reverse micelles studied by molecular dynamics simulations. J. Phys. Chem. B 109(35), 16891–16900 (2005)CrossRef
29.
Zurück zum Zitat Rees, G.D., Robinson, B.H.: Microemulsions and organogels – properties and novel applications. Adv. Mater. 5(9), 608–619 (1993)CrossRef Rees, G.D., Robinson, B.H.: Microemulsions and organogels – properties and novel applications. Adv. Mater. 5(9), 608–619 (1993)CrossRef
30.
Zurück zum Zitat Rey, R., Moller, K.B., Hynes, J.T.: Hydrogen bond dynamics in water and ultrafast infrared spectroscopy. J. Phys. Chem. A 106(50), 11993–11996 (2002)CrossRef Rey, R., Moller, K.B., Hynes, J.T.: Hydrogen bond dynamics in water and ultrafast infrared spectroscopy. J. Phys. Chem. A 106(50), 11993–11996 (2002)CrossRef
31.
Zurück zum Zitat Onori, G., Santucci, A.: IR investigations of water-structure in aerosol OT reverse micellar aggregates. J. Phys. Chem. 97(20), 5430–5434 (1993)CrossRef Onori, G., Santucci, A.: IR investigations of water-structure in aerosol OT reverse micellar aggregates. J. Phys. Chem. 97(20), 5430–5434 (1993)CrossRef
32.
Zurück zum Zitat Faeder, J., Ladanyi, B.M.: Molecular dynamics simulations of the interior of aqueous reverse micelles. J. Phys. Chem. B 104(5), 1033–1046 (2000)CrossRef Faeder, J., Ladanyi, B.M.: Molecular dynamics simulations of the interior of aqueous reverse micelles. J. Phys. Chem. B 104(5), 1033–1046 (2000)CrossRef
33.
Zurück zum Zitat Moilanen, D.E., et al.: Water dynamics in large and small reverse micelles: from two ensembles to collective behavior. J. Chem. Phys. 131(1), 014704 (2009)CrossRef Moilanen, D.E., et al.: Water dynamics in large and small reverse micelles: from two ensembles to collective behavior. J. Chem. Phys. 131(1), 014704 (2009)CrossRef
34.
Zurück zum Zitat Riter, R.E., Willard, D.M., Levinger, N.E.: Water immobilization at surfactant interfaces in reverse micelles. J. Phys. Chem. B 102(15), 2705–2714 (1998)CrossRef Riter, R.E., Willard, D.M., Levinger, N.E.: Water immobilization at surfactant interfaces in reverse micelles. J. Phys. Chem. B 102(15), 2705–2714 (1998)CrossRef
35.
Zurück zum Zitat Datta, A., et al.: Intramolecular charge transfer processes in confined systems. Nile red in reverse micelles. J. Phys. Chem. B 101(49), 10221–10225 (1997)CrossRef Datta, A., et al.: Intramolecular charge transfer processes in confined systems. Nile red in reverse micelles. J. Phys. Chem. B 101(49), 10221–10225 (1997)CrossRef
36.
Zurück zum Zitat Levinger, N.E.: Ultrafast dynamics in reverse micelles, microemulsions, and vesicles. Curr. Opin. Colloid Interface Sci. 5(1–2), 118–124 (2000)CrossRef Levinger, N.E.: Ultrafast dynamics in reverse micelles, microemulsions, and vesicles. Curr. Opin. Colloid Interface Sci. 5(1–2), 118–124 (2000)CrossRef
37.
Zurück zum Zitat Satoh, T., et al.: Excitation wavelength dependence of solvation dynamics in a water pool of a reversed micelle. Chem. Lett. 33(9), 1090–1091 (2004)CrossRef Satoh, T., et al.: Excitation wavelength dependence of solvation dynamics in a water pool of a reversed micelle. Chem. Lett. 33(9), 1090–1091 (2004)CrossRef
38.
Zurück zum Zitat Heisler, I.A., Mazur, K., Meech, S.R.: Low-frequency modes of aqueous alkali halide solutions: an ultrafast optical Kerr effect study. J. Phys. Chem. B 115(8), 1863–1873 (2011)CrossRef Heisler, I.A., Mazur, K., Meech, S.R.: Low-frequency modes of aqueous alkali halide solutions: an ultrafast optical Kerr effect study. J. Phys. Chem. B 115(8), 1863–1873 (2011)CrossRef
39.
Zurück zum Zitat Heisler, I.A., Meech, S.R.: Low-frequency modes of aqueous alkali halide solutions: glimpsing the hydrogen bonding vibration. Science 327(5967), 857–860 (2010)CrossRef Heisler, I.A., Meech, S.R.: Low-frequency modes of aqueous alkali halide solutions: glimpsing the hydrogen bonding vibration. Science 327(5967), 857–860 (2010)CrossRef
40.
Zurück zum Zitat Pant, D., Riter, R.E., Levinger, N.E.: Influence of restricted environment and ionic interactions on water solvation dynamics. J. Chem. Phys. 109(22), 9995–10003 (1998)CrossRef Pant, D., Riter, R.E., Levinger, N.E.: Influence of restricted environment and ionic interactions on water solvation dynamics. J. Chem. Phys. 109(22), 9995–10003 (1998)CrossRef
41.
Zurück zum Zitat Waldeck, D.H.: Photoisomerization dynamics of stilbenes. Chem. Rev. 91(3), 415–436 (1991)CrossRef Waldeck, D.H.: Photoisomerization dynamics of stilbenes. Chem. Rev. 91(3), 415–436 (1991)CrossRef
42.
Zurück zum Zitat Saikan, S., Sei, J.: Investigation of the conformational change in triphenylmethane dyes via polarization spectroscopy. J. Chem. Phys. 79(9), 4154–4158 (1983)CrossRef Saikan, S., Sei, J.: Investigation of the conformational change in triphenylmethane dyes via polarization spectroscopy. J. Chem. Phys. 79(9), 4154–4158 (1983)CrossRef
43.
Zurück zum Zitat Benamotz, D., Jeanloz, R., Harris, C.B.: Torsional dynamics of molecules on barrierless potentials in liquids. 3. Pressure dependent picosecond studies of triphenyl-methane dye solutions in a diamond anvil cell. J. Chem. Phys. 86(11), 6119–6127 (1987)CrossRef Benamotz, D., Jeanloz, R., Harris, C.B.: Torsional dynamics of molecules on barrierless potentials in liquids. 3. Pressure dependent picosecond studies of triphenyl-methane dye solutions in a diamond anvil cell. J. Chem. Phys. 86(11), 6119–6127 (1987)CrossRef
44.
Zurück zum Zitat Yoshizawa, M., et al.: Femtosecond study of S-2 fluorescence in malachite green in solutions. Chem. Phys. Lett. 290(1–3), 43–48 (1998)CrossRef Yoshizawa, M., et al.: Femtosecond study of S-2 fluorescence in malachite green in solutions. Chem. Phys. Lett. 290(1–3), 43–48 (1998)CrossRef
45.
Zurück zum Zitat Oster, G., Nishijima, Y.: Fluorescence and internal rotation – their dependence on viscosity of the medium. J. Am. Chem. Soc. 78(8), 1581–1584 (1956)CrossRef Oster, G., Nishijima, Y.: Fluorescence and internal rotation – their dependence on viscosity of the medium. J. Am. Chem. Soc. 78(8), 1581–1584 (1956)CrossRef
46.
Zurück zum Zitat van der Meer, M.J., Zhang, H., Glasbeek, M.: Femtosecond fluorescence upconversion studies of barrierless bond twisting of auramine in solution. J. Chem. Phys. 112(6), 2878–2887 (2000)CrossRef van der Meer, M.J., Zhang, H., Glasbeek, M.: Femtosecond fluorescence upconversion studies of barrierless bond twisting of auramine in solution. J. Chem. Phys. 112(6), 2878–2887 (2000)CrossRef
47.
Zurück zum Zitat Martin, M.M., et al.: Investigation of excited-state charge transfer with structural change in compounds containing anilino subunits by subpicosecond spectroscopy. J. Photochem. Photobiol. A Chem. 105(2–3), 197–204 (1997)CrossRef Martin, M.M., et al.: Investigation of excited-state charge transfer with structural change in compounds containing anilino subunits by subpicosecond spectroscopy. J. Photochem. Photobiol. A Chem. 105(2–3), 197–204 (1997)CrossRef
48.
Zurück zum Zitat Bagchi, B., Fleming, G.R., Oxtoby, D.W.: Theory of electronic relaxation in solution in the absence of an activation barrier. J. Chem. Phys. 78(12), 7375–7385 (1983)CrossRef Bagchi, B., Fleming, G.R., Oxtoby, D.W.: Theory of electronic relaxation in solution in the absence of an activation barrier. J. Chem. Phys. 78(12), 7375–7385 (1983)CrossRef
49.
Zurück zum Zitat Lipgens, S., et al.: Percolation in nonionic water-in-oil-microemulsion systems: a small angle neutron scattering study. Langmuir 14(5), 1041–1049 (1998)CrossRef Lipgens, S., et al.: Percolation in nonionic water-in-oil-microemulsion systems: a small angle neutron scattering study. Langmuir 14(5), 1041–1049 (1998)CrossRef
50.
Zurück zum Zitat Smith, N.A., et al.: LDS-750 as a probe of solvation dynamics: a femtosecond time-resolved fluorescence study in liquid aniline. Chem. Phys. Lett. 303(1–2), 209–217 (1999)CrossRef Smith, N.A., et al.: LDS-750 as a probe of solvation dynamics: a femtosecond time-resolved fluorescence study in liquid aniline. Chem. Phys. Lett. 303(1–2), 209–217 (1999)CrossRef
51.
Zurück zum Zitat Changenet, P., et al.: Ultrafast twisting dynamics of photoexcited auramine in solution. J. Phys. Chem. A 102(34), 6716–6721 (1998)CrossRef Changenet, P., et al.: Ultrafast twisting dynamics of photoexcited auramine in solution. J. Phys. Chem. A 102(34), 6716–6721 (1998)CrossRef
52.
Zurück zum Zitat Changenet, P., et al.: Fluorescence quenching of auramine in fluid solutions: a femtosecond spectroscopy study. J. Fluoresc. 10(2), 155–160 (2000)CrossRef Changenet, P., et al.: Fluorescence quenching of auramine in fluid solutions: a femtosecond spectroscopy study. J. Fluoresc. 10(2), 155–160 (2000)CrossRef
53.
Zurück zum Zitat Glasbeek, M., Zhang, H., van der Meer, M.J.: Femtosecond studies of twisting dynamics of auramine in solution. J. Mol. Liq. 86(1–3), 123–126 (2000)CrossRef Glasbeek, M., Zhang, H., van der Meer, M.J.: Femtosecond studies of twisting dynamics of auramine in solution. J. Mol. Liq. 86(1–3), 123–126 (2000)CrossRef
54.
Zurück zum Zitat Okuyama, S., Oxtoby, D.W.: Non-Markovian dynamics and barrier crossing rates at high-viscosity. J. Chem. Phys. 84(10), 5830–5835 (1986)CrossRef Okuyama, S., Oxtoby, D.W.: Non-Markovian dynamics and barrier crossing rates at high-viscosity. J. Chem. Phys. 84(10), 5830–5835 (1986)CrossRef
55.
Zurück zum Zitat Tominaga, K., et al.: Ultrafast charge separation in adma – experiment, simulation, and theoretical issues. J. Phys. Chem. 95(25), 10475–10485 (1991)CrossRef Tominaga, K., et al.: Ultrafast charge separation in adma – experiment, simulation, and theoretical issues. J. Phys. Chem. 95(25), 10475–10485 (1991)CrossRef
56.
Zurück zum Zitat Tominaga, K., et al.: Reaction-rates in the phenomenological adiabatic excited-state electron-transfer theory. J. Phys. Chem. 95(25), 10485–10492 (1991)CrossRef Tominaga, K., et al.: Reaction-rates in the phenomenological adiabatic excited-state electron-transfer theory. J. Phys. Chem. 95(25), 10485–10492 (1991)CrossRef
57.
Zurück zum Zitat Smith, B.B., Staib, A., Hynes, J.T.: Well and barrier dynamics and electron-transfer rates – a molecular-dynamics study. Chem. Phys. 176(2–3), 521–537 (1993)CrossRef Smith, B.B., Staib, A., Hynes, J.T.: Well and barrier dynamics and electron-transfer rates – a molecular-dynamics study. Chem. Phys. 176(2–3), 521–537 (1993)CrossRef
58.
Zurück zum Zitat Rharbi, Y., Chen, L.S., Winnik, M.A.: Exchange mechanisms for sodium dodecyl sulfate micelles: high salt concentration. J. Am. Chem. Soc. 126(19), 6025–6034 (2004)CrossRef Rharbi, Y., Chen, L.S., Winnik, M.A.: Exchange mechanisms for sodium dodecyl sulfate micelles: high salt concentration. J. Am. Chem. Soc. 126(19), 6025–6034 (2004)CrossRef
59.
Zurück zum Zitat Chowdhary, J., Ladanyi, B.M.: Molecular dynamics simulation of aerosol-OT reverse micelles. J. Phys. Chem. B 113(45), 15029–15039 (2009)CrossRef Chowdhary, J., Ladanyi, B.M.: Molecular dynamics simulation of aerosol-OT reverse micelles. J. Phys. Chem. B 113(45), 15029–15039 (2009)CrossRef
60.
Zurück zum Zitat Bruce, C.D., et al.: Molecular dynamics simulations of sodium dodecyl sulfate micelle in water: the behavior of water. J. Phys. Chem. B 106(42), 10902–10907 (2002)CrossRef Bruce, C.D., et al.: Molecular dynamics simulations of sodium dodecyl sulfate micelle in water: the behavior of water. J. Phys. Chem. B 106(42), 10902–10907 (2002)CrossRef
61.
Zurück zum Zitat Abel, S., et al.: Effect of surfactant conformation on the structures of small size nonionic reverse micelles: a molecular dynamics simulation study. Langmuir 22(22), 9112–9120 (2006)CrossRef Abel, S., et al.: Effect of surfactant conformation on the structures of small size nonionic reverse micelles: a molecular dynamics simulation study. Langmuir 22(22), 9112–9120 (2006)CrossRef
62.
Zurück zum Zitat Moilanen, D.E., et al.: Confinement or the nature of the interface? Dynamics of nanoscopic water. J. Am. Chem. Soc. 129(46), 14311–14318 (2007)CrossRef Moilanen, D.E., et al.: Confinement or the nature of the interface? Dynamics of nanoscopic water. J. Am. Chem. Soc. 129(46), 14311–14318 (2007)CrossRef
63.
Zurück zum Zitat Park, S., Moilanen, D.E., Fayer, M.D.: Water dynamics – the effects of ions and nanoconfinement. J. Phys. Chem. B 112(17), 5279–5290 (2008)CrossRef Park, S., Moilanen, D.E., Fayer, M.D.: Water dynamics – the effects of ions and nanoconfinement. J. Phys. Chem. B 112(17), 5279–5290 (2008)CrossRef
64.
Zurück zum Zitat Fenn, E.E., Wong, D.B., Fayer, M.D.: Water dynamics at neutral and ionic interfaces. Proc. Natl. Acad. Sci. USA 106(36), 15243–15248 (2009)CrossRef Fenn, E.E., Wong, D.B., Fayer, M.D.: Water dynamics at neutral and ionic interfaces. Proc. Natl. Acad. Sci. USA 106(36), 15243–15248 (2009)CrossRef
65.
Zurück zum Zitat Abel, S., et al.: Molecular modeling and simulations of AOT-water reverse micelles in isooctane: structural and dynamic properties. J. Phys. Chem. B 108(50), 19458–19466 (2004)CrossRef Abel, S., et al.: Molecular modeling and simulations of AOT-water reverse micelles in isooctane: structural and dynamic properties. J. Phys. Chem. B 108(50), 19458–19466 (2004)CrossRef
66.
Zurück zum Zitat Sedgwick, M.A., Crans, D.C., Levinger, N.E.: What is inside a nonionic reverse micelle? Probing the interior of Igepal reverse micelles using decavanadate. Langmuir 25(10), 5496–5503 (2009)CrossRef Sedgwick, M.A., Crans, D.C., Levinger, N.E.: What is inside a nonionic reverse micelle? Probing the interior of Igepal reverse micelles using decavanadate. Langmuir 25(10), 5496–5503 (2009)CrossRef
Metadaten
Titel
Reactive Dynamics in Confined Water by Reversed Micelles
verfasst von
Minako Kondo
Ismael A. Heisler
Stephen R. Meech
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-9472-0_11

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.