Skip to main content

2012 | OriginalPaper | Buchkapitel

12. Reactor Plant Systems

verfasst von : Pavel Tsvetkov, Alan Waltar, Donald Todd

Erschienen in: Fast Spectrum Reactors

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The principal objective of the sodium-cooled fast reactor (SFR) power plant is to generate electricity. This is accomplished by transferring energy from nuclear fission to a steam system to run a turbine-generator. In this chapter we describe the SFR systems outside the core that are needed to meet this objective. The main emphasis, discussed in Section 12.2, is on the heat transport system, focusing on the design problems unique to SFRs. First, the overall heat transport system is described, including the primary and secondary sodium systems and the various steam cycles in use and proposed. Discussions then follow in Section 12.3 for the main components in the sodium system—the reactor vessel and reactor tank, sodium pumps, intermediate heat exchangers, and steam generators.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
As noted in many other parts of this book, another key objective of fast spectrum reactors is to transmute objectionable higher actinides into more benign isotopes to minimize nuclear waste issues. Accordingly, there may be cases where special SFRs would be built exclusively for that purpose, in which case it is possible that the heat generated in the fission process would be dumped without attempts to recover it for the production of electricity.
 
2
A more complete discussion of SFR systems can be found in Agrawal and Khatib-Rahbar [1].
 
3
Additional details for the plants, including references, are provided in Appendix A.
 
4
The term “modular” has also been used for systems consisting of several separate modules that are interconnected to perform a single function, as in Phénix. The meaning of the terms integral and separate as applied to steam generator systems is not entirely consistent throughout the SFR industry. The definitions described here appear to prevail at the time of publication, but further redefinition may be expected as new variations in SFR plant designs evolve.
 
5
As an alternate approach, some designers are proposing to use super-critical CO2 in a Brayton Cycle to replace the intermediate loop and directly drive the turbines to produce electricity,[2] but this approach is yet to be fully developed.
 
6
Pressurizing the cover gas increases the potential for leakage of radioactive gas through the cover seals.
 
7
BN350 uses U-tubes.
 
8
Activity in FFTF was in the range of 0.15–0.4 Ci/m3; not a major problem.
 
9
FFTF has no blanket but uses removable radial reflectors to protect the fixed radial shield and the radial support structure and core barrel.
 
10
Core layouts for the S-PRISM pool-type design are illustrated in Fig. B.7 of Appendix B and for the JSFR loop-type design in Fig. C.4 of Appendix C.
 
11
It is possible to calibrate both types of meters by activating the sodium with a pulsed neutron device and using time-of-flight recording techniques. This procedure was successfully employed in FFTF.
 
12
The 23Ne activity is considerably less in a pool type reactor, relative to a loop type system, due to the larger holdup time (which allows the 38 s half-life 23Ne to decay) and less turbulence in the pool level.
 
Literatur
1.
Zurück zum Zitat A. K. Agrawal and M. Khatib-Rahbar, “Dynamic Simulation of LMFBR Systems,” Atomic Energy Review, 18, 2 (1980), IAEA, Vienna. A. K. Agrawal and M. Khatib-Rahbar, “Dynamic Simulation of LMFBR Systems,” Atomic Energy Review, 18, 2 (1980), IAEA, Vienna.
2.
Zurück zum Zitat V. Dostal, “A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors,” Ph.D. Dissertation, MIT (2004). V. Dostal, “A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors,” Ph.D. Dissertation, MIT (2004).
3.
Zurück zum Zitat J. Graham, Fast Reactor Safely, Academic, New York, NY (1971). J. Graham, Fast Reactor Safely, Academic, New York, NY (1971).
4.
Zurück zum Zitat Y. S. Tang, R. D. Coffield, Jr., and R. A. Merkley, Thermal Analysis of Liquid Metal Fast Breeder Reactors, American Nuclear Society, La Grange Park, IL (1978). Y. S. Tang, R. D. Coffield, Jr., and R. A. Merkley, Thermal Analysis of Liquid Metal Fast Breeder Reactors, American Nuclear Society, La Grange Park, IL (1978).
5.
Zurück zum Zitat W. L. Bunch, J. L. Rathbun, and L. D. Swenson, Design Experience-FFTF Shielding, S/A-1634, Hanford Engineering Development Laboratory (presented at the US/USSR Joint Fast Breeder Reactor Shielding Seminar, Obninsk, USSR, November 1978). W. L. Bunch, J. L. Rathbun, and L. D. Swenson, Design Experience-FFTF Shielding, S/A-1634, Hanford Engineering Development Laboratory (presented at the US/USSR Joint Fast Breeder Reactor Shielding Seminar, Obninsk, USSR, November 1978).
6.
Zurück zum Zitat R. K. Disney, T. C. Chen, F. G. Galle, L. R. Hedgecock, C. A. McGinnis, and G. N. Wright, Design Experience-CRBRP Radiation Shielding, CRBRP-PMC 79-02, CRBRP Technical Review (April 1979) 7–28. R. K. Disney, T. C. Chen, F. G. Galle, L. R. Hedgecock, C. A. McGinnis, and G. N. Wright, Design Experience-CRBRP Radiation Shielding, CRBRP-PMC 79-02, CRBRP Technical Review (April 1979) 7–28.
7.
Zurück zum Zitat A. S. Gibson, P. M. Murphy, and W. R. Gee, Jr., Conceptual Plan! Design, System Descriptions, and Costs for a 1000 MWe Sodium Cooled Fast Reactor, Task I1 Report, AEC Follow-On Study, GEAP 5678, General Electric Company (December 1968). A. S. Gibson, P. M. Murphy, and W. R. Gee, Jr., Conceptual Plan! Design, System Descriptions, and Costs for a 1000 MWe Sodium Cooled Fast Reactor, Task I1 Report, AEC Follow-On Study, GEAP 5678, General Electric Company (December 1968).
8.
Zurück zum Zitat R. Indira et al., “Fast Reactor Bulk Shielding Experiments for Validation of Shielding Computational Techniques,” Proceedings of Conference on Nuclear Mathematical and Computational Sciences: A Century in Review, A Century Anew, ANS, Gatlinburg, TN (2003). R. Indira et al., “Fast Reactor Bulk Shielding Experiments for Validation of Shielding Computational Techniques,” Proceedings of Conference on Nuclear Mathematical and Computational Sciences: A Century in Review, A Century Anew, ANS, Gatlinburg, TN (2003).
9.
Zurück zum Zitat K. Devan et al., “Generation and Validation of a New 121 Group Coupled (n, γ) Cross-section Set for Fast Reactor Applications,” Annals of Nuclear Energy, 23 (1996) 791.CrossRef K. Devan et al., “Generation and Validation of a New 121 Group Coupled (n, γ) Cross-section Set for Fast Reactor Applications,” Annals of Nuclear Energy, 23 (1996) 791.CrossRef
10.
Zurück zum Zitat K. Devan et al., “Effects of Cross-Section Sets and Quadrature Orders on Neutron Fluxes and on Secondary 24Na Activation Rate of a Pool Type 500 MWe FBR,” Annals of Nuclear Energy, 30 (2003) 1181.CrossRef K. Devan et al., “Effects of Cross-Section Sets and Quadrature Orders on Neutron Fluxes and on Secondary 24Na Activation Rate of a Pool Type 500 MWe FBR,” Annals of Nuclear Energy, 30 (2003) 1181.CrossRef
11.
Zurück zum Zitat J. S. McDonald (AX), C. L. Storrs (CE), R. A. Johnson (AI), and W. P. Stoker (CE), “LMFBR Development Plant Reactor Assembly and Refueling Systems,” Presented at ASME Meeting, San Francisco, CA (August 18–21, 1980). J. S. McDonald (AX), C. L. Storrs (CE), R. A. Johnson (AI), and W. P. Stoker (CE), “LMFBR Development Plant Reactor Assembly and Refueling Systems,” Presented at ASME Meeting, San Francisco, CA (August 18–21, 1980).
12.
Zurück zum Zitat K. W. Foster, “Fuel Handling Experience with Liquid Metal Reactors,” Proceedings of the International Symposium on Design, Construction and Operating Experience of Demonstration Liquid Metal Fast Breeder Reactors, Bologna, Italy (April 1978). K. W. Foster, “Fuel Handling Experience with Liquid Metal Reactors,” Proceedings of the International Symposium on Design, Construction and Operating Experience of Demonstration Liquid Metal Fast Breeder Reactors, Bologna, Italy (April 1978).
13.
Zurück zum Zitat E. Benoist and C. Bouliner, “Fuel and Special Handling Facilities for Phénix,” Nuclear Engineering International, 7 (1971), 571–576. E. Benoist and C. Bouliner, “Fuel and Special Handling Facilities for Phénix,” Nuclear Engineering International, 7 (1971), 571–576.
14.
Zurück zum Zitat N. J. McCormick and R. E. Schenter, “Gas Tag Identification of Failed Fuel I: Synergistic Use of Inert Gases,” Nuclear Technology, 24 (1974), 149–155. See also Part II, “Gas Tag Identification of Failed Fuel II: Resolution Between Single and Multiple Failures,” Nuclear Technology, 24 (1974), 156–167. N. J. McCormick and R. E. Schenter, “Gas Tag Identification of Failed Fuel I: Synergistic Use of Inert Gases,” Nuclear Technology, 24 (1974), 149–155. See also Part II, “Gas Tag Identification of Failed Fuel II: Resolution Between Single and Multiple Failures,” Nuclear Technology, 24 (1974), 156–167.
Metadaten
Titel
Reactor Plant Systems
verfasst von
Pavel Tsvetkov
Alan Waltar
Donald Todd
Copyright-Jahr
2012
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4419-9572-8_12