Skip to main content

2020 | OriginalPaper | Buchkapitel

25. Reaktoren für Dreiphasen-Reaktionen: Rieselbettreaktoren

verfasst von : Markus Schubert

Erschienen in: Handbuch Chemische Reaktoren

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Zusammenfassung

Der Einfluss von betrieblichen Bedingungen, Katalysatoreigenschaften und Reaktorabmessungen auf das Verhalten von Rieselbettreaktoren für heterogen katalysierte Gas-Flüssig-Reaktionen wird illustriert. Dabei liegt der Schwerpunkt auf der Beschreibung der komplexen Hydrodynamik und der Transportprozesse sowie deren Berücksichtigung bei der Reaktormodellierung. Zusätzlich werden Aspekte der Prozessentwicklung auf Basis von Laborexperimenten beleuchtet und Kriterien zur Bewertung der Abweichung vom idealen Rohrreaktor diskutiert. Zur Überwindung von Stofftransportlimitierungen werden Intensivierungskonzepte für Rieselbettreaktoren vorgestellt.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Die Korrelationen zu Hydrodynamik und Stofftransport basierend auf dem neuronalen Netz von der Gruppe um Prof. Larachi (Universität Laval, Kanada) sind in einem Simulator implementiert (http://​www2.​gch.​ulaval.​ca/​flarachi/​pbrsimul/​).
 
Literatur
Zurück zum Zitat Al-Dahhan, M.H., Dudukovic, M.P.: Catalyst bed dilution for improving catalyst wetting in laboratory trickle-bed reactors. AIChE J. 42, 2594–2606 (1996) Al-Dahhan, M.H., Dudukovic, M.P.: Catalyst bed dilution for improving catalyst wetting in laboratory trickle-bed reactors. AIChE J. 42, 2594–2606 (1996)
Zurück zum Zitat Al-Dahhan, M.H., Highfill, W.: Liquid holdup measurement techniques in laboratory high pressure trickle bed reactors. Can. J. Chem. Eng. 77, 759–765 (1999) Al-Dahhan, M.H., Highfill, W.: Liquid holdup measurement techniques in laboratory high pressure trickle bed reactors. Can. J. Chem. Eng. 77, 759–765 (1999)
Zurück zum Zitat Al-Dahhan, M.H., Larachi, F., Dudukovic, M.P., Laurent, A.: High-pressure trickle-bed reactors: a review. Ind. Eng. Chem. Res. 36, 3292–3314 (1997) Al-Dahhan, M.H., Larachi, F., Dudukovic, M.P., Laurent, A.: High-pressure trickle-bed reactors: a review. Ind. Eng. Chem. Res. 36, 3292–3314 (1997)
Zurück zum Zitat Al-Dahhan, M.H., Wu, Y., Dudukovic, M.P.: Reproducible technique for packing laboratory-scale trickle-bed reactors. Ind. Eng. Chem. Res. 34, 741–747 (1995) Al-Dahhan, M.H., Wu, Y., Dudukovic, M.P.: Reproducible technique for packing laboratory-scale trickle-bed reactors. Ind. Eng. Chem. Res. 34, 741–747 (1995)
Zurück zum Zitat Alicilar, A., Bicer, A., Murathan, A.: The relation between wetting efficiency and liquid holdup in packed columns. Chem. Eng. Commun. 128, 95–107 (1994) Alicilar, A., Bicer, A., Murathan, A.: The relation between wetting efficiency and liquid holdup in packed columns. Chem. Eng. Commun. 128, 95–107 (1994)
Zurück zum Zitat Anadon, L.D., Sederman, A.J., Gladden, F.L.: Rationalising MRI, conductance and pressure drop measurements of the trickle-to-pulse transition in trickle beds. Chem. Eng. Sci. 63, 4640–4648 (2008) Anadon, L.D., Sederman, A.J., Gladden, F.L.: Rationalising MRI, conductance and pressure drop measurements of the trickle-to-pulse transition in trickle beds. Chem. Eng. Sci. 63, 4640–4648 (2008)
Zurück zum Zitat Ancheyta, J., Marroquin, G., Angeles, M.J., Macias, M.J., Pitault, I., Forisser, M., Morales, R.D.: Some experimental observation of mass transfer limitation in a trickle-bed hydrotreating pilot reactor. Energy Fuel 16, 1059–1067 (2002) Ancheyta, J., Marroquin, G., Angeles, M.J., Macias, M.J., Pitault, I., Forisser, M., Morales, R.D.: Some experimental observation of mass transfer limitation in a trickle-bed hydrotreating pilot reactor. Energy Fuel 16, 1059–1067 (2002)
Zurück zum Zitat Anderson, J.B.: A criterion for isothermal behavior of catalyst pellet. Chem. Eng. Sci. 18, 147–148 (1963) Anderson, J.B.: A criterion for isothermal behavior of catalyst pellet. Chem. Eng. Sci. 18, 147–148 (1963)
Zurück zum Zitat Aris, R.: Notes on the diffusion-type model for longitudinal mixing in flows. Chem. Eng. Sci. 9, 266–267 (1959) Aris, R.: Notes on the diffusion-type model for longitudinal mixing in flows. Chem. Eng. Sci. 9, 266–267 (1959)
Zurück zum Zitat Atta, A., Hamidipour, M., Roy, S., Nigam, K.D.P., Larachi, F.: Propagation of slow/fast-mode solitary liquid waves in trickle beds via electrical capacitance tomography and computational fluid dynamics. Chem. Eng. Sci. 65, 1144–1150 (2010a) Atta, A., Hamidipour, M., Roy, S., Nigam, K.D.P., Larachi, F.: Propagation of slow/fast-mode solitary liquid waves in trickle beds via electrical capacitance tomography and computational fluid dynamics. Chem. Eng. Sci. 65, 1144–1150 (2010a)
Zurück zum Zitat Atta, A., Schubert, M., Nigam, K.D.P., Roy, S., Larachi, F.: Co-current descending two-phase flow in inclined packed beds: experiments versus simulations. Can. J. Chem. Eng. 88, 742–750 (2010b) Atta, A., Schubert, M., Nigam, K.D.P., Roy, S., Larachi, F.: Co-current descending two-phase flow in inclined packed beds: experiments versus simulations. Can. J. Chem. Eng. 88, 742–750 (2010b)
Zurück zum Zitat Atta, A., Roy, S., Larachi, F., Nigam, K.D.P.: Cyclic operation of trickle bed reactors: a review. Chem. Eng. Sci. 115, 205–214 (2014) Atta, A., Roy, S., Larachi, F., Nigam, K.D.P.: Cyclic operation of trickle bed reactors: a review. Chem. Eng. Sci. 115, 205–214 (2014)
Zurück zum Zitat Atta, A., Roy, S., Nigam, K.D.P.: Prediction of pressure drop and liquid holdup in trickle bed reactor using relative permeability concept in CFD. Chem. Eng. Sci. 62, 5870–5879 (2007a) Atta, A., Roy, S., Nigam, K.D.P.: Prediction of pressure drop and liquid holdup in trickle bed reactor using relative permeability concept in CFD. Chem. Eng. Sci. 62, 5870–5879 (2007a)
Zurück zum Zitat Atta, A., Roy, S., Nigam, K.D.P.: Investigation of liquid maldistribution in trickle-bed reactors using porous media concept in CFD. Chem. Eng. Sci. 62, 7033–7044 (2007b) Atta, A., Roy, S., Nigam, K.D.P.: Investigation of liquid maldistribution in trickle-bed reactors using porous media concept in CFD. Chem. Eng. Sci. 62, 7033–7044 (2007b)
Zurück zum Zitat Attou, A., Boyer, C.: Hydrodynamics of gas-liquid-solid trickle-bed reactors: a critical review. Oil Gas Sci. Technol. 54, 29–66 (1999) Attou, A., Boyer, C.: Hydrodynamics of gas-liquid-solid trickle-bed reactors: a critical review. Oil Gas Sci. Technol. 54, 29–66 (1999)
Zurück zum Zitat Attou, A., Boyer, C., Ferschneider, G.: Modelling of the hydrodynamics of the cocurrent gas-liquid trickle flow through a trickle-bed reactor. Chem. Eng. Sci. 54, 785–802 (1999) Attou, A., Boyer, C., Ferschneider, G.: Modelling of the hydrodynamics of the cocurrent gas-liquid trickle flow through a trickle-bed reactor. Chem. Eng. Sci. 54, 785–802 (1999)
Zurück zum Zitat Attou, A., Ferschneider, G.: A two-fluid hydrodynamic model for the transition between trickle and pulse flow in a cocurrent gas-liquid packed-bed reactor. Chem. Eng. Sci. 55, 491–511 (2000) Attou, A., Ferschneider, G.: A two-fluid hydrodynamic model for the transition between trickle and pulse flow in a cocurrent gas-liquid packed-bed reactor. Chem. Eng. Sci. 55, 491–511 (2000)
Zurück zum Zitat Aydin, B., Bilodeau, S., Hamidipour, M., Larachi, F., Kleitz, F.: Polymer-filled composite porous catalytic particles for hydrodynamic studies in trickle-bed reactors. Ind. Eng. Chem. Res. 47, 2569–2578 (2008) Aydin, B., Bilodeau, S., Hamidipour, M., Larachi, F., Kleitz, F.: Polymer-filled composite porous catalytic particles for hydrodynamic studies in trickle-bed reactors. Ind. Eng. Chem. Res. 47, 2569–2578 (2008)
Zurück zum Zitat Babcock, B.D., Mejdell, G.T., Hougen, O.A.: Catalyzed gas-liquid reactions in trickling-bed reactors. 1. Hydrogenation of α-methylstyrene catalyzed by palladium. AIChE J. 3, 366–369 (1957) Babcock, B.D., Mejdell, G.T., Hougen, O.A.: Catalyzed gas-liquid reactions in trickling-bed reactors. 1. Hydrogenation of α-methylstyrene catalyzed by palladium. AIChE J. 3, 366–369 (1957)
Zurück zum Zitat Banchero, M., Manna, L., Sicardi, S., Ferri, A.: Experimental investigation of fast-mode liquid modulation in a trickle-bed reactor. Chem. Eng. Sci. 59, 4149–4154 (2004) Banchero, M., Manna, L., Sicardi, S., Ferri, A.: Experimental investigation of fast-mode liquid modulation in a trickle-bed reactor. Chem. Eng. Sci. 59, 4149–4154 (2004)
Zurück zum Zitat Battsengel, B., Datsevich, L.B., Jess, A., Munnich, C., Peter, S., Turek, T.: Use of a two-phase reactor with pre-saturator for multiphase reactions. Chem. Ing. Tech. 75, 553–558 (2003) Battsengel, B., Datsevich, L.B., Jess, A., Munnich, C., Peter, S., Turek, T.: Use of a two-phase reactor with pre-saturator for multiphase reactions. Chem. Ing. Tech. 75, 553–558 (2003)
Zurück zum Zitat Baussaron, L., Julcour-Lebigue, C., Wilhelm, A.-M., Boyer, C., Delmas, H.: Partial wetting in trickle bed reactors: measurement techniques and global wetting efficiency. Ind. Eng. Chem. Res. 46, 8397–8405 (2007) Baussaron, L., Julcour-Lebigue, C., Wilhelm, A.-M., Boyer, C., Delmas, H.: Partial wetting in trickle bed reactors: measurement techniques and global wetting efficiency. Ind. Eng. Chem. Res. 46, 8397–8405 (2007)
Zurück zum Zitat Bej, S.K., Dabral, R.P., Gupta, P.C., Mittal, K.K., Sen, G.S., Kapoor, V.K., Dalai, A.K.: Studies on the performance of a microscale trickle bed reactor using different size of diluent. Energy Fuel 14, 701–705 (2000) Bej, S.K., Dabral, R.P., Gupta, P.C., Mittal, K.K., Sen, G.S., Kapoor, V.K., Dalai, A.K.: Studies on the performance of a microscale trickle bed reactor using different size of diluent. Energy Fuel 14, 701–705 (2000)
Zurück zum Zitat Bellussi, G., Pazzuconi, G., Perego, C., Girotti, G., Terzoni, G.: Liquid-phase alkylation of benzene with light olefins catalyzed by β-zeolites. J. Catal. 157, 227–234 (1995) Bellussi, G., Pazzuconi, G., Perego, C., Girotti, G., Terzoni, G.: Liquid-phase alkylation of benzene with light olefins catalyzed by β-zeolites. J. Catal. 157, 227–234 (1995)
Zurück zum Zitat Beziat, J.-C., Besson, M., Gallezot, P., Durecu, S.: Catalytic wet air oxidation on a Ru/TiO2 catalyst in a trickle-bed reactor. Ind. Eng. Chem. Res. 38, 1310–1315 (1999) Beziat, J.-C., Besson, M., Gallezot, P., Durecu, S.: Catalytic wet air oxidation on a Ru/TiO2 catalyst in a trickle-bed reactor. Ind. Eng. Chem. Res. 38, 1310–1315 (1999)
Zurück zum Zitat Bieberle, A., Schubert, M., da Silva, M.J., Hampel, U.: Measurement of liquid distributions in particle packings using wire-mesh sensor versus transmission tomographic imaging. Ind. Eng. Chem. Res. 49, 9445–9453 (2010) Bieberle, A., Schubert, M., da Silva, M.J., Hampel, U.: Measurement of liquid distributions in particle packings using wire-mesh sensor versus transmission tomographic imaging. Ind. Eng. Chem. Res. 49, 9445–9453 (2010)
Zurück zum Zitat Blok, J.R., Varkevisser, J., Drinkenburg, A.A.H.: Transition to pulsing flow, holdup and pressure drop in packed columns with cocurrent gas-liquid downflow. Chem. Eng. Sci. 38, 687–699 (1983) Blok, J.R., Varkevisser, J., Drinkenburg, A.A.H.: Transition to pulsing flow, holdup and pressure drop in packed columns with cocurrent gas-liquid downflow. Chem. Eng. Sci. 38, 687–699 (1983)
Zurück zum Zitat Boelhouwer, J.G., Piepers, H.W., Drinkenburg, A.A.H.: Particle–liquid heat transfer in trickle-bed reactors. Chem. Eng. Sci. 56, 1181–1187 (2001a) Boelhouwer, J.G., Piepers, H.W., Drinkenburg, A.A.H.: Particle–liquid heat transfer in trickle-bed reactors. Chem. Eng. Sci. 56, 1181–1187 (2001a)
Zurück zum Zitat Boelhouwer, J.G., Piepers, H.W., Drinkenburg, A.A.H.: The induction of pulses in trickle-bed reactors by cycling the liquid feed. Chem. Eng. Sci. 56, 2605–2614 (2001b) Boelhouwer, J.G., Piepers, H.W., Drinkenburg, A.A.H.: The induction of pulses in trickle-bed reactors by cycling the liquid feed. Chem. Eng. Sci. 56, 2605–2614 (2001b)
Zurück zum Zitat Borremans, D., Rode, S., Wild, G.: Liquid flow distribution and particle-fluid heat transfer in trickle-bed reactors: the influence of periodic operation. Chem. Eng. Process 43, 1403–1410 (2004) Borremans, D., Rode, S., Wild, G.: Liquid flow distribution and particle-fluid heat transfer in trickle-bed reactors: the influence of periodic operation. Chem. Eng. Process 43, 1403–1410 (2004)
Zurück zum Zitat Boyer, C, Duquenne, A.M., Wild, G.: Measuring techniques in gas-liquid and gas-liquid-solid reactors. Chem. Eng. Sci. 57, 3185–3215 (2002) Boyer, C, Duquenne, A.M., Wild, G.: Measuring techniques in gas-liquid and gas-liquid-solid reactors. Chem. Eng. Sci. 57, 3185–3215 (2002)
Zurück zum Zitat Boyer, C., Koudil, A., Chen, P., Dudukovic, M.P.: Study of liquid spreading from a point source in a trickle bed via gamma-ray tomography and CFD simulation. Chem. Eng. Sci. 60, 6279–6288 (2005) Boyer, C., Koudil, A., Chen, P., Dudukovic, M.P.: Study of liquid spreading from a point source in a trickle bed via gamma-ray tomography and CFD simulation. Chem. Eng. Sci. 60, 6279–6288 (2005)
Zurück zum Zitat Buffham, B.A., Gibilaro, L.G., Rathor, M.N.: A probabilistic time delay description of flow in packed beds. AIChE J. 16, 218–223 (1970) Buffham, B.A., Gibilaro, L.G., Rathor, M.N.: A probabilistic time delay description of flow in packed beds. AIChE J. 16, 218–223 (1970)
Zurück zum Zitat Bukur, D.B., Patel, S.A., Lang, X.S.: Fixed-bed and slurry reactor studies of Fischer-Tropsch synthesis on precipitated iron catalyst. Appl. Catal. 61, 329–349 (1990) Bukur, D.B., Patel, S.A., Lang, X.S.: Fixed-bed and slurry reactor studies of Fischer-Tropsch synthesis on precipitated iron catalyst. Appl. Catal. 61, 329–349 (1990)
Zurück zum Zitat Burghardt, A., Kolodziej, A.S.: Dynamic method for determining of liquid-solid contacting efficiency in trickle-bed reactors. Chem. Process. Eng-Inz. 11, 553–573 (1990) Burghardt, A., Kolodziej, A.S.: Dynamic method for determining of liquid-solid contacting efficiency in trickle-bed reactors. Chem. Process. Eng-Inz. 11, 553–573 (1990)
Zurück zum Zitat Burghardt, A., Kolodziej, A.S., Jaroszynski, M.: Experimental studies of liquid solid wetting efficiency in trickle-bed cocurrent reactors. Chem. Eng. Process 28, 35–49 (1990) Burghardt, A., Kolodziej, A.S., Jaroszynski, M.: Experimental studies of liquid solid wetting efficiency in trickle-bed cocurrent reactors. Chem. Eng. Process 28, 35–49 (1990)
Zurück zum Zitat Burghardt, A., Zaleski, T.: Longitudinal dispersion at small and large Péclet numbers in chemical flow reactors. Chem. Eng. Sci. 23, 575–591 (1968) Burghardt, A., Zaleski, T.: Longitudinal dispersion at small and large Péclet numbers in chemical flow reactors. Chem. Eng. Sci. 23, 575–591 (1968)
Zurück zum Zitat Cassanello, M., Larachi, F., Laurent, A., Wild, G., Midoux, N.: Gas-liquid mass transfer in high pressure trickle-bed reactors: experiments and modelling. In: von Rohr, P.R., Trepp, C. (Hrsg.) High Pressure Chemical Engineering, Bd. 12, S. 493–498. Elsevier, Amsterdam (1996) Cassanello, M., Larachi, F., Laurent, A., Wild, G., Midoux, N.: Gas-liquid mass transfer in high pressure trickle-bed reactors: experiments and modelling. In: von Rohr, P.R., Trepp, C. (Hrsg.) High Pressure Chemical Engineering, Bd. 12, S. 493–498. Elsevier, Amsterdam (1996)
Zurück zum Zitat Castellari, A.T., Haure, P.M.: Experimental study of the periodic operation of a trickle-bed reactor. AIChE J. 41, 1593–1597 (1995) Castellari, A.T., Haure, P.M.: Experimental study of the periodic operation of a trickle-bed reactor. AIChE J. 41, 1593–1597 (1995)
Zurück zum Zitat Chan, J.-C., Tan, C.-S.: Hydrogenation of tetralin over Pt/γ-Al2O3 in trickle-bed reactor in the presence of compressed CO2. Energy Fuel 20, 771–777 (2006) Chan, J.-C., Tan, C.-S.: Hydrogenation of tetralin over Pt/γ-Al2O3 in trickle-bed reactor in the presence of compressed CO2. Energy Fuel 20, 771–777 (2006)
Zurück zum Zitat Charpentier, J.C., Favier, M.: Some liquid holdup experimental data in trickle-bed reactors for foaming and nonfoaming hydrocarbons. AIChE J. 21, 1213–1218 (1975) Charpentier, J.C., Favier, M.: Some liquid holdup experimental data in trickle-bed reactors for foaming and nonfoaming hydrocarbons. AIChE J. 21, 1213–1218 (1975)
Zurück zum Zitat Chaudhari, R.V., Jaganathan, R., Mathew, S.P., Julcour, C., Delmas, H.: Hydrogenation of 1,5,9-cyclododecatriene in fixed-bed reactors: down- vs. upflow modes. AIChE J. 48, 110–125 (2002) Chaudhari, R.V., Jaganathan, R., Mathew, S.P., Julcour, C., Delmas, H.: Hydrogenation of 1,5,9-cyclododecatriene in fixed-bed reactors: down- vs. upflow modes. AIChE J. 48, 110–125 (2002)
Zurück zum Zitat Chaudhari, R.V., Ramachandran, P.A.: Three-phase slurry reactors. AIChE J. 26, 177–201 (1980) Chaudhari, R.V., Ramachandran, P.A.: Three-phase slurry reactors. AIChE J. 26, 177–201 (1980)
Zurück zum Zitat Colombo, A.J., Baldi, G., Sicardi, S.: Solid-liquid contacting effectiveness in trickle bed reactors. Chem. Eng. Sci. 31, 1101–1108 (1976) Colombo, A.J., Baldi, G., Sicardi, S.: Solid-liquid contacting effectiveness in trickle bed reactors. Chem. Eng. Sci. 31, 1101–1108 (1976)
Zurück zum Zitat Couto, C.S., Madeira, L.M., Nunes, C.P., Araújo, P.: Liquid-phase hydrogenation of nitrobenzene in a tubular reactor: parametric study of the operating conditions influence. Ind. Eng. Chem. Res. 56, 3231–3242 (2017) Couto, C.S., Madeira, L.M., Nunes, C.P., Araújo, P.: Liquid-phase hydrogenation of nitrobenzene in a tubular reactor: parametric study of the operating conditions influence. Ind. Eng. Chem. Res. 56, 3231–3242 (2017)
Zurück zum Zitat Crine, M.: Heat-transfer phenomena in trickle-bed reactors. Chem. Eng. Commun. 19, 99–114 (1982) Crine, M.: Heat-transfer phenomena in trickle-bed reactors. Chem. Eng. Commun. 19, 99–114 (1982)
Zurück zum Zitat Crine, M., Marchot, P.: Measuring dynamic liquid holdup in trickle-bed reactors under actual operating conditions. Chem. Eng. Commun. 8, 365–371 (1981) Crine, M., Marchot, P.: Measuring dynamic liquid holdup in trickle-bed reactors under actual operating conditions. Chem. Eng. Commun. 8, 365–371 (1981)
Zurück zum Zitat Cybulski, A., Moulijn, J.A.: Structured Catalysts and Reactors, 2. Aufl. Taylor & Francis, Boca Raton (2006) Cybulski, A., Moulijn, J.A.: Structured Catalysts and Reactors, 2. Aufl. Taylor & Francis, Boca Raton (2006)
Zurück zum Zitat Dashliborun, A.M., Härting, H.-U., Schubert, M., Larachi, F.: Process intensification of gas-liquid downflow and upflow packed beds by a new low-shear rotating reactor concept. AIChE J. 63, 283–294 (2017) Dashliborun, A.M., Härting, H.-U., Schubert, M., Larachi, F.: Process intensification of gas-liquid downflow and upflow packed beds by a new low-shear rotating reactor concept. AIChE J. 63, 283–294 (2017)
Zurück zum Zitat Dashliborun, A.M., Larachi, F.: CFD study and experimental validation of multiphase packed bed hydrodynamics in the context of rolling sea conditions. AIChE J. 65, 385–397 (2019) Dashliborun, A.M., Larachi, F.: CFD study and experimental validation of multiphase packed bed hydrodynamics in the context of rolling sea conditions. AIChE J. 65, 385–397 (2019)
Zurück zum Zitat Datsevich, L.B., Mukhortov, D.A.: Pre-saturation in multiphase fixed-bed reactors as a method for process intensification/reactor minimization. Catal. Today 120, 71–77 (2007) Datsevich, L.B., Mukhortov, D.A.: Pre-saturation in multiphase fixed-bed reactors as a method for process intensification/reactor minimization. Catal. Today 120, 71–77 (2007)
Zurück zum Zitat Dhiman, S.K., Verma, V., Rao, D.P., Rao, M.S.: Process intensification in a trickle-bed reactor: experimental studies. AIChE J. 51, 3186–3192 (2005) Dhiman, S.K., Verma, V., Rao, D.P., Rao, M.S.: Process intensification in a trickle-bed reactor: experimental studies. AIChE J. 51, 3186–3192 (2005)
Zurück zum Zitat Dietrich, W., Grünewald, M., Agar, D.W.: Dynamic modelling of periodically wetted catalyst particles. Chem. Eng. Sci. 60, 6254–6261 (2005) Dietrich, W., Grünewald, M., Agar, D.W.: Dynamic modelling of periodically wetted catalyst particles. Chem. Eng. Sci. 60, 6254–6261 (2005)
Zurück zum Zitat Dixon, A.G., Nijemaisland, M., Stitt, E.H.: Packed tubular reactor modelling and catalyst design using computational fluid dynamics. Adv. Chem. Eng. 31, 307–389 (2006) Dixon, A.G., Nijemaisland, M., Stitt, E.H.: Packed tubular reactor modelling and catalyst design using computational fluid dynamics. Adv. Chem. Eng. 31, 307–389 (2006)
Zurück zum Zitat Dudas, J., Hanika, J., Lepuru, J., Barkhuysen, M.: Thymol hydrogenation in bench scale trickle bed reactor. Chem. Biochem. Eng. Q. 19, 255–262 (2005) Dudas, J., Hanika, J., Lepuru, J., Barkhuysen, M.: Thymol hydrogenation in bench scale trickle bed reactor. Chem. Biochem. Eng. Q. 19, 255–262 (2005)
Zurück zum Zitat Dudukovic, M.P., Larachi, F., Mill, P.L.: Multiphase catalytic reactors: a perspective on current knowledge and future trends. Catal. Rev. 44, 123–246 (2002) Dudukovic, M.P., Larachi, F., Mill, P.L.: Multiphase catalytic reactors: a perspective on current knowledge and future trends. Catal. Rev. 44, 123–246 (2002)
Zurück zum Zitat Dudukovic, M.P., Mills, P.L.: Contacting and hydrodynamics in trickle-bed reactors. In: Cheremisinoff, N.P. (Hrsg.) Encyclopedia of Fluid Mechanics, Bd. 3, S. 969–1017. Gulf Publishing, Houston (1986) Dudukovic, M.P., Mills, P.L.: Contacting and hydrodynamics in trickle-bed reactors. In: Cheremisinoff, N.P. (Hrsg.) Encyclopedia of Fluid Mechanics, Bd. 3, S. 969–1017. Gulf Publishing, Houston (1986)
Zurück zum Zitat Edvinsson, A.R., Nyström, M., Siverström, M., Sellin, A., Dellve, A.-C., Andersson, U., Herrmann, W., Berglin, T.: Development of a monolith-based process for H2O2 production: from idea to large-scale implementation. Catal. Today 69, 247–252 (2001) Edvinsson, A.R., Nyström, M., Siverström, M., Sellin, A., Dellve, A.-C., Andersson, U., Herrmann, W., Berglin, T.: Development of a monolith-based process for H2O2 production: from idea to large-scale implementation. Catal. Today 69, 247–252 (2001)
Zurück zum Zitat El-Hisnawi, A.A., Dudukovic, M.P., Mills, P.L.: Trickle-bed reactors – dynamic tracer tests, reaction studies, and modeling of reactor performance. ACS Symp. Ser. 196, 421–440 (1982) El-Hisnawi, A.A., Dudukovic, M.P., Mills, P.L.: Trickle-bed reactors – dynamic tracer tests, reaction studies, and modeling of reactor performance. ACS Symp. Ser. 196, 421–440 (1982)
Zurück zum Zitat Ellman, M.J., Midoux, N., Laurent, A., Charpentier, J.C.: A new, improved pressure-drop correlation for trickle-bed reactors. Chem. Eng. Sci. 43, 2201–2206 (1988) Ellman, M.J., Midoux, N., Laurent, A., Charpentier, J.C.: A new, improved pressure-drop correlation for trickle-bed reactors. Chem. Eng. Sci. 43, 2201–2206 (1988)
Zurück zum Zitat Ellman, M.J., Midoux, N., Wild, G., Laurent, A., Charpentier, J.C.: A new, improved liquid hold-up correlation for trickle-bed reactors. Chem. Eng. Sci. 45, 1677–1684 (1990) Ellman, M.J., Midoux, N., Wild, G., Laurent, A., Charpentier, J.C.: A new, improved liquid hold-up correlation for trickle-bed reactors. Chem. Eng. Sci. 45, 1677–1684 (1990)
Zurück zum Zitat Enache, D.I., Landon, P., Lok, C.M., Pollington, S.D., Stitt, E.H.: Direct comparison of a trickle bed and a monolith for hydrogenation of pyrolysis gasoline. Ind. Eng. Chem. Res. 44, 9431–9439 (2005) Enache, D.I., Landon, P., Lok, C.M., Pollington, S.D., Stitt, E.H.: Direct comparison of a trickle bed and a monolith for hydrogenation of pyrolysis gasoline. Ind. Eng. Chem. Res. 44, 9431–9439 (2005)
Zurück zum Zitat Fahien, R.W., Stankovic, I.M.: An equation for the velocity profile in packed columns. Chem. Eng. Sci. 34, 1350–1354 (1979) Fahien, R.W., Stankovic, I.M.: An equation for the velocity profile in packed columns. Chem. Eng. Sci. 34, 1350–1354 (1979)
Zurück zum Zitat Fordham, P., Besson, M., Gallezot, P.: Selective catalytic oxidation with air of glycerol and oxygenated derivatives on platinum metals. In: Hightower, J., Delgass, W.N., Iglesia, E., Bell, A.T. (Hrsg.) Studies in Surface Science and Catalysis, Bd. 101, S. 161–170. Elsevier, Amsterdam (1996) Fordham, P., Besson, M., Gallezot, P.: Selective catalytic oxidation with air of glycerol and oxygenated derivatives on platinum metals. In: Hightower, J., Delgass, W.N., Iglesia, E., Bell, A.T. (Hrsg.) Studies in Surface Science and Catalysis, Bd. 101, S. 161–170. Elsevier, Amsterdam (1996)
Zurück zum Zitat Fortuny, A., Font, J., Fabregat, A.: Wet air oxidation of phenol using active carbon as catalyst. Appl Catal B. 19, 165–173 (1998) Fortuny, A., Font, J., Fabregat, A.: Wet air oxidation of phenol using active carbon as catalyst. Appl Catal B. 19, 165–173 (1998)
Zurück zum Zitat Freund, H., Lämmermann, M., Busse, C., Schwieger, W.: Additive manufacturing of tailor-made catalytic reactors for single phase and multiphase reaction systems. 25th international symposium on chemical reaction engineering, Florence (2018) Freund, H., Lämmermann, M., Busse, C., Schwieger, W.: Additive manufacturing of tailor-made catalytic reactors for single phase and multiphase reaction systems. 25th international symposium on chemical reaction engineering, Florence (2018)
Zurück zum Zitat Fu, M.S., Tan, C.S.: Liquid holdup and axial dispersion in trickle-bed reactors. Chem. Eng. Sci. 51, 5357–5361 (1996) Fu, M.S., Tan, C.S.: Liquid holdup and axial dispersion in trickle-bed reactors. Chem. Eng. Sci. 51, 5357–5361 (1996)
Zurück zum Zitat Fukushima, S., Kusaka, K.: Interfacial area and boundary of hydrodynamic flow region in packed column with concurrent downward flow. J. Chem. Eng. Jpn. 10, 461–467 (1977a) Fukushima, S., Kusaka, K.: Interfacial area and boundary of hydrodynamic flow region in packed column with concurrent downward flow. J. Chem. Eng. Jpn. 10, 461–467 (1977a)
Zurück zum Zitat Fukushima, S., Kusaka, K.: Liquid-phase volumentric and mass-transfer coefficient and boundary of hydrodynamic flow region in packed-column with concurrent downward flow. J. Chem. Eng. Jpn. 10, 468–474 (1977b) Fukushima, S., Kusaka, K.: Liquid-phase volumentric and mass-transfer coefficient and boundary of hydrodynamic flow region in packed-column with concurrent downward flow. J. Chem. Eng. Jpn. 10, 468–474 (1977b)
Zurück zum Zitat Gallezot, P., Nicolaus, N., Flèche, G., Fuertes, P., Perrard, A.: Glucose hydrogenation on ruthenium catalysts in a trickle-bed reactor. J. Catal. 180, 51–55 (1998) Gallezot, P., Nicolaus, N., Flèche, G., Fuertes, P., Perrard, A.: Glucose hydrogenation on ruthenium catalysts in a trickle-bed reactor. J. Catal. 180, 51–55 (1998)
Zurück zum Zitat Garcia, G.E.C., van der Schaaf, J., Kiss, A.A.: A review on process intensification in HiGee distillation. J. Chem. Eng. Technol. Biotechnol. 92, 1136–1156 (2017) Garcia, G.E.C., van der Schaaf, J., Kiss, A.A.: A review on process intensification in HiGee distillation. J. Chem. Eng. Technol. Biotechnol. 92, 1136–1156 (2017)
Zurück zum Zitat Garcia-Serna, J., Gallina, G., Biasi, P., Salmi, T.: Liquid holdup by gravimetric recirculation continuous measurement method. Application to trickle bed reactors under pressure at laboratory scale. Ind. Eng. Chem. Res. 56, 13.295–13.301 (2017) Garcia-Serna, J., Gallina, G., Biasi, P., Salmi, T.: Liquid holdup by gravimetric recirculation continuous measurement method. Application to trickle bed reactors under pressure at laboratory scale. Ind. Eng. Chem. Res. 56, 13.295–13.301 (2017)
Zurück zum Zitat Gascon, J., van Ommen, J.R., Moulijn, J.A., Kapteijn, F.: Structuring catalyst and reactor – an inviting avenue to process intensification. Cat. Sci. Technol. 5, 807–817 (2015) Gascon, J., van Ommen, J.R., Moulijn, J.A., Kapteijn, F.: Structuring catalyst and reactor – an inviting avenue to process intensification. Cat. Sci. Technol. 5, 807–817 (2015)
Zurück zum Zitat Gelhausen, M.G., Yang, S.Q., Cegla, M., Agar, D.W.: Cyclic mass transport phenomena in a novel reactor for gas-liquid-solid contacting. AIChE J. 63, 208–215 (2017) Gelhausen, M.G., Yang, S.Q., Cegla, M., Agar, D.W.: Cyclic mass transport phenomena in a novel reactor for gas-liquid-solid contacting. AIChE J. 63, 208–215 (2017)
Zurück zum Zitat Germain, A.H., LeFebvre, A.G., L’Homme, G.A.: Experimental study of a catalytic trickle bed reactor. Adv. Chem. Ser. 133, 164–180 (1974) Germain, A.H., LeFebvre, A.G., L’Homme, G.A.: Experimental study of a catalytic trickle bed reactor. Adv. Chem. Ser. 133, 164–180 (1974)
Zurück zum Zitat Gianetto, A., Berruti, F.: Modelling of trickle bed reactors. In: de Lasa, H.I. (Hrsg.) Chemical Reactor Design and Technology NATO ASI Series 110, S. 631–685. Springer, Dordrecht (1986) Gianetto, A., Berruti, F.: Modelling of trickle bed reactors. In: de Lasa, H.I. (Hrsg.) Chemical Reactor Design and Technology NATO ASI Series 110, S. 631–685. Springer, Dordrecht (1986)
Zurück zum Zitat Gianetto, A., Specchia, V.: Trickle-bed reactors – state of art and perspectives. Chem. Eng. Sci. 47, 3197–3213 (1992) Gianetto, A., Specchia, V.: Trickle-bed reactors – state of art and perspectives. Chem. Eng. Sci. 47, 3197–3213 (1992)
Zurück zum Zitat Gianetto, A., Specchia, V., Baldi, G.: Absorption in packed towers with concurrent downward high-velocity flows. 2. Mass-transfer. AIChE J. 19, 916–922 (1973) Gianetto, A., Specchia, V., Baldi, G.: Absorption in packed towers with concurrent downward high-velocity flows. 2. Mass-transfer. AIChE J. 19, 916–922 (1973)
Zurück zum Zitat Gierman, H.: Design of laboratory hydrotreating reactors – scaling down of trickle-flow reactors. Appl. Catal. 43, 277–286 (1988) Gierman, H.: Design of laboratory hydrotreating reactors – scaling down of trickle-flow reactors. Appl. Catal. 43, 277–286 (1988)
Zurück zum Zitat Gladden, L.F., Lim, M.H.M., Mantle, M.D., Sederman, A.J., Stitt, E.H.: MRI visualisation of two-phase flow in structured supports and trickle-bed reactors. Catal. Today 79, 203–210 (2003) Gladden, L.F., Lim, M.H.M., Mantle, M.D., Sederman, A.J., Stitt, E.H.: MRI visualisation of two-phase flow in structured supports and trickle-bed reactors. Catal. Today 79, 203–210 (2003)
Zurück zum Zitat Goto, S., Chatani, T., Matouq, M.H.: Hydration of 2-methyl-2-butene in gas-liquid cocurrent upflow and downflow reactors. Can. J. Chem. Eng. 71, 821–823 (1993) Goto, S., Chatani, T., Matouq, M.H.: Hydration of 2-methyl-2-butene in gas-liquid cocurrent upflow and downflow reactors. Can. J. Chem. Eng. 71, 821–823 (1993)
Zurück zum Zitat Goto, S., Levec, J., Smith, J.M.: Mass-transfer in packed-beds with two-phase flow. Ind. Eng. Chem. Proc. Des. Dev. 14, 473–478 (1975) Goto, S., Levec, J., Smith, J.M.: Mass-transfer in packed-beds with two-phase flow. Ind. Eng. Chem. Proc. Des. Dev. 14, 473–478 (1975)
Zurück zum Zitat Goto, S., Smith, J.M.: Trickle-bed reactor performance. 1. Holdup and mass-transfer effects. AIChE J. 21, 706–713 (1975) Goto, S., Smith, J.M.: Trickle-bed reactor performance. 1. Holdup and mass-transfer effects. AIChE J. 21, 706–713 (1975)
Zurück zum Zitat Govindarao, V.M.H., Fromet, G.F.: Voidage profiles in packed beds of spheres. Chem. Eng. Sci. 41, 553–539 (1986) Govindarao, V.M.H., Fromet, G.F.: Voidage profiles in packed beds of spheres. Chem. Eng. Sci. 41, 553–539 (1986)
Zurück zum Zitat Govindarao, V.M.H., Murthy, K.V.R.: Liquid-phase hydrogenation of aniline in a trickle bed reactor. J. Appl. Chem. Biotechnol. 25, 169–181 (1975) Govindarao, V.M.H., Murthy, K.V.R.: Liquid-phase hydrogenation of aniline in a trickle bed reactor. J. Appl. Chem. Biotechnol. 25, 169–181 (1975)
Zurück zum Zitat Grosser, K., Carbonell, R.G., Sundaresan, S.: Onset of pulsing in two-phase concurrent downflow through a packed-bed. AIChE J. 34, 1850–1860 (1988) Grosser, K., Carbonell, R.G., Sundaresan, S.: Onset of pulsing in two-phase concurrent downflow through a packed-bed. AIChE J. 34, 1850–1860 (1988)
Zurück zum Zitat Gunjal, P.R., Kashid, M.N., Ranade, V.V., Chaudhari, R.V.: Hydrodynamics of trickle-bed reactors: experiments and CFD modeling. Ind. Eng. Chem. Res. 44(16), 6278–6294 (2005) Gunjal, P.R., Kashid, M.N., Ranade, V.V., Chaudhari, R.V.: Hydrodynamics of trickle-bed reactors: experiments and CFD modeling. Ind. Eng. Chem. Res. 44(16), 6278–6294 (2005)
Zurück zum Zitat Gunjal, P.R., Ranade, V.V.: Modeling of laboratory and commercial scale hydro-processing reactors using CFD. Chem. Eng. Sci. 62, 5512–5526 (2007) Gunjal, P.R., Ranade, V.V.: Modeling of laboratory and commercial scale hydro-processing reactors using CFD. Chem. Eng. Sci. 62, 5512–5526 (2007)
Zurück zum Zitat Gupta, R.: Pulsed flow vapor-liquid reactors. U.S. Patent 4,526,757 (1985) Gupta, R.: Pulsed flow vapor-liquid reactors. U.S. Patent 4,526,757 (1985)
Zurück zum Zitat Hamidipour, M., Larachi, F., Ring, Z.: Monitoring filtration in trickle beds using electrical capacitance tomography. Ind. Eng. Chem. Res. 48, 1140–1153 (2009) Hamidipour, M., Larachi, F., Ring, Z.: Monitoring filtration in trickle beds using electrical capacitance tomography. Ind. Eng. Chem. Res. 48, 1140–1153 (2009)
Zurück zum Zitat Hampel, U., Dittmeyer, R., Patyk, A., Wetzel, T., Lange, R., Freund, H., Schwieger, W., Grünewald, M., Schlüter, M., Petasch, U.: The Helmholtz Energy Alliance „Energy efficient multiphase chemical processes“. Chem. Ing. Tech. 85, 992–996 (2013) Hampel, U., Dittmeyer, R., Patyk, A., Wetzel, T., Lange, R., Freund, H., Schwieger, W., Grünewald, M., Schlüter, M., Petasch, U.: The Helmholtz Energy Alliance „Energy efficient multiphase chemical processes“. Chem. Ing. Tech. 85, 992–996 (2013)
Zurück zum Zitat Hanika, J., Kucharova, M., Kolena, J., Smejkal, Q.: Multi-functional trickle bed reactor for butylacetate synthesis. Catal. Today 79, 83–87 (2002) Hanika, J., Kucharova, M., Kolena, J., Smejkal, Q.: Multi-functional trickle bed reactor for butylacetate synthesis. Catal. Today 79, 83–87 (2002)
Zurück zum Zitat Härting, H.-U., Berger, R., Lange, R., Larachi, F., Schubert, M.: Liquid backmixing in an inclined rotating tubular fixed bed reactor – augmenting liquid residence time via flow regime adjustment. Chem. Eng. Process 94, 2–10 (2015c) Härting, H.-U., Berger, R., Lange, R., Larachi, F., Schubert, M.: Liquid backmixing in an inclined rotating tubular fixed bed reactor – augmenting liquid residence time via flow regime adjustment. Chem. Eng. Process 94, 2–10 (2015c)
Zurück zum Zitat Härting, H.-U., Bieberle, A., Lange, R., Larachi, F., Schubert, M.: Hydrodynamics of co-current two-phase flow in an inclined rotating tubular fixed bed reactor – wetting intermittency via periodic catalyst immersion. Chem. Eng. Sci. 128, 147–158 (2015b) Härting, H.-U., Bieberle, A., Lange, R., Larachi, F., Schubert, M.: Hydrodynamics of co-current two-phase flow in an inclined rotating tubular fixed bed reactor – wetting intermittency via periodic catalyst immersion. Chem. Eng. Sci. 128, 147–158 (2015b)
Zurück zum Zitat Härting, H.-U., Lange, R., Larachi, F., Schubert, M.: A novel inclined rotating tubular fixed bed reactor concept for enhancement of reaction rates and adjustment of flow regimes. Chem. Eng. J. 281, 931–944 (2015a) Härting, H.-U., Lange, R., Larachi, F., Schubert, M.: A novel inclined rotating tubular fixed bed reactor concept for enhancement of reaction rates and adjustment of flow regimes. Chem. Eng. J. 281, 931–944 (2015a)
Zurück zum Zitat Hashimoto, K., Muroyama, K., Fujiyoshi, K., Nagata, S.: Effective radial thermal conductivity in concurrent flow of a gas and liquid through a packed bed. Int. Chem. Eng. 16, 720–727 (1976) Hashimoto, K., Muroyama, K., Fujiyoshi, K., Nagata, S.: Effective radial thermal conductivity in concurrent flow of a gas and liquid through a packed bed. Int. Chem. Eng. 16, 720–727 (1976)
Zurück zum Zitat Haure, P., Silveston, P.L., Hudgins, R.R., Bellut, M.: Conversion efficiency in trickle bed reactors. U.S. Patent 5,011,675 (1988) Haure, P., Silveston, P.L., Hudgins, R.R., Bellut, M.: Conversion efficiency in trickle bed reactors. U.S. Patent 5,011,675 (1988)
Zurück zum Zitat Hochman, J.M., Efron, E.: Two-phase cocurrent downflow in packed beds. Ind. Eng. Chem. Fundam. 8, 63–71 (1969) Hochman, J.M., Efron, E.: Two-phase cocurrent downflow in packed beds. Ind. Eng. Chem. Fundam. 8, 63–71 (1969)
Zurück zum Zitat Hofmann, H.: Hydrodynamics, transport phenomena, and mathematical models in trickle-bed reactors. Int. Chem. Eng. 17, 19–28 (1977) Hofmann, H.: Hydrodynamics, transport phenomena, and mathematical models in trickle-bed reactors. Int. Chem. Eng. 17, 19–28 (1977)
Zurück zum Zitat Holub, R.A., Dudukovic, M.P., Ramachandran, P.A.: A phenomenological model of pressure drop, liquid hold-up and flow regime transition in gas-liquid trickle flow. Chem. Eng. Sci. 47, 2343–2348 (1992) Holub, R.A., Dudukovic, M.P., Ramachandran, P.A.: A phenomenological model of pressure drop, liquid hold-up and flow regime transition in gas-liquid trickle flow. Chem. Eng. Sci. 47, 2343–2348 (1992)
Zurück zum Zitat Honda, G.S., Lehmann, E., Hickman, D.A., Varma, A.: Effects of prewetting on bubbly- and pulsing-flow regime transitions in trickle-bed reactors. Ind. Eng. Chem. Res. 54, 10.253–10.259 (2015) Honda, G.S., Lehmann, E., Hickman, D.A., Varma, A.: Effects of prewetting on bubbly- and pulsing-flow regime transitions in trickle-bed reactors. Ind. Eng. Chem. Res. 54, 10.253–10.259 (2015)
Zurück zum Zitat Houwelingen, A.J. van, Nicol, W.: Parallel hydrogenation for the quantification of wetting efficiency and liquid-solid mass transfer in a trickle-bed reactor. AIChE J. 57, 1310–1319 (2011) Houwelingen, A.J. van, Nicol, W.: Parallel hydrogenation for the quantification of wetting efficiency and liquid-solid mass transfer in a trickle-bed reactor. AIChE J. 57, 1310–1319 (2011)
Zurück zum Zitat Houwelingen, A. J. van, Sandrock, C., Nicol, W.: Particle wetting distribution in trickle-bed reactors. AIChE J. 52, 3532–3542 (2006) Houwelingen, A. J. van, Sandrock, C., Nicol, W.: Particle wetting distribution in trickle-bed reactors. AIChE J. 52, 3532–3542 (2006)
Zurück zum Zitat Huang, T.-C., Kang, B.-C.: Kinetic study of naphthalene hydrogenation over Pt/Al2O3 catalyst. Ind. Eng. Chem. Res. 34, 1140–1148 (1995) Huang, T.-C., Kang, B.-C.: Kinetic study of naphthalene hydrogenation over Pt/Al2O3 catalyst. Ind. Eng. Chem. Res. 34, 1140–1148 (1995)
Zurück zum Zitat Huang, X., Varma, A., McCready, M.J.: Heat transfer characterization of gas-liquid flows in a trickle-bed. Chem. Eng. Sci. 59, 3767–3776 (2004) Huang, X., Varma, A., McCready, M.J.: Heat transfer characterization of gas-liquid flows in a trickle-bed. Chem. Eng. Sci. 59, 3767–3776 (2004)
Zurück zum Zitat Iliuta, I., Aydin, B., Larachi, F.: Onset of pulsing in trickle beds with non-Newtonian liquids at elevated temperature and pressure – modeling and experimental verification. Chem. Eng. Sci. 61, 526–537 (2006) Iliuta, I., Aydin, B., Larachi, F.: Onset of pulsing in trickle beds with non-Newtonian liquids at elevated temperature and pressure – modeling and experimental verification. Chem. Eng. Sci. 61, 526–537 (2006)
Zurück zum Zitat Iliuta, I., Bozga, G., Lupascu, M.: Liquid-phase alkylation of benzene with propylene catalysed by HY zeolites. Chem. Eng. Technol. 24, 933–944 (2001) Iliuta, I., Bozga, G., Lupascu, M.: Liquid-phase alkylation of benzene with propylene catalysed by HY zeolites. Chem. Eng. Technol. 24, 933–944 (2001)
Zurück zum Zitat Iliuta, I., Larachi, F., Al-Dahhan, M.H.: Double-slit model for partially wetted trickle flow hydrodynamics. AIChE J. 46, 597–609 (2000) Iliuta, I., Larachi, F., Al-Dahhan, M.H.: Double-slit model for partially wetted trickle flow hydrodynamics. AIChE J. 46, 597–609 (2000)
Zurück zum Zitat Janecki, D., Burghardt, A., Bartelmus, G.: Computational simulation of the hydrodynamic parameters of a trickle-bed reactor operating at periodically changing feeding the bed with liquid. Chem. Process. Eng. 29, 583–596 (2008) Janecki, D., Burghardt, A., Bartelmus, G.: Computational simulation of the hydrodynamic parameters of a trickle-bed reactor operating at periodically changing feeding the bed with liquid. Chem. Process. Eng. 29, 583–596 (2008)
Zurück zum Zitat Jiang, Y., Khadilkar, M.R., Al-Dahhan, M.H., Dudukovic, M.P.: CFD modeling of multiphase flow distribution in catalytic packed bed reactors: scale down issues. Catal. Today 66, 209–218 (2001) Jiang, Y., Khadilkar, M.R., Al-Dahhan, M.H., Dudukovic, M.P.: CFD modeling of multiphase flow distribution in catalytic packed bed reactors: scale down issues. Catal. Today 66, 209–218 (2001)
Zurück zum Zitat Jiang, Y., Khadilkar, M.R., Al-Dahhan, M.H., Dudukovic, M.P.: CFD of multiphase flow in packed-bed reactors: I. k-fluid modeling issues. AIChE J. 48, 701–715 (2002a) Jiang, Y., Khadilkar, M.R., Al-Dahhan, M.H., Dudukovic, M.P.: CFD of multiphase flow in packed-bed reactors: I. k-fluid modeling issues. AIChE J. 48, 701–715 (2002a)
Zurück zum Zitat Jiang, Y., Khadilkar, M.R., Al-Dahhan, M.H., Dudukovic, M.P.: CFD of multiphase flow in packed-bed reactors: II. Results and application. AIChE J. 48, 716–730 (2002b) Jiang, Y., Khadilkar, M.R., Al-Dahhan, M.H., Dudukovic, M.P.: CFD of multiphase flow in packed-bed reactors: II. Results and application. AIChE J. 48, 716–730 (2002b)
Zurück zum Zitat Joubert, R., Nicol, W.: Trickle flow liquid-solid mass transfer and wetting efficiency in small diameter columns. Can. J. Chem. Eng. 91, 441–447 (2013) Joubert, R., Nicol, W.: Trickle flow liquid-solid mass transfer and wetting efficiency in small diameter columns. Can. J. Chem. Eng. 91, 441–447 (2013)
Zurück zum Zitat Julcour-Lebigue, C., Baussaron, L., Delmas, H., Wilhelm, A.-M.: Theoretical analysis of tracer method for the measurement of wetting efficiency. Chem. Eng. Sci. 62, 5374–5379 (2007) Julcour-Lebigue, C., Baussaron, L., Delmas, H., Wilhelm, A.-M.: Theoretical analysis of tracer method for the measurement of wetting efficiency. Chem. Eng. Sci. 62, 5374–5379 (2007)
Zurück zum Zitat Kan, K.M., Greenfield, P.F.: Multiple hydrodynamic states in concurrent two-phase downflow through packed-beds. Ind. Eng. Chem. Process Des. Dev. 17(4), 482–485 (1978) Kan, K.M., Greenfield, P.F.: Multiple hydrodynamic states in concurrent two-phase downflow through packed-beds. Ind. Eng. Chem. Process Des. Dev. 17(4), 482–485 (1978)
Zurück zum Zitat Kan, K.M., Greenfield, P.F.: Pressure-drop and holdup in two-phase concurrent trickle flows through beds of small packings. Ind. Eng. Chem. Process. Des. Dev. 18, 740–746 (1979) Kan, K.M., Greenfield, P.F.: Pressure-drop and holdup in two-phase concurrent trickle flows through beds of small packings. Ind. Eng. Chem. Process. Des. Dev. 18, 740–746 (1979)
Zurück zum Zitat Kang, S.-H., Bae, J.W., Cheon, J.-Y., Lee, Y.-J., Ha, K.-S., Jun, K.-W., Lee, D.-H., Kim, B.-W.: Catalytic performance on iron-based Fischer-Tropsch catalyst in fixed-bed and bubbling fluidized-bed reactor. Appl Catal B. 103(1–2), 169–180 (2011) Kang, S.-H., Bae, J.W., Cheon, J.-Y., Lee, Y.-J., Ha, K.-S., Jun, K.-W., Lee, D.-H., Kim, B.-W.: Catalytic performance on iron-based Fischer-Tropsch catalyst in fixed-bed and bubbling fluidized-bed reactor. Appl Catal B. 103(1–2), 169–180 (2011)
Zurück zum Zitat Kawase, Y., Ulbrecht, J.J.: Motion of and mass-transfer from an assemblage of solid spheres moving in a non-Newtonian fluid at high Reynolds numbers. Chem. Eng. Commun. 8, 233–249 (1981) Kawase, Y., Ulbrecht, J.J.: Motion of and mass-transfer from an assemblage of solid spheres moving in a non-Newtonian fluid at high Reynolds numbers. Chem. Eng. Commun. 8, 233–249 (1981)
Zurück zum Zitat Keil, F.J.: Process intensification. Rev. Chem. Eng. 34, 135–200 (2018) Keil, F.J.: Process intensification. Rev. Chem. Eng. 34, 135–200 (2018)
Zurück zum Zitat Khadilkar, M.R., Al-Dahhan, M.H., Dudukovic, M.P.: Parametric study of unsteady-state flow modulation in trickle-bed reactors. Chem. Eng. Sci. 54, 2585–2595 (1999) Khadilkar, M.R., Al-Dahhan, M.H., Dudukovic, M.P.: Parametric study of unsteady-state flow modulation in trickle-bed reactors. Chem. Eng. Sci. 54, 2585–2595 (1999)
Zurück zum Zitat Klinken, J. van, van Dongen, R.H.: Catalyst dilution for improved performance of laboratory trickle-flow reactors. Chem. Eng. Sci. 35, 59–66 (1980) Klinken, J. van, van Dongen, R.H.: Catalyst dilution for improved performance of laboratory trickle-flow reactors. Chem. Eng. Sci. 35, 59–66 (1980)
Zurück zum Zitat Kolb, W.B., Melli, T.R., Desantos, J.M., Scriven, L.E.: Cocurrent downflow in packed-beds – flow regimes and their acoustic signatures. Ind. Eng. Chem. Res. 29, 2380–2389 (1990) Kolb, W.B., Melli, T.R., Desantos, J.M., Scriven, L.E.: Cocurrent downflow in packed-beds – flow regimes and their acoustic signatures. Ind. Eng. Chem. Res. 29, 2380–2389 (1990)
Zurück zum Zitat Korsten, H., Hoffmann, U.: Three-phase reactor model for hydrotreating in pilot trickle-bed reactors. AIChE J. 42, 1350–1360 (1996) Korsten, H., Hoffmann, U.: Three-phase reactor model for hydrotreating in pilot trickle-bed reactors. AIChE J. 42, 1350–1360 (1996)
Zurück zum Zitat Kulkarni, R.R., Wood, J., Winterbottom, J.M., Stitt, E.H.: Effect of fines and porous catalyst on hydrodynamics of trickle bed reactors. Ind. Eng. Chem. Res. 44, 9497–9501 (2005) Kulkarni, R.R., Wood, J., Winterbottom, J.M., Stitt, E.H.: Effect of fines and porous catalyst on hydrodynamics of trickle bed reactors. Ind. Eng. Chem. Res. 44, 9497–9501 (2005)
Zurück zum Zitat Kundu, A., Nigam, K.D.P., Verma, R.P.: Catalyst wetting characteristics in trickle-bed reactors. AIChE J. 49, 2253–2263 (2003) Kundu, A., Nigam, K.D.P., Verma, R.P.: Catalyst wetting characteristics in trickle-bed reactors. AIChE J. 49, 2253–2263 (2003)
Zurück zum Zitat Kundu, A., Saroha, A.K., Nigam, K.D.P.: Liquid distribution studies in trickle-bed reactors. Chem. Eng. Sci. 56, 5963–5967 (2001) Kundu, A., Saroha, A.K., Nigam, K.D.P.: Liquid distribution studies in trickle-bed reactors. Chem. Eng. Sci. 56, 5963–5967 (2001)
Zurück zum Zitat Kunii, D., Suzuki, M.: Particle-to-fluid heat and mass transfer in packed beds of fine particles. Int. J. Heat Mass Transf. 10, 845–852 (1967) Kunii, D., Suzuki, M.: Particle-to-fluid heat and mass transfer in packed beds of fine particles. Int. J. Heat Mass Transf. 10, 845–852 (1967)
Zurück zum Zitat Kunzle, S., Soler, J.W., Baiker, A.: Continuous enantioselective hydrogenation in fixed-bed reactor: towards process intensification. Catal. Today 79, 503–509 (2003) Kunzle, S., Soler, J.W., Baiker, A.: Continuous enantioselective hydrogenation in fixed-bed reactor: towards process intensification. Catal. Today 79, 503–509 (2003)
Zurück zum Zitat Lamine, A.S., Gerth, L., LeGall, H., Wild, G.: Heat transfer in a packed bed reactor with cocurrent downflow of a gas and a liquid. Chem. Eng. Sci. 51, 3813–3827 (1996) Lamine, A.S., Gerth, L., LeGall, H., Wild, G.: Heat transfer in a packed bed reactor with cocurrent downflow of a gas and a liquid. Chem. Eng. Sci. 51, 3813–3827 (1996)
Zurück zum Zitat Lämmermann, M., Horak, G., Schwieger, W., Freund, H.: Periodic open cellular structures (POCS) for intensification of multiphase reactors: liquid holdup and two-phase pressure drop. Chem. Eng. Process. 126, 178–189 (2018) Lämmermann, M., Horak, G., Schwieger, W., Freund, H.: Periodic open cellular structures (POCS) for intensification of multiphase reactors: liquid holdup and two-phase pressure drop. Chem. Eng. Process. 126, 178–189 (2018)
Zurück zum Zitat Lange, R., Hanika, J., Stradiotto, D., Hudgins, R.R., Silveston, P.L.: Investigations of periodically operated trickle-bed reactors. Chem. Eng. Sci. 49, 5615–5621 (1994) Lange, R., Hanika, J., Stradiotto, D., Hudgins, R.R., Silveston, P.L.: Investigations of periodically operated trickle-bed reactors. Chem. Eng. Sci. 49, 5615–5621 (1994)
Zurück zum Zitat Lange, R., Schubert, M., Dietrich, W., Grünewald, M.: Unsteady-state operation of trickle-bed reactors. Chem. Eng. Sci. 59, 5355–5361 (2004) Lange, R., Schubert, M., Dietrich, W., Grünewald, M.: Unsteady-state operation of trickle-bed reactors. Chem. Eng. Sci. 59, 5355–5361 (2004)
Zurück zum Zitat Lappalainen, K., Manninen, M., Alopaeus, V.: CFD modeling of radial spreading of flow in trickle-bed reactors due to mechanical and capillary dispersion. Chem. Eng. Sci. 64, 207–218 (2009) Lappalainen, K., Manninen, M., Alopaeus, V.: CFD modeling of radial spreading of flow in trickle-bed reactors due to mechanical and capillary dispersion. Chem. Eng. Sci. 64, 207–218 (2009)
Zurück zum Zitat Larachi, F., Belfares, L., Grandjean, B.P.A.: Prediction of liquid-solid wetting efficiency in trickle flow reactors. Int. Commun. Heat Mass Transf. 28, 595–603 (2001) Larachi, F., Belfares, L., Grandjean, B.P.A.: Prediction of liquid-solid wetting efficiency in trickle flow reactors. Int. Commun. Heat Mass Transf. 28, 595–603 (2001)
Zurück zum Zitat Larachi, F., Belfares, L., Iliuta, I., Grandjean, B.P.A.: Heat and mass transfer in cocurrent gas-liquid packed beds. Analysis, recommendations, and new correlations. Ind. Eng. Chem. Res. 42, 222–242 (2003) Larachi, F., Belfares, L., Iliuta, I., Grandjean, B.P.A.: Heat and mass transfer in cocurrent gas-liquid packed beds. Analysis, recommendations, and new correlations. Ind. Eng. Chem. Res. 42, 222–242 (2003)
Zurück zum Zitat Larachi, F., Cassanello, M., Laurent, A.: Gas-liquid interfacial mass transfer in trickle-bed reactors at elevated pressures. Ind. Eng. Chem. Res. 37, 718–733 (1998) Larachi, F., Cassanello, M., Laurent, A.: Gas-liquid interfacial mass transfer in trickle-bed reactors at elevated pressures. Ind. Eng. Chem. Res. 37, 718–733 (1998)
Zurück zum Zitat Larachi, F., Iliuta, I., Chen, M., Grandjean, B.P.A.: Onset of pulsing in trickle beds: evaluation of current tools and state-of-the-art correlation. Can. J. Chem. Eng. 77, 751–758 (1999) Larachi, F., Iliuta, I., Chen, M., Grandjean, B.P.A.: Onset of pulsing in trickle beds: evaluation of current tools and state-of-the-art correlation. Can. J. Chem. Eng. 77, 751–758 (1999)
Zurück zum Zitat Larachi, F., Laurent, A., Midoux, N., Wild, G.: Experimental study of a trickle-bed reactor operating at high-pressure – two-phase pressure drop and liquid saturation. Chem. Eng. Sci. 46, 1233–1246 (1991) Larachi, F., Laurent, A., Midoux, N., Wild, G.: Experimental study of a trickle-bed reactor operating at high-pressure – two-phase pressure drop and liquid saturation. Chem. Eng. Sci. 46, 1233–1246 (1991)
Zurück zum Zitat Larachi, F., Laurent, A., Wild, G., Midoux, N.: Effect of pressure on trickle-to-pulse transition in catalytic trickle-bed reactors. Can. J. Chem. Eng. 71, 319–321 (1993) Larachi, F., Laurent, A., Wild, G., Midoux, N.: Effect of pressure on trickle-to-pulse transition in catalytic trickle-bed reactors. Can. J. Chem. Eng. 71, 319–321 (1993)
Zurück zum Zitat Latifi, M.A., Rode, S., Midoux, N., Storck, A.: The use of microelectrodes for the determination of flow regimes in a trickle-bed reactor. Chem. Eng. Sci. 47, 1955–1961 (1992) Latifi, M.A., Rode, S., Midoux, N., Storck, A.: The use of microelectrodes for the determination of flow regimes in a trickle-bed reactor. Chem. Eng. Sci. 47, 1955–1961 (1992)
Zurück zum Zitat Lazzaroni, C.L., Keselman, H.R., Figoli, N.S.: Trickle bed reactors – multiplicity of hydrodynamic states – relation between the pressure-drop and the liquid holdup. Ind. Eng. Chem. Res. 28, 119–121 (1989) Lazzaroni, C.L., Keselman, H.R., Figoli, N.S.: Trickle bed reactors – multiplicity of hydrodynamic states – relation between the pressure-drop and the liquid holdup. Ind. Eng. Chem. Res. 28, 119–121 (1989)
Zurück zum Zitat Leung, P.C., Recasens, F., Smith, J.M.: Hydration of isobutene in a trickle-bed reactor – wetting efficiency and mass-transfer. AIChE J. 33, 996–1007 (1987) Leung, P.C., Recasens, F., Smith, J.M.: Hydration of isobutene in a trickle-bed reactor – wetting efficiency and mass-transfer. AIChE J. 33, 996–1007 (1987)
Zurück zum Zitat Levec, J., Smith, J.M.: Oxidation of acetic-acid solutions in a trickle-bed reactor. AIChE J. 22, 159–168 (1976) Levec, J., Smith, J.M.: Oxidation of acetic-acid solutions in a trickle-bed reactor. AIChE J. 22, 159–168 (1976)
Zurück zum Zitat Li, Y.X., Cheng, Z.M., Liu, L.H., Yuan, W.K.: Catalytic oxidation of dilute SO2 over activated carbon coupled with partial liquid phase vaporization. Chem. Eng. Sci. 54, 1571–1576 (1999) Li, Y.X., Cheng, Z.M., Liu, L.H., Yuan, W.K.: Catalytic oxidation of dilute SO2 over activated carbon coupled with partial liquid phase vaporization. Chem. Eng. Sci. 54, 1571–1576 (1999)
Zurück zum Zitat Liu, G., Mi, Z., Wang, L., Zhang, X., Zhang, S.: Hydrogenation of dicyclopentadiene into endo-tetrahydrodicyclopentadiene in trickle-bed reactor: experiments and modeling. Ind. Eng. Chem. Res. 45, 8807–8814 (2006) Liu, G., Mi, Z., Wang, L., Zhang, X., Zhang, S.: Hydrogenation of dicyclopentadiene into endo-tetrahydrodicyclopentadiene in trickle-bed reactor: experiments and modeling. Ind. Eng. Chem. Res. 45, 8807–8814 (2006)
Zurück zum Zitat Liu, G.Z., Duan, Y., Wang, Y.Q., Wang, L., Mi, Z.T.: Periodically operated trickle-bed reactor for EAQs hydrogenation: experiments and modeling. Chem. Eng. Sci. 60, 6270–6278 (2005) Liu, G.Z., Duan, Y., Wang, Y.Q., Wang, L., Mi, Z.T.: Periodically operated trickle-bed reactor for EAQs hydrogenation: experiments and modeling. Chem. Eng. Sci. 60, 6270–6278 (2005)
Zurück zum Zitat Liu, G.Z., Lan, J.A., Cao, Y.B., Huang, Z.B., Cheng, Z.M., Mi, Z.T.: New insights into transient behaviors of local liquid-holdup in periodically operated trickle-bed reactors using electrical capacitance tomography (ECT). Chem. Eng. Sci. 64, 3329–3343 (2009) Liu, G.Z., Lan, J.A., Cao, Y.B., Huang, Z.B., Cheng, Z.M., Mi, Z.T.: New insights into transient behaviors of local liquid-holdup in periodically operated trickle-bed reactors using electrical capacitance tomography (ECT). Chem. Eng. Sci. 64, 3329–3343 (2009)
Zurück zum Zitat Llano, J.J., Rosal, R., Sastre, H., Diez, F.V.: Determination of wetting efficiency in trickle-bed reactors by a reaction method. Ind. Eng. Chem. Res. 36, 2616–2625 (1997) Llano, J.J., Rosal, R., Sastre, H., Diez, F.V.: Determination of wetting efficiency in trickle-bed reactors by a reaction method. Ind. Eng. Chem. Res. 36, 2616–2625 (1997)
Zurück zum Zitat Lopes, R.J.G., Quinta-Ferreira, R.M.: Trickle-bed CFD studies in the catalytic wet oxidation of phenolic acids. Chem. Eng. Sci. 62, 7045–7052 (2007) Lopes, R.J.G., Quinta-Ferreira, R.M.: Trickle-bed CFD studies in the catalytic wet oxidation of phenolic acids. Chem. Eng. Sci. 62, 7045–7052 (2007)
Zurück zum Zitat Lopes, R.J.G., Quinta-Ferreira, R.M.: Volume-of-Fluid-based model for multiphase flow in high-pressure trickle-bed reactor: optimization of numerical parameters. AIChE J. 55, 2920–2933 (2009a) Lopes, R.J.G., Quinta-Ferreira, R.M.: Volume-of-Fluid-based model for multiphase flow in high-pressure trickle-bed reactor: optimization of numerical parameters. AIChE J. 55, 2920–2933 (2009a)
Zurück zum Zitat Lopes, R.J.G., Quinta-Ferreira, R.M.: CFD modelling of multiphase flow distribution in trickle beds. Chem. Eng. J. 147, 342–355 (2009b) Lopes, R.J.G., Quinta-Ferreira, R.M.: CFD modelling of multiphase flow distribution in trickle beds. Chem. Eng. J. 147, 342–355 (2009b)
Zurück zum Zitat Lopes, R.J.G., Quinta-Ferreira, R.M.: Assessment of CFD-VOF method for trickle-bed reactor modeling in the catalytic wet oxidation of phenolic wastewaters. Ind. Eng. Chem. Res. 49, 2638–2648 (2010a) Lopes, R.J.G., Quinta-Ferreira, R.M.: Assessment of CFD-VOF method for trickle-bed reactor modeling in the catalytic wet oxidation of phenolic wastewaters. Ind. Eng. Chem. Res. 49, 2638–2648 (2010a)
Zurück zum Zitat Lopes, R.J.G., Quinta-Ferreira, R.M.: Hydrodynamic simulation of pulsing-flow regime in high-pressure trickle-bed reactors. Ind. End. Chem. Res. 49, 1105–1112 (2010b) Lopes, R.J.G., Quinta-Ferreira, R.M.: Hydrodynamic simulation of pulsing-flow regime in high-pressure trickle-bed reactors. Ind. End. Chem. Res. 49, 1105–1112 (2010b)
Zurück zum Zitat Lopes, R.J.G., Quinta-Ferreira, R.M.: Assessment of CFD Euler-Euler method for trickle-bed reactor modelling in the catalytic wet oxidation of phenolic wastewaters. Chem. Eng. J. 160, 293–301 (2010c) Lopes, R.J.G., Quinta-Ferreira, R.M.: Assessment of CFD Euler-Euler method for trickle-bed reactor modelling in the catalytic wet oxidation of phenolic wastewaters. Chem. Eng. J. 160, 293–301 (2010c)
Zurück zum Zitat Maiti, R.N., Nigam, K.D.P.: Gas-liquid distributors for trickle-bed reactors: a review. Ind. Eng. Chem. Res. 46, 6164–6182 (2007) Maiti, R.N., Nigam, K.D.P.: Gas-liquid distributors for trickle-bed reactors: a review. Ind. Eng. Chem. Res. 46, 6164–6182 (2007)
Zurück zum Zitat Marcandelli, C., Wild, G., Lamine, A.S., Bernard, J.R.: Measurement of local particle–fluid heat transfer coefficient in trickle-bed reactors. Chem. Eng. Sci. 54, 4997–5002 (1999) Marcandelli, C., Wild, G., Lamine, A.S., Bernard, J.R.: Measurement of local particle–fluid heat transfer coefficient in trickle-bed reactors. Chem. Eng. Sci. 54, 4997–5002 (1999)
Zurück zum Zitat Mariani, N.J., Martinez, O.M., Barreto, G.F.: Evaluation of heat transfer parameters in packed beds with cocurrent downflow of liquid and gas. Chem. Eng. Sci. 56, 5995–6001 (2001) Mariani, N.J., Martinez, O.M., Barreto, G.F.: Evaluation of heat transfer parameters in packed beds with cocurrent downflow of liquid and gas. Chem. Eng. Sci. 56, 5995–6001 (2001)
Zurück zum Zitat Martin, H.: Low Péclet number particle-to-fluid heat and mass transfer in packed beds. Chem. Eng. Sci. 33, 913–919 (1978) Martin, H.: Low Péclet number particle-to-fluid heat and mass transfer in packed beds. Chem. Eng. Sci. 33, 913–919 (1978)
Zurück zum Zitat Mary, G., Chaouki, J., Luck, F.: Trickle-bed laboratory reactors for kinetic studies. Int. J. Chem. React. Eng. 7, 1542–1580 (2009) Mary, G., Chaouki, J., Luck, F.: Trickle-bed laboratory reactors for kinetic studies. Int. J. Chem. React. Eng. 7, 1542–1580 (2009)
Zurück zum Zitat Matsuura, A., Hitaka, Y., Akehata, T., Shirai, T.: Apparent wall heat transfer coefficient in packed beds with downward cocurrent gas-liquid flow. Heat Transfer Jpn. Res. 8, 53–60 (1979) Matsuura, A., Hitaka, Y., Akehata, T., Shirai, T.: Apparent wall heat transfer coefficient in packed beds with downward cocurrent gas-liquid flow. Heat Transfer Jpn. Res. 8, 53–60 (1979)
Zurück zum Zitat Maugans, C.B., Akgerman, A.: Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst. Water Res. 37, 319–328 (2002) Maugans, C.B., Akgerman, A.: Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst. Water Res. 37, 319–328 (2002)
Zurück zum Zitat Mears, D.E.: The role of axial dispersion in trickle-flow laboratory reactors. Chem. Eng. Sci. 26, 1361–1366 (1971a) Mears, D.E.: The role of axial dispersion in trickle-flow laboratory reactors. Chem. Eng. Sci. 26, 1361–1366 (1971a)
Zurück zum Zitat Mears, D.E.: Diagnostic criteria for heat transport limitations in fixed bed reactors. J. Catal. 20, 127–131 (1971b) Mears, D.E.: Diagnostic criteria for heat transport limitations in fixed bed reactors. J. Catal. 20, 127–131 (1971b)
Zurück zum Zitat Mears, D.E.: Role of liquid holdup and effective wetting in performance of trickle-bed reactors. Adv. Chem. Ser. 133, 218–227 (1974) Mears, D.E.: Role of liquid holdup and effective wetting in performance of trickle-bed reactors. Adv. Chem. Ser. 133, 218–227 (1974)
Zurück zum Zitat Mears, D.E.: On criteria for axial dispersion in nonisothermal packed-bed catalytic reactors. Ind. Eng. Chem. Fundam. 15, 20–23 (1976) Mears, D.E.: On criteria for axial dispersion in nonisothermal packed-bed catalytic reactors. Ind. Eng. Chem. Fundam. 15, 20–23 (1976)
Zurück zum Zitat Mederos, F.S., Elizalde, I., Ancheyta, J.: Steady-state and dynamic reactor models for hydrotreatment of oil fractions: a review. Catal. Rev. Sci. Eng. 51, 485–607 (2009) Mederos, F.S., Elizalde, I., Ancheyta, J.: Steady-state and dynamic reactor models for hydrotreatment of oil fractions: a review. Catal. Rev. Sci. Eng. 51, 485–607 (2009)
Zurück zum Zitat Merchan, A., Emig, G., Hofmann, H., Chaudhari, R.V.: Zur Frage des Katalysator-Wirkungsgrades bei Folge-Reaktionen in Mehrphasensystemen. Chem. Ing. Tech. 58, 50–53 (1986) Merchan, A., Emig, G., Hofmann, H., Chaudhari, R.V.: Zur Frage des Katalysator-Wirkungsgrades bei Folge-Reaktionen in Mehrphasensystemen. Chem. Ing. Tech. 58, 50–53 (1986)
Zurück zum Zitat Merwe, W. van der, Nicol, W.: Characterization of multiple flow morphologies within the trickle flow regime. Ind. Eng. Chem. Res. 44, 9446–9450 (2005) Merwe, W. van der, Nicol, W.: Characterization of multiple flow morphologies within the trickle flow regime. Ind. Eng. Chem. Res. 44, 9446–9450 (2005)
Zurück zum Zitat Merwe, W. van der, Nicol, W.: Trickle flow hydrodynamic multiplicity: experimental observations and pore-scale capillary mechanism. Chem. Eng. Sci. 64, 1267–1284 (2009) Merwe, W. van der, Nicol, W.: Trickle flow hydrodynamic multiplicity: experimental observations and pore-scale capillary mechanism. Chem. Eng. Sci. 64, 1267–1284 (2009)
Zurück zum Zitat Metaxas, K.C., Papayannakos, N.G.: Kinetics and mass transfer of benzene hydrogenation in a trickle-bed reactor. Ind. Eng. Chem. Res. 45, 7110–7119 (2006) Metaxas, K.C., Papayannakos, N.G.: Kinetics and mass transfer of benzene hydrogenation in a trickle-bed reactor. Ind. Eng. Chem. Res. 45, 7110–7119 (2006)
Zurück zum Zitat Meyers, R.A.: Handbook of Petroleum Refining Processes, 3. Aufl. McGraw-Hill Education, New York (2003) Meyers, R.A.: Handbook of Petroleum Refining Processes, 3. Aufl. McGraw-Hill Education, New York (2003)
Zurück zum Zitat Michell, R.W., Furzer, I.A.: Trickle flow in packed-beds. Trans. Inst. Chem. Eng. 50, 334–342 (1972) Michell, R.W., Furzer, I.A.: Trickle flow in packed-beds. Trans. Inst. Chem. Eng. 50, 334–342 (1972)
Zurück zum Zitat Mogalicherla, A.K., Sharma, G., Kunzru, D.: Estimation of wetting efficiency in trickle-bed reactors for nonlinear kinetics. Ind. Eng. Chem. Res. 48, 1443–1450 (2009) Mogalicherla, A.K., Sharma, G., Kunzru, D.: Estimation of wetting efficiency in trickle-bed reactors for nonlinear kinetics. Ind. Eng. Chem. Res. 48, 1443–1450 (2009)
Zurück zum Zitat Morsi, B.I., Laurent, A., Midoux, N., Barthole-Delaunay, G., Storck, A., Charpentier, J.C.: Hydrodynamics and gas-liquid-solid interfacial parameters of co-current downward two-phase flow in trickle-bed reactors. Chem. Eng. Commun. 25, 267–293 (1984) Morsi, B.I., Laurent, A., Midoux, N., Barthole-Delaunay, G., Storck, A., Charpentier, J.C.: Hydrodynamics and gas-liquid-solid interfacial parameters of co-current downward two-phase flow in trickle-bed reactors. Chem. Eng. Commun. 25, 267–293 (1984)
Zurück zum Zitat Mülheims, P., Kraushaar-Czarnetzki, B.: Temperature profiles and process performances of sponge packings as compared to spherical catalysts in the oxidation of o-xylene to phthalic anhydride. Ind. Eng. Chem. Res. 50, 9925–9935 (2011) Mülheims, P., Kraushaar-Czarnetzki, B.: Temperature profiles and process performances of sponge packings as compared to spherical catalysts in the oxidation of o-xylene to phthalic anhydride. Ind. Eng. Chem. Res. 50, 9925–9935 (2011)
Zurück zum Zitat Muroyama, K., Hashimoto, K., Tomita, T.: Heat transfer from wall in gas-liquid cocurrent packed beds. Kagaku Kokaku Ronbun. 3, 612–616 (1977) Muroyama, K., Hashimoto, K., Tomita, T.: Heat transfer from wall in gas-liquid cocurrent packed beds. Kagaku Kokaku Ronbun. 3, 612–616 (1977)
Zurück zum Zitat Nakayama, A., Kuwahara, F.: A general macroscopic turbulence model for flows in packed beds, channels, pipes and rod bundles. J. Fluids Eng. 130, 1–7 (2008) Nakayama, A., Kuwahara, F.: A general macroscopic turbulence model for flows in packed beds, channels, pipes and rod bundles. J. Fluids Eng. 130, 1–7 (2008)
Zurück zum Zitat Nelson, P.A., Galloway, T.R.: Particle-to-fluid heat and mass transfer in dense systems of fine particles. Chem. Eng. Sci. 30, 1–6 (1975) Nelson, P.A., Galloway, T.R.: Particle-to-fluid heat and mass transfer in dense systems of fine particles. Chem. Eng. Sci. 30, 1–6 (1975)
Zurück zum Zitat Ng, K.M.: A model for flow regime transitions in cocurrent downflow trickle-bed reactors. AIChE J. 32, 115–122 (1986) Ng, K.M.: A model for flow regime transitions in cocurrent downflow trickle-bed reactors. AIChE J. 32, 115–122 (1986)
Zurück zum Zitat Nicol, W., Joubert, R.: Liquid-solid mass transfer distributions in trickle bed reactors. Chem. Eng. J. 230, 361–366 (2013) Nicol, W., Joubert, R.: Liquid-solid mass transfer distributions in trickle bed reactors. Chem. Eng. J. 230, 361–366 (2013)
Zurück zum Zitat Nigam, K.D.P., Larachi, F.: Process intensification in trickle-bed reactors. Chem. Eng. Sci. 60, 5880–5894 (2005) Nigam, K.D.P., Larachi, F.: Process intensification in trickle-bed reactors. Chem. Eng. Sci. 60, 5880–5894 (2005)
Zurück zum Zitat Nishizawa, A., Kitano, T., Ikenaga, N., Miyake, T., Suzuki, T.: Use of trickle bed reactor for Fischer-Tropsch reaction over Co-Mn/oxidized diamond catalyst. J. Jpn. Petrol. Inst. 57, 109–117 (2014) Nishizawa, A., Kitano, T., Ikenaga, N., Miyake, T., Suzuki, T.: Use of trickle bed reactor for Fischer-Tropsch reaction over Co-Mn/oxidized diamond catalyst. J. Jpn. Petrol. Inst. 57, 109–117 (2014)
Zurück zum Zitat Perego, C., Peratello, S.: Experimental methods in catalytic kinetics. Catal. Today 52, 133–145 (1999) Perego, C., Peratello, S.: Experimental methods in catalytic kinetics. Catal. Today 52, 133–145 (1999)
Zurück zum Zitat Pintar, A., Batista, J.: Catalytic hydrogenation of aqueous nitrate solutions in fixed-bed reactors. Catal. Today 53, 35–50 (1999) Pintar, A., Batista, J.: Catalytic hydrogenation of aqueous nitrate solutions in fixed-bed reactors. Catal. Today 53, 35–50 (1999)
Zurück zum Zitat Pintar, A., Batista, J., Tisler, T.: Catalytic wet-air oxidation of aqueous solutions of formic acid, acetic acid and phenol in a continuous-flow trickle-bed reactor over Ru/TiO2 catalysts. Appl Catal B. 84, 30–41 (2008) Pintar, A., Batista, J., Tisler, T.: Catalytic wet-air oxidation of aqueous solutions of formic acid, acetic acid and phenol in a continuous-flow trickle-bed reactor over Ru/TiO2 catalysts. Appl Catal B. 84, 30–41 (2008)
Zurück zum Zitat Pironti, F., Mizrahi, D., Acosta, A., Gonzalez-Mendizabal, D.: Liquid-solid wetting factor in trickle-bed reactors: its determination by a physical method. Chem. Eng. Sci. 54, 3793–3800 (1999) Pironti, F., Mizrahi, D., Acosta, A., Gonzalez-Mendizabal, D.: Liquid-solid wetting factor in trickle-bed reactors: its determination by a physical method. Chem. Eng. Sci. 54, 3793–3800 (1999)
Zurück zum Zitat Rajashekharam, M.V., Jaganathan, R., Chaudhari, R.V.: A trickle-bed reactor model for hydrogenation of 2,4 dinitrotoluene: experimental verification. Chem. Eng. Sci. 53, 787–805 (1998) Rajashekharam, M.V., Jaganathan, R., Chaudhari, R.V.: A trickle-bed reactor model for hydrogenation of 2,4 dinitrotoluene: experimental verification. Chem. Eng. Sci. 53, 787–805 (1998)
Zurück zum Zitat Ramachandran, P.A., Dudukovic, M.P., Mills, P.L.: A new model for assessment of external liquid-solid contacting in trickle-bed reactors from tracer response measurements. Chem. Eng. Sci. 41, 855–860 (1986) Ramachandran, P.A., Dudukovic, M.P., Mills, P.L.: A new model for assessment of external liquid-solid contacting in trickle-bed reactors from tracer response measurements. Chem. Eng. Sci. 41, 855–860 (1986)
Zurück zum Zitat Ramachandran, P.A., Smith, J.M.: Effectiveness factors in trickle-bed reactors. AIChE J. 25, 538–542 (1979) Ramachandran, P.A., Smith, J.M.: Effectiveness factors in trickle-bed reactors. AIChE J. 25, 538–542 (1979)
Zurück zum Zitat Ramirez, L.F., Escobar, J., Galvan, E., Vaca, H., Murrieta, F.R., Luna, M.R.S.: Evaluation of diluted and undiluted trickle-bed hydrotreating reactor with different catalyst volume. Pet. Sci. Technol. 22, 157–175 (2004) Ramirez, L.F., Escobar, J., Galvan, E., Vaca, H., Murrieta, F.R., Luna, M.R.S.: Evaluation of diluted and undiluted trickle-bed hydrotreating reactor with different catalyst volume. Pet. Sci. Technol. 22, 157–175 (2004)
Zurück zum Zitat Ranade, V.V., Chaudhari, R.V., Gunjal, R.R.: Trickle bed reactors. Reactor Engineering and Applications, 1. Aufl. Elsevier, Amsterdam (2011) Ranade, V.V., Chaudhari, R.V., Gunjal, R.R.: Trickle bed reactors. Reactor Engineering and Applications, 1. Aufl. Elsevier, Amsterdam (2011)
Zurück zum Zitat Ring, Z.E., Missen, R.W.: Trickle-bed reactors – tracer study of liquid holdup and wetting efficiency at high temperature and pressure. Can. J. Chem. Eng. 69, 1016–1020 (1991) Ring, Z.E., Missen, R.W.: Trickle-bed reactors – tracer study of liquid holdup and wetting efficiency at high temperature and pressure. Can. J. Chem. Eng. 69, 1016–1020 (1991)
Zurück zum Zitat Saez, A.E., Carbonell, R.G.: Hydrodynamic parameters for gas-liquid cocurrent flow in packed-beds. AIChE J. 31, 52–62 (1985) Saez, A.E., Carbonell, R.G.: Hydrodynamic parameters for gas-liquid cocurrent flow in packed-beds. AIChE J. 31, 52–62 (1985)
Zurück zum Zitat Saroha, A.K., Nigam, K.D.P.: Trickle bed reactors. Rev. Chem. Eng. 12, 207–347 (1996) Saroha, A.K., Nigam, K.D.P.: Trickle bed reactors. Rev. Chem. Eng. 12, 207–347 (1996)
Zurück zum Zitat Sato, Y., Hirose, T., Takahasi, F., Toda, M., Hashiguchi, Y.: Flow pattern and pulsation properties of cuocurrent gas-liquid downflow in packed beds. J. Chem. Eng. Jpn. 6, 315–319 (1973) Sato, Y., Hirose, T., Takahasi, F., Toda, M., Hashiguchi, Y.: Flow pattern and pulsation properties of cuocurrent gas-liquid downflow in packed beds. J. Chem. Eng. Jpn. 6, 315–319 (1973)
Zurück zum Zitat Satterfield, C.N.: Trickle-bed reactors. AIChE J. 21, 209–228 (1975) Satterfield, C.N.: Trickle-bed reactors. AIChE J. 21, 209–228 (1975)
Zurück zum Zitat Satterfield, C.N., Pelossof, A.A., Sherwood, T.K.: Mass transfer limitations in a trickle-bed reactor. AIChE J. 15, 226–234 (1969) Satterfield, C.N., Pelossof, A.A., Sherwood, T.K.: Mass transfer limitations in a trickle-bed reactor. AIChE J. 15, 226–234 (1969)
Zurück zum Zitat Satterfield, C.N., Way, P.F.: Role of liquid-phase in performance of a trickle bed reactor. AIChE J. 18, 305–311 (1972) Satterfield, C.N., Way, P.F.: Role of liquid-phase in performance of a trickle bed reactor. AIChE J. 18, 305–311 (1972)
Zurück zum Zitat Schubert, M.: Festbettreaktor. DE 10 2018 110 091.4 (2018) Schubert, M.: Festbettreaktor. DE 10 2018 110 091.4 (2018)
Zurück zum Zitat Schubert, M., Bauer, T., Lange, R.: Instationäre Betriebsweise zur Leistungssteigerung technischer Rieselbettreaktoren. Chem. Ing. Technik. 78, 1023–1032 (2006) Schubert, M., Bauer, T., Lange, R.: Instationäre Betriebsweise zur Leistungssteigerung technischer Rieselbettreaktoren. Chem. Ing. Technik. 78, 1023–1032 (2006)
Zurück zum Zitat Schubert, M., Hamidipour, M., Duchesne, C., Larachi, F.: Hydrodynamics of cocurrent two-phase flows in slanted porous media – modulation of pulse flow via bed obliquity. AIChE J. 56, 3189–3205 (2010a) Schubert, M., Hamidipour, M., Duchesne, C., Larachi, F.: Hydrodynamics of cocurrent two-phase flows in slanted porous media – modulation of pulse flow via bed obliquity. AIChE J. 56, 3189–3205 (2010a)
Zurück zum Zitat Schubert, M., Hessel, G., Zippe, C., Lange, R., Hampel, U.: Liquid flow texture analysis in trickle bed reactors using high-resolution gamma ray tomography. Chem. Eng. J. 140, 332–340 (2008) Schubert, M., Hessel, G., Zippe, C., Lange, R., Hampel, U.: Liquid flow texture analysis in trickle bed reactors using high-resolution gamma ray tomography. Chem. Eng. J. 140, 332–340 (2008)
Zurück zum Zitat Schubert, M., Kryk, H., Hampel, U.: Slow-mode gas/liquid-induced periodic hydrodynamics in trickling packed beds derived from direct measurement of cross-sectional distributed local capacitances. Chem. Eng. Process 49, 1107–1121 (2010b) Schubert, M., Kryk, H., Hampel, U.: Slow-mode gas/liquid-induced periodic hydrodynamics in trickling packed beds derived from direct measurement of cross-sectional distributed local capacitances. Chem. Eng. Process 49, 1107–1121 (2010b)
Zurück zum Zitat Sederman, A.J., Gladden, L.F.: Magnetic resonance imaging as a quantitative probe of gas-liquid distribution and wetting efficiency in trickle-bed reactors. Chem. Eng. Sci. 56, 2615–2628 (2001) Sederman, A.J., Gladden, L.F.: Magnetic resonance imaging as a quantitative probe of gas-liquid distribution and wetting efficiency in trickle-bed reactors. Chem. Eng. Sci. 56, 2615–2628 (2001)
Zurück zum Zitat Shah, Y.T., Paraskos, J.A.: Criteria for axial dispersion effects in adiabatic trickle bed hydroprocessing reactors. Chem. Eng. Sci. 30, 1169–1176 (1976) Shah, Y.T., Paraskos, J.A.: Criteria for axial dispersion effects in adiabatic trickle bed hydroprocessing reactors. Chem. Eng. Sci. 30, 1169–1176 (1976)
Zurück zum Zitat Sicardi, S., Hofmann, H.: Influence of gas velocity and packing geometry on pulsing inception in trickle-bed reactors. Chem. Eng. J. 20, 251–253 (1980) Sicardi, S., Hofmann, H.: Influence of gas velocity and packing geometry on pulsing inception in trickle-bed reactors. Chem. Eng. J. 20, 251–253 (1980)
Zurück zum Zitat Sie, S.T.: Scale effects in laboratory and pilot-plant reactors for trickle-flow processes. Rev. Inst. Fr. du Pet. 46, 501–515 (1991) Sie, S.T.: Scale effects in laboratory and pilot-plant reactors for trickle-flow processes. Rev. Inst. Fr. du Pet. 46, 501–515 (1991)
Zurück zum Zitat Sie, S.T., Krishna, R.: Process development and scale up: III. Scale-up and scale-down of trickle bed processes. Rev. Chem. Eng. 14, 203–252 (1988) Sie, S.T., Krishna, R.: Process development and scale up: III. Scale-up and scale-down of trickle bed processes. Rev. Chem. Eng. 14, 203–252 (1988)
Zurück zum Zitat Sie, S.T., Krishna, R.: Process development and scale up: III. Scale-up and scale-down of trickle bed processes. Rev. Chem. Eng. 14, 203–252 (1998) Sie, S.T., Krishna, R.: Process development and scale up: III. Scale-up and scale-down of trickle bed processes. Rev. Chem. Eng. 14, 203–252 (1998)
Zurück zum Zitat Silveston, P.L., Hudgins, R.R.: Periodic Operation of Chemical Reactors, 1. Aufl. Elsevier, Butterworth-Heinemann (2013) Silveston, P.L., Hudgins, R.R.: Periodic Operation of Chemical Reactors, 1. Aufl. Elsevier, Butterworth-Heinemann (2013)
Zurück zum Zitat Singh, B.K., Jain, E., Buwa, V.V.: Feasibility of electrical resistance tomography for measurements of liquid holdup distribution in a trickle bed reactor. Chem. Eng. J. 358, 564–579 (2019) Singh, B.K., Jain, E., Buwa, V.V.: Feasibility of electrical resistance tomography for measurements of liquid holdup distribution in a trickle bed reactor. Chem. Eng. J. 358, 564–579 (2019)
Zurück zum Zitat Sokolov, V.N., Yablokova, M.A., Krylov, V.N.: 1983, Heat transfer to the wall in a gas-liquid reactor with stationary granular bed. J. Appl. Chem. USSR (Zh. Prikl. Khim.) 56, 554–558 (1983) Sokolov, V.N., Yablokova, M.A., Krylov, V.N.: 1983, Heat transfer to the wall in a gas-liquid reactor with stationary granular bed. J. Appl. Chem. USSR (Zh. Prikl. Khim.) 56, 554–558 (1983)
Zurück zum Zitat Specchia, V., Baldi, G.: Heat-transfer in trickle-bed reactors. Chem. Eng. Commun. 3, 483–499 (1979) Specchia, V., Baldi, G.: Heat-transfer in trickle-bed reactors. Chem. Eng. Commun. 3, 483–499 (1979)
Zurück zum Zitat Specchia, V., Baldi, G., Gianetto, A.: Solid-liquid mass transfer in concurrent two-phase flow through packed-beds. Ind. Eng. Chem. Proc. Des. Dev. 17, 362–367 (1978) Specchia, V., Baldi, G., Gianetto, A.: Solid-liquid mass transfer in concurrent two-phase flow through packed-beds. Ind. Eng. Chem. Proc. Des. Dev. 17, 362–367 (1978)
Zurück zum Zitat Stanek, V., Hanika, J.: The effect of liquid flow distribution on catalytic hydrogenation of cyclohexene in an adiabatic trickle-bed reactor. Chem. Eng. Sci. 37, 1283–1288 (1982) Stanek, V., Hanika, J.: The effect of liquid flow distribution on catalytic hydrogenation of cyclohexene in an adiabatic trickle-bed reactor. Chem. Eng. Sci. 37, 1283–1288 (1982)
Zurück zum Zitat Storsaeter, S., Borg, O., Blekkan, E.A., Holmen, A.: Study of the effect of water on Fischer-Tropsch synthesis over supported cobalt catalysts. J. Catal. 231, 405–419 (2005) Storsaeter, S., Borg, O., Blekkan, E.A., Holmen, A.: Study of the effect of water on Fischer-Tropsch synthesis over supported cobalt catalysts. J. Catal. 231, 405–419 (2005)
Zurück zum Zitat Stradiotto, D.A., Hudgins, R.R., Silveston, P.L.: Hydrogenation of crotonaldehyde under periodic flow interruption in a trickle bed. Chem. Eng. Sci. 54, 2561–2568 (1999) Stradiotto, D.A., Hudgins, R.R., Silveston, P.L.: Hydrogenation of crotonaldehyde under periodic flow interruption in a trickle bed. Chem. Eng. Sci. 54, 2561–2568 (1999)
Zurück zum Zitat Subramanian, K., Winkler, M., Harting, H.-U., Schubert, M.: Prediction of flow patterns of rotating inclined reactors by using a modified permeability approach. Chem. Eng. Technol. 39, 2077–2086 (2016) Subramanian, K., Winkler, M., Harting, H.-U., Schubert, M.: Prediction of flow patterns of rotating inclined reactors by using a modified permeability approach. Chem. Eng. Technol. 39, 2077–2086 (2016)
Zurück zum Zitat Subramanian, K., Zalucky, J., Schubert, M., Lucas, D., Hampel, U.: An Eulerian-Eulerian computational approach for simulating descending gas-liquid flows in reactors with solid foam internals. Chem. Eng. Technol. 40, 2044–2057 (2017) Subramanian, K., Zalucky, J., Schubert, M., Lucas, D., Hampel, U.: An Eulerian-Eulerian computational approach for simulating descending gas-liquid flows in reactors with solid foam internals. Chem. Eng. Technol. 40, 2044–2057 (2017)
Zurück zum Zitat Tan, C.S., Smith, J.M.: A dynamics method for liquid-particle mass-transfer in trickle beds. AIChE J. 28, 190–195 (1982) Tan, C.S., Smith, J.M.: A dynamics method for liquid-particle mass-transfer in trickle beds. AIChE J. 28, 190–195 (1982)
Zurück zum Zitat Teruel, F.E., Rizwan-uddina: A new turbulence model for porous media flows. Part I: constitutive equations and model closure. Int. J. Heat Mass Transf. 52, 4264–4272 (2009) Teruel, F.E., Rizwan-uddina: A new turbulence model for porous media flows. Part I: constitutive equations and model closure. Int. J. Heat Mass Transf. 52, 4264–4272 (2009)
Zurück zum Zitat Tukač, V., Šimíčková, M., Chyba, V., Lederer, J., Kolena, J., Hanika, J., Jiřičný, V., Staněk, V., Stavárek, P.: The behavior of pilot trickle-bed reactor under periodic operation. Chem. Eng. Sci. 62, 4891–4895 (2007) Tukač, V., Šimíčková, M., Chyba, V., Lederer, J., Kolena, J., Hanika, J., Jiřičný, V., Staněk, V., Stavárek, P.: The behavior of pilot trickle-bed reactor under periodic operation. Chem. Eng. Sci. 62, 4891–4895 (2007)
Zurück zum Zitat Uraz, C., Atalay, F.S., Atalay, S.: Catalytic hydrogenation of crotonaldehyde in trickle-bed reactor. Chem. Biochem. Eng. Q. 18, 373–383 (2004) Uraz, C., Atalay, F.S., Atalay, S.: Catalytic hydrogenation of crotonaldehyde in trickle-bed reactor. Chem. Biochem. Eng. Q. 18, 373–383 (2004)
Zurück zum Zitat Urrutia, G., Bonelli, P., Cassanello, M.C., Cassanello, A.L., Cukierman, A.L.: On dynamic liquid holdup determination by the drainage method. Chem. Eng. Sci. 51, 3721–3726 (1996) Urrutia, G., Bonelli, P., Cassanello, M.C., Cassanello, A.L., Cukierman, A.L.: On dynamic liquid holdup determination by the drainage method. Chem. Eng. Sci. 51, 3721–3726 (1996)
Zurück zum Zitat Urseanu, M.I., Boelhouwer, J.G., Bosman, H.J.M., Schroijen, J.C., Kwant, G.: Estimation of trickle-to-pulse flow regime transition and pressure drop in high-pressure trickle bed reactors with organic liquids. Chem. Eng. J. 111, 5–11 (2005) Urseanu, M.I., Boelhouwer, J.G., Bosman, H.J.M., Schroijen, J.C., Kwant, G.: Estimation of trickle-to-pulse flow regime transition and pressure drop in high-pressure trickle bed reactors with organic liquids. Chem. Eng. J. 111, 5–11 (2005)
Zurück zum Zitat Utikar, R.P., Ranade, V.V.: Intensifying multiphase reactions and reactors: strategies and examples. ACS Sustain. Chem. Eng. 5, 3607–3622 (2017) Utikar, R.P., Ranade, V.V.: Intensifying multiphase reactions and reactors: strategies and examples. ACS Sustain. Chem. Eng. 5, 3607–3622 (2017)
Zurück zum Zitat Wache, W., Datsevich, L.B., Jess, A.: Fischer-tropsch synthesis in a two-phase reactor with presaturation. Oil Gas-Eur. Mag. 33, 35–38 (2007) Wache, W., Datsevich, L.B., Jess, A.: Fischer-tropsch synthesis in a two-phase reactor with presaturation. Oil Gas-Eur. Mag. 33, 35–38 (2007)
Zurück zum Zitat Wache, W., Datsevich, L.B., Jess, A., Neumann, G.: Improved deep desulphurisation of middle distillates by a two-phase reactor with pre-saturator. Fuel 85, 1483–1493 (2006) Wache, W., Datsevich, L.B., Jess, A., Neumann, G.: Improved deep desulphurisation of middle distillates by a two-phase reactor with pre-saturator. Fuel 85, 1483–1493 (2006)
Zurück zum Zitat Wakao, N., Funazkri, T.: Effect of fluid dispersion coefficients on particle-to-fluid mass-transfer coefficients in packed-beds – correlation of Sherwood numbers. Chem. Eng. Sci. 33, 1375–1384 (1978) Wakao, N., Funazkri, T.: Effect of fluid dispersion coefficients on particle-to-fluid mass-transfer coefficients in packed-beds – correlation of Sherwood numbers. Chem. Eng. Sci. 33, 1375–1384 (1978)
Zurück zum Zitat Wang, Y., Chen, J., Larachi, F.: Modelling and simulation of trickle-bed reactors using computational fluid dynamics: a state-of-the-art review. Can. J. Chem. Eng. 91, 136–180 (2013) Wang, Y., Chen, J., Larachi, F.: Modelling and simulation of trickle-bed reactors using computational fluid dynamics: a state-of-the-art review. Can. J. Chem. Eng. 91, 136–180 (2013)
Zurück zum Zitat Wang, Y.F., Mao, Z.S., Chen, J.Y.: The relationship between hysteresis and liquid flow distribution in trickle beds. Chin. J. Chem. Eng. 7, 221–229 (1999) Wang, Y.F., Mao, Z.S., Chen, J.Y.: The relationship between hysteresis and liquid flow distribution in trickle beds. Chin. J. Chem. Eng. 7, 221–229 (1999)
Zurück zum Zitat Weekman, V.W., Myers, J.E.: Heat transfer characteristics of concurrent gas-liquid flow in packed beds. AIChE J. 11, 13–17 (1965) Weekman, V.W., Myers, J.E.: Heat transfer characteristics of concurrent gas-liquid flow in packed beds. AIChE J. 11, 13–17 (1965)
Zurück zum Zitat Westhuizen, I. van der, du Toit, E., Nicol, W.: Trickle flow multiplicity: the influence of the prewetting procedure on flow hysteresis. Chem. Eng. Res. Des. 85, 1604–1610 (2007) Westhuizen, I. van der, du Toit, E., Nicol, W.: Trickle flow multiplicity: the influence of the prewetting procedure on flow hysteresis. Chem. Eng. Res. Des. 85, 1604–1610 (2007)
Zurück zum Zitat Wild, G., Larachi, F., Charpentier, J.-C.: Heat and mass transfer in gas-liquid-solid fixed bed reactors. In: Quintard, M., Todorovic, M. (Hrsg.) Heat and Mass Transfer in Porous Media, S. 615–632. Elsevier, Amsterdam (1992) Wild, G., Larachi, F., Charpentier, J.-C.: Heat and mass transfer in gas-liquid-solid fixed bed reactors. In: Quintard, M., Todorovic, M. (Hrsg.) Heat and Mass Transfer in Porous Media, S. 615–632. Elsevier, Amsterdam (1992)
Zurück zum Zitat Wörz, N., Arras, J., Claus, P.: Continuous selective hydrogenation of citral in a trickle-bed reactor using ionic liquid modified catalysts. Appl. Catal., A. 391, 319–324 (2011) Wörz, N., Arras, J., Claus, P.: Continuous selective hydrogenation of citral in a trickle-bed reactor using ionic liquid modified catalysts. Appl. Catal., A. 391, 319–324 (2011)
Zurück zum Zitat Young, L.C., Finlayson, B.A.: Axial dispersion in nonisothermal packed bed chemical reactors. Ind. Eng. Chem. Fundam. 12, 412–422 (1973) Young, L.C., Finlayson, B.A.: Axial dispersion in nonisothermal packed bed chemical reactors. Ind. Eng. Chem. Fundam. 12, 412–422 (1973)
Zurück zum Zitat Zalucky, J.: Hydrodynamics and mass transfer performance of solid-foam packed reactors at descending gas-liquid flows. Dissertation. Technische Universität Dresden (2018) Zalucky, J.: Hydrodynamics and mass transfer performance of solid-foam packed reactors at descending gas-liquid flows. Dissertation. Technische Universität Dresden (2018)
Zurück zum Zitat Zalucky, J., Wagner, M., Schubert, M., Lange, R., Hampel, U.: Hydrodynamics of descending gas-liquid flows in solid foams: liquid holdup, multiphase pressure drop and radial dispersion. Chem. Eng. Sci. 168, 480–494 (2017) Zalucky, J., Wagner, M., Schubert, M., Lange, R., Hampel, U.: Hydrodynamics of descending gas-liquid flows in solid foams: liquid holdup, multiphase pressure drop and radial dispersion. Chem. Eng. Sci. 168, 480–494 (2017)
Zurück zum Zitat Zhukova, T.B., Pisarenko, V.N., Kafarov, V.V.: Modeling and design of industrial reactors with a stationary bed of catalyst and two-phase gas-liquid flow – a review. Int. Chem. Eng. 30, 57–102 (1990) Zhukova, T.B., Pisarenko, V.N., Kafarov, V.V.: Modeling and design of industrial reactors with a stationary bed of catalyst and two-phase gas-liquid flow – a review. Int. Chem. Eng. 30, 57–102 (1990)
Zurück zum Zitat Zimmerman, S.P., Chu, C.F., Ng, K.M.: Axial and radial dispersion in trickle-bed reactors with trickling gas-liquid downflow. Chem. Eng. Commun. 50, 213–240 (1987) Zimmerman, S.P., Chu, C.F., Ng, K.M.: Axial and radial dispersion in trickle-bed reactors with trickling gas-liquid downflow. Chem. Eng. Commun. 50, 213–240 (1987)
Metadaten
Titel
Reaktoren für Dreiphasen-Reaktionen: Rieselbettreaktoren
verfasst von
Markus Schubert
Copyright-Jahr
2020
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-56434-9_32