Skip to main content
Erschienen in:
Buchtitelbild

2015 | OriginalPaper | Buchkapitel

3. Real Optical Absorption Spectra Observed in Laboratories

verfasst von : Hiroaki Isago

Erschienen in: Optical Spectra of Phthalocyanines and Related Compounds

Verlag: Springer Japan

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, some factors that internally and externally affect the optical absorption spectra of phthalocyanine derivatives and related macrocyclic compounds are described and it is illustrated how they contribute to the deviation from the prototypical spectrum. The internal factors include the type and position of substituent(s) on the periphery of the macrocycle, the expansion of the π-conjugation system, the nature of the metal ion in the cavity of the macrocycle (ion size, oxidation number, and coordination geometry), and that of the axial ligand on the central metal ion. The external factors cover acid-base equilibrium, oxidation and reduction on the macrocycle, aggregation and dimerization (exciton coupling and π–π interaction), and solvent effects. In particular, much attention is focused on aggregation and acid-base equilibrium because these phenomena are frequently misunderstood.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The appearance of such an intense band in this spectral region is unusual. The origin of this band is discussed in Sect. 3.2.2.1.
 
2
Although it is generally known that the Q-band position of phthalocyanines does not strongly depend on the metal ion in the cavity of the macrocycle (Sect. 3.2.1), the presence of a pnictogen can give rise to a significant redshift of the Q-band [211].
 
3
Little structural deformation of the macrocyclic ligand has been found in its crystal structure.
 
4
Effects of peripheral substituents on the absorption spectra are discussed in Sect. 4.​2.​2.
 
5
The width of the Q-band is large. Only the absorption maximum wavelength is reported in the literature.
 
6
For the BiIII derivatives, the dissociation of axial ligands in solutions has been suggested from electrochemical data [2, 3].
 
7
Although the authors of Ref. [58] have identified their compounds as [P(Pc)(OH)2]OH in their report, a neutral composition is considered more likely on the basis of experimental lines of evidence provided in the later report [57]. Note that both papers reported the same tetra-tert-butyl derivative.
 
8
Protonation at meso nitrogen atom(s) gives rise to a significant redshift and splitting of the Q-band (Sect. 3.2.5.2).
 
9
The MLCT transition can be understood as the simultaneous occurrence of metal-centered oxidation, FeII to FeIII, and ligand-centered reduction, pc2− to pc3−. In contrast, LMCT can be understood as the simultaneous occurrence of metal-centered reduction and ligand-centered oxidation [47].
 
10
Derivatives of lead and bismuth with a higher oxidation state are unknown.
 
11
Refer to Sect. 1.​1.​4 for the definition of HOMO and LUMO.
 
12
A sharp Faraday A-term is observed in each corresponding MCD spectrum.
 
13
Note that the fusion of benzo groups to the periphery of TAP derivatives (i.e., ring expansion from TAP to Pc) contributes not only to the expansion of the π-conjugation system but also to enhancing the imbalance between the two highest occupied frontier orbitals (a1u and a2u). See Sect. 2.​2.​7.
 
14
It has been mentioned in Sect. 3.2.3.2 that the appearance of a single Q-band for the structural intermediate of the phthalocyanine and naphthalocyanine derivatives (compound 2 in Fig. 3.12 righy) was predicted using SAP theory.
 
15
As mentioned in Sect. 2.​2.​8, the intensity of B-terms is larger as the two excited states are closer in energy.
 
16
States can be degenerate when the molecular symmetry is not lower than C3.
 
17
Only monomers and dimers contribute to the absorption spectra (Fig. 3.14) within this concentration range because sharp isosbestic points are seen in the spectral changes; hence, the two species are in equilibrium.
 
18
The author has learned through his activities as a scientist and an article reviewer that a considerable number of people (including experts) believe that highly aggregating phthalocyanines are poorly soluble in common solvents or that highly soluble phthalocyanines are nonaggregating. However, this is not always true. For example, the octa(alkynyl)-substituted derivative in Fig. 3.14 is highly soluble (its solubility reaches almost 10−2 M) but it also aggregates even in dilute solutions (ca. 10−5 M) as illustrated above. On the other hand, the SbV complex of unsubstituted Pc is not very soluble (at most, 10−4 M) whereas its aggregation could not be detected by optical absorption spectroscopy using an optical cell of 1 mm path length up to the upper limit of the concentration range studied. Thus, having good solubility is one thing and being nonaggregating is another, at least with respect to phthalocyanines.
 
19
J-aggregates show their main band at a red flank of the monomer band, but the converse is not necessarily true. A number of phthalocyanines show an additional band at a wavelength longer than that of the monomer Q-band owing to acid-base equilibria involving the macrocycle (Sect. 3.2.5.2), electron transfer (Sect. 3.2.6.1), etc. Special care has to be taken when assigning such extra bands at longer wavelengths as “J-aggregates” particularly in the case of nondonor solvents (Sect. 3.2.5.2).
 
20
Readers are reminded that the Lambert-Beer plot must include the zero point because the absorbance attributed to the compound must be zero when its concentration is zero. Nevertheless, a number of authors have concluded a lack of aggregation of their compounds on the basis of the linear Lambert-Beer plot within a narrow concentration range excluding the zero point. The same plot including the zero point could be nonlinear.
 
21
Actually, this is the distance between the planes composed of the four pyrrole nitrogen atoms in each macrocyclic ligand.
 
22
The splitting of the Q-band can be explained by exciton coupling (one is assigned as an allowed transition and the other weaker one is due to the forbidden transition that borrowed intensity from vibronic transition). However, the increase in the magnitude of the splitting with decreasing ionic radius is much steeper than expected from the change in the interplanar distance (Eq. 3.1).
 
23
This model also successfully explains the spectral properties of a series of lanthanoid(III) derivatives of neutral double-decker phthalocyanines [M(pc2−)(pc)] and [M(pc)] 2 + as well as their redox potentials.
 
24
In these works, the authors have tried to explain the splitting on the basis of the exciton coupling alone.
 
25
The authors reported that the absorption spectra of the Si–Si dimers are very similar to those of tetrabenzotriazacorroles (Sect. 3.3.3).
 
26
We do not consider protonation at peripheral substituents or axial ligands because they are far from the innermost 16-membered ring, and detectable spectral changes are unlikely to be observed. An example of spectral changes associated with protonation at the axial ligand has been described elsewhere (Sect. 3.2.1; Fig. 3.3).
 
27
See Sect. 1.​2.​2 for the representation of Pc(2-).
 
28
Singly oxidized phthalocyanines are more prone to molecular aggregation than unoxidized species [101, 128, 193].
 
29
SOMO = singly occupied molecular orbital. In this context, this means the HOMO from which one electron has been removed by oxidation.
 
30
Note that the formal representation, pc(2-) and pc(-), used to denote oxidation states of the macrocyclic ligands is not appropriate in this case because their π conjugation systems are not independent of each other (Sect. 3.2.4.6). However, we adopt this conventional formulation instead of pc2(3-) to avoid unnecessary confusion.
 
31
The Q-band of the heteroleptic dimer has been found to be degenerate on the basis of an MCD study [206, 208].
 
32
Decreasing interplanar distance gives rise to stronger π–π interaction between the two macrocycles and hence the splitting between b1 and a2 orbitals (Sect. 3.2.4.6).
 
33
The pc(3-) species are referred to as radical anions for the same reason as in the case of singly oxidized phthalocyanine pc(1-).
 
34
As this complex has a six-coordinate, octahedral geometry (the two cyanide ions are in trans positions above and below the phthalocyanine macrocyclic ligand) [223], it is convenient for investigating the effects of the solvent on the electronic transition in the macrocyclic ligand alone for the following reasons: (1) donor-solvent molecules are unlikely to coordinate to the central metal ion because of the crowded coordination geometry around the metal ion; (2) ligand substitution is unlikely to occur because of strong Co–CN and Co–N(phthalocyanine) bonding; (3) the presence of the axial ligands and the net negative charge of the complex itself should prevent the aggregation of the macrocyclic ligands owing to steric hindrance and electrostatic repulsion, respectively; (4) it has no axial ligand or peripheral substituent that can be involved in the chemical interaction, such as hydrogen bonding, with the surrounding solvent molecules.
 
35
Plots of the Q-band position only in nondonor solvents exhibit a fairly good linear correlation.
 
36
Note that the addition of salicylic acid did not change the Q-band position [224].
 
37
The MnII species fails to react with oxygen when dissolved in highly purified dry pyridine [49].
 
38
Because of the free rotation around the Si–O–Si axis, there can be more than one rotational isomer based on the difference in the torsion angle between the macrocyclic ligands.
 
39
The tilted stacking of the phthalocyanine rings with respect to the Si–O–Si axis gives rise to an oblique conformation between the two macrocyclic ligands (Fig. 3.19c).
 
40
The same compound is shown in Fig. 3.3 and has been found to be free from aggregation in ethanolic solution [30, 31].
 
41
An aggregation phenomenon would give a convex curve (see Fig. 3.14 inset, for example) in the Lambert-Beer plot.
 
42
The metal-free triazacorrole derivatives (corrolazines) and their transition metal complexes are known [for example, 245, 246]. Note that the phosphorus complexes of tetrabenzocorrolazine used to be considered as PIII derivatives of phthalocyanines (which are still unknown).
 
Literatur
1.
Zurück zum Zitat H. Isago, Y. Kagaya, H. Fujita, T. Sugimori, Dyes Pigm 88, 187–194 (2011) H. Isago, Y. Kagaya, H. Fujita, T. Sugimori, Dyes Pigm 88, 187–194 (2011)
2.
Zurück zum Zitat H. Isago, Y. Kagaya, Bull. Chem. Soc. Jpn. 67, 383–389 (1994) H. Isago, Y. Kagaya, Bull. Chem. Soc. Jpn. 67, 383–389 (1994)
3.
Zurück zum Zitat H. Isago, Y. Kagaya, Bull. Chem. Soc. Jpn. 67, 3212–3215 (1994) H. Isago, Y. Kagaya, Bull. Chem. Soc. Jpn. 67, 3212–3215 (1994)
4.
Zurück zum Zitat Y. Kagaya, H. Isago, Chem. Lett. 1957–1960 (1994) Y. Kagaya, H. Isago, Chem. Lett. 1957–1960 (1994)
5.
Zurück zum Zitat H. Isago, Y. Kagaya, S.-I. Nakajima, Chem. Lett. 32, 112–113 (2003) H. Isago, Y. Kagaya, S.-I. Nakajima, Chem. Lett. 32, 112–113 (2003)
6.
Zurück zum Zitat H. Isago, Chem. Commun. 1864–1865 (2003) H. Isago, Chem. Commun. 1864–1865 (2003)
7.
Zurück zum Zitat G. Knör, Inorg. Chem. 35, 7916–7918 (1996) G. Knör, Inorg. Chem. 35, 7916–7918 (1996)
8.
Zurück zum Zitat D.K. Modibane, T. Nyokong, Polyhedron 28, 479–484 (2009) D.K. Modibane, T. Nyokong, Polyhedron 28, 479–484 (2009)
9.
Zurück zum Zitat H. Isago, Y. Kagaya, Inorg. Chem. 51, 8447–8454 (2012) H. Isago, Y. Kagaya, Inorg. Chem. 51, 8447–8454 (2012)
10.
Zurück zum Zitat J.P. Fox, D.P. Goldberg, Inorg. Chem. 42, 8181–8191 (2003) J.P. Fox, D.P. Goldberg, Inorg. Chem. 42, 8181–8191 (2003)
11.
Zurück zum Zitat N. Kobayashi, T. Furuyama, K. Satoh, J. Am. Chem. Soc. 133, 19642–19645 (2011) N. Kobayashi, T. Furuyama, K. Satoh, J. Am. Chem. Soc. 133, 19642–19645 (2011)
12.
Zurück zum Zitat M.J. Stillman, T. Nyokong, in Phthalocyanines: Properties and Applications, vol. 1, ed. by C.C. Leznoff, A.B.P. Lever (VCH, New York, 1989), pp. 133–289 M.J. Stillman, T. Nyokong, in Phthalocyanines: Properties and Applications, vol. 1, ed. by C.C. Leznoff, A.B.P. Lever (VCH, New York, 1989), pp. 133–289
13.
Zurück zum Zitat H. Isago, in Phthalocyanines as Functional Dyes (in Japanese), ed. by R. Hirohashi, K. Sakamoto, E. Okumura (IPC, Tokyo, 2004), pp. 141–198 H. Isago, in Phthalocyanines as Functional Dyes (in Japanese), ed. by R. Hirohashi, K. Sakamoto, E. Okumura (IPC, Tokyo, 2004), pp. 141–198
14.
Zurück zum Zitat N. Kobayashi, T. Fukuda, in Handbook of Porphyrin Science, vol. 9, ed. by K.M. Kadish, K.M. Smith, R. Guilard (World Science Publishing, USA, 2010), p. 1 N. Kobayashi, T. Fukuda, in Handbook of Porphyrin Science, vol. 9, ed. by K.M. Kadish, K.M. Smith, R. Guilard (World Science Publishing, USA, 2010), p. 1
15.
Zurück zum Zitat M. Gorsch, A. Kienast, H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 623, 1433–1440 (1998) M. Gorsch, A. Kienast, H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 623, 1433–1440 (1998)
16.
Zurück zum Zitat M.J. Stillman, A.J. Thomson, J. Chem. Soc., Faraday Trans. II 70, 805–814 (1974) M.J. Stillman, A.J. Thomson, J. Chem. Soc., Faraday Trans. II 70, 805–814 (1974)
17.
Zurück zum Zitat H. Homborg, K.S. Murray, Z. Anorg, Allg. Chem. 517, 149–160 (1984) H. Homborg, K.S. Murray, Z. Anorg, Allg. Chem. 517, 149–160 (1984)
18.
Zurück zum Zitat A. MacCragh, W.S. Koski, J. Am. Chem. Soc. 85, 2375–2376 (1963) A. MacCragh, W.S. Koski, J. Am. Chem. Soc. 85, 2375–2376 (1963)
19.
Zurück zum Zitat G. Fu, Y. Fu, K. Jayaraj, A.B.P. Lever, Inorg. Chem. 29, 4090–4095 (1990) G. Fu, Y. Fu, K. Jayaraj, A.B.P. Lever, Inorg. Chem. 29, 4090–4095 (1990)
20.
Zurück zum Zitat A.B.P. Lever, Adv. Inorg. Chem. Radiochem. 7, 27–114 (1965) A.B.P. Lever, Adv. Inorg. Chem. Radiochem. 7, 27–114 (1965)
21.
Zurück zum Zitat J.S. Anderson, E.F. Bradbrook, A.H. Cook, R.P. Linstead, J. Chem. Soc. 1151–1156 J.S. Anderson, E.F. Bradbrook, A.H. Cook, R.P. Linstead, J. Chem. Soc. 1151–1156
22.
Zurück zum Zitat L. Edwards, M. Gouterman, J. Mol. Spectrosc. 33, 292–310 (1970) L. Edwards, M. Gouterman, J. Mol. Spectrosc. 33, 292–310 (1970)
23.
Zurück zum Zitat M.J. Stillman, A.J. Thomson, J. Chem. Soc., Faraday Trans. II 70, 790–804 (1974) M.J. Stillman, A.J. Thomson, J. Chem. Soc., Faraday Trans. II 70, 790–804 (1974)
24.
Zurück zum Zitat H. Homborg, W. Kalz, Z. Naturforsch. Sect. B 39, 1478–1489 (1984) H. Homborg, W. Kalz, Z. Naturforsch. Sect. B 39, 1478–1489 (1984)
25.
Zurück zum Zitat H. Homborg, W. Kalz, Z. Naturforsch. Sect. B 39, 1490–1499 (1984) H. Homborg, W. Kalz, Z. Naturforsch. Sect. B 39, 1490–1499 (1984)
26.
Zurück zum Zitat J.A. Elvidge, A.B.P. Lever, J. Chem. Soc. 1257–1265 (1961) J.A. Elvidge, A.B.P. Lever, J. Chem. Soc. 1257–1265 (1961)
27.
Zurück zum Zitat S. Sievertsen, H. Grunewald, H. Homborg, Z. Anorg, Allg. Chem. 622, 1573–1580 (1996) S. Sievertsen, H. Grunewald, H. Homborg, Z. Anorg, Allg. Chem. 622, 1573–1580 (1996)
28.
Zurück zum Zitat H. Sugimoto, T. Higashi, M. Mori, Chem. Lett. 801 (1982) H. Sugimoto, T. Higashi, M. Mori, Chem. Lett. 801 (1982)
29.
Zurück zum Zitat A.B.P. Lever, J.P. Wilshire, Inorg. Chem. 17, 1145–1151 (1978) A.B.P. Lever, J.P. Wilshire, Inorg. Chem. 17, 1145–1151 (1978)
30.
Zurück zum Zitat E.A. Ough, M.J. Stillman, Inorg. Chem. 33, 573–583 (1994) E.A. Ough, M.J. Stillman, Inorg. Chem. 33, 573–583 (1994)
31.
Zurück zum Zitat E.A. Ough, M.J. Stillman, Inorg. Chem. 34, 4317–4325 (1995) E.A. Ough, M.J. Stillman, Inorg. Chem. 34, 4317–4325 (1995)
32.
Zurück zum Zitat L.-K. Chau, C.D. England, S. Chen, N.R. Armstrong, J. Phys. Chem. 97, 2699–2706 (1993) L.-K. Chau, C.D. England, S. Chen, N.R. Armstrong, J. Phys. Chem. 97, 2699–2706 (1993)
33.
Zurück zum Zitat R.L. Stover, C.L. Thrall, R.D. Joyner, Inorg. Chem. 10, 2335–2337 (1971) R.L. Stover, C.L. Thrall, R.D. Joyner, Inorg. Chem. 10, 2335–2337 (1971)
34.
Zurück zum Zitat A.R. Kane, J.F. Sullivan, D.H. Kenny, M.E. Kenny, Inorg. Chem. 9, 1445–1448 (1970) A.R. Kane, J.F. Sullivan, D.H. Kenny, M.E. Kenny, Inorg. Chem. 9, 1445–1448 (1970)
35.
Zurück zum Zitat K. Schweiger, H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 624, 1298–1302 (1998) K. Schweiger, H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 624, 1298–1302 (1998)
36.
Zurück zum Zitat P. Clare, F. Glockling, Inorg. Chim. Acta 14, L12 (1975) P. Clare, F. Glockling, Inorg. Chim. Acta 14, L12 (1975)
37.
Zurück zum Zitat R.D. George, A.W. Snow, P.F. McMillan, V.A. Burrows, J. Am. Chem. Soc. 114, 8286–8287 (1992) R.D. George, A.W. Snow, P.F. McMillan, V.A. Burrows, J. Am. Chem. Soc. 114, 8286–8287 (1992)
38.
Zurück zum Zitat B. Außmann, G. Ostendorp, H. Homborg, Z. Anorg, Allg. Chem. 621, 1708–1714 (1995) B. Außmann, G. Ostendorp, H. Homborg, Z. Anorg, Allg. Chem. 621, 1708–1714 (1995)
39.
Zurück zum Zitat K. Schweiger, H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 624, 44–50 (1998) K. Schweiger, H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 624, 44–50 (1998)
40.
Zurück zum Zitat H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 624, 715–720 (1998) H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 624, 715–720 (1998)
41.
Zurück zum Zitat H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 623, 292–298 (1997) H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 623, 292–298 (1997)
42.
Zurück zum Zitat D.L. Ledson, M.V. Twigg, Inorg. Chim. Acta 13, 43–46 (1975) D.L. Ledson, M.V. Twigg, Inorg. Chim. Acta 13, 43–46 (1975)
43.
Zurück zum Zitat H. Homborg, W. Kalz, Z. Anorg, Allg. Chem. 514, 115–119 (1984) H. Homborg, W. Kalz, Z. Anorg, Allg. Chem. 514, 115–119 (1984)
44.
Zurück zum Zitat N.B. Subbon, L.G. Tomilova, N.A. Kostromina, E.A. Lu’kyanets, J. Gen. Chem. USSR 56, 345–348 (1986) N.B. Subbon, L.G. Tomilova, N.A. Kostromina, E.A. Lu’kyanets, J. Gen. Chem. USSR 56, 345–348 (1986)
45.
Zurück zum Zitat N.B. Subbon, L.G. Tomilova, N.A. Kostromina, E.A. Lu’kyanets, Zh. Obshch. Chem. 56, 397–400 (1986) N.B. Subbon, L.G. Tomilova, N.A. Kostromina, E.A. Lu’kyanets, Zh. Obshch. Chem. 56, 397–400 (1986)
46.
Zurück zum Zitat E. Ough, T. Nyokong, K.A.M. Creber, M.J. Stillman, Inorg. Chem. 27, 2724–2732 (1988) E. Ough, T. Nyokong, K.A.M. Creber, M.J. Stillman, Inorg. Chem. 27, 2724–2732 (1988)
47.
Zurück zum Zitat A.B.P. Lever, S.R. Pickens, P.C. Minor, S. Licoccia, B.S. Ramaswamy, K. Magnell, J. Am. Chem. Soc. 103, 6800–6806 (1981) A.B.P. Lever, S.R. Pickens, P.C. Minor, S. Licoccia, B.S. Ramaswamy, K. Magnell, J. Am. Chem. Soc. 103, 6800–6806 (1981)
48.
Zurück zum Zitat S. Sievertsen, H. Grunewald, H. Homborg, Z. Anorg, Allg. Chem 619, 1279–1737 (1993) S. Sievertsen, H. Grunewald, H. Homborg, Z. Anorg, Allg. Chem 619, 1279–1737 (1993)
49.
Zurück zum Zitat A.B.P. Lever, J.P. Wilshire, S.K. Quan, Inorg. Chem. 20, 761–768 (1981) A.B.P. Lever, J.P. Wilshire, S.K. Quan, Inorg. Chem. 20, 761–768 (1981)
50.
Zurück zum Zitat M. Gorsch, H. Homborg, Z. Anorg, Allg. Chem. 624, 634–641 (1998) M. Gorsch, H. Homborg, Z. Anorg, Allg. Chem. 624, 634–641 (1998)
51.
Zurück zum Zitat S.J. Edmondson, P.C.H. Mitchell, Polyhedron 5, 315–317 (1986) S.J. Edmondson, P.C.H. Mitchell, Polyhedron 5, 315–317 (1986)
52.
Zurück zum Zitat T. Nyokong, Polyhedron 13, 215–220 (1994) T. Nyokong, Polyhedron 13, 215–220 (1994)
53.
Zurück zum Zitat S. Omiya, M. Tsutsui, E.F. Meyer Jr, I. Bernal, D. Cullen, Inorg. Chem. 19, 134–142 (1980) S. Omiya, M. Tsutsui, E.F. Meyer Jr, I. Bernal, D. Cullen, Inorg. Chem. 19, 134–142 (1980)
54.
Zurück zum Zitat M. Hanack, P. Vermehren, Inorg. Chem. 29, 134–136 (1990) M. Hanack, P. Vermehren, Inorg. Chem. 29, 134–136 (1990)
55.
Zurück zum Zitat H. Schlehahn, H. Homborg, Z. Anorg, Allg. Chem. 621, 1558–1566 (1995) H. Schlehahn, H. Homborg, Z. Anorg, Allg. Chem. 621, 1558–1566 (1995)
56.
Zurück zum Zitat S. Sievertsen, H. Schlehahn, H. Homborg, Z. Anorg, Allg. Chem. 619, 1064–1072 (1993) S. Sievertsen, H. Schlehahn, H. Homborg, Z. Anorg, Allg. Chem. 619, 1064–1072 (1993)
57.
Zurück zum Zitat K. Kasuga, L. Lin, M. Handa, T. Sugimori, K. Isa, K. Matsuura, Y. Takinami, Inorg. Chem. 38, 4174–4176 (1999) K. Kasuga, L. Lin, M. Handa, T. Sugimori, K. Isa, K. Matsuura, Y. Takinami, Inorg. Chem. 38, 4174–4176 (1999)
58.
Zurück zum Zitat J. Li, R. Subramanian, M. Hanack, Eur. J. Org. Chem. 1998, 2759–2767 (1998) J. Li, R. Subramanian, M. Hanack, Eur. J. Org. Chem. 1998, 2759–2767 (1998)
59.
Zurück zum Zitat H. Isago, H. Fujita, M. Hirota, T. Sugimori, Y. Kagaya, J. Porphyrins Phthalocyanines 17, 763–771 (2013) H. Isago, H. Fujita, M. Hirota, T. Sugimori, Y. Kagaya, J. Porphyrins Phthalocyanines 17, 763–771 (2013)
60.
Zurück zum Zitat B.D. Berezin, Russ. J. Phys. Chem. 36, 258–261 (1962) B.D. Berezin, Russ. J. Phys. Chem. 36, 258–261 (1962)
61.
Zurück zum Zitat M. Whalley, J. Chem. Soc. 866–869 (1961) M. Whalley, J. Chem. Soc. 866–869 (1961)
62.
Zurück zum Zitat M. Göldner, H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 624, 897–901 (1998) M. Göldner, H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 624, 897–901 (1998)
63.
Zurück zum Zitat S. Sievertsen, H. Homborg, Z. Anorg, Allg. Chem. 620, 1439–1442 (1994) S. Sievertsen, H. Homborg, Z. Anorg, Allg. Chem. 620, 1439–1442 (1994)
64.
Zurück zum Zitat X. Münz, M. Hanack, Chem. Ber. 121, 235–238 (1988) X. Münz, M. Hanack, Chem. Ber. 121, 235–238 (1988)
65.
Zurück zum Zitat G. Ostendorp, S. Sievertsen, H. Homborg, Z. Anorg, Allg. Chem. 620, 279–289 (1994) G. Ostendorp, S. Sievertsen, H. Homborg, Z. Anorg, Allg. Chem. 620, 279–289 (1994)
66.
Zurück zum Zitat S. Muralidharan, G. Ferraudi, K. Schmatz, Inorg. Chem. 21, 2961–2967 (1982) S. Muralidharan, G. Ferraudi, K. Schmatz, Inorg. Chem. 21, 2961–2967 (1982)
67.
Zurück zum Zitat D. Dolphin, B.R. James, A.L. Murray, J.R. Thornback, Can. J. Chem. 58, 1125–1132 (1980) D. Dolphin, B.R. James, A.L. Murray, J.R. Thornback, Can. J. Chem. 58, 1125–1132 (1980)
68.
Zurück zum Zitat W. Kobel, M. Hanack, Inorg. Chem. 25, 103–107 (1986) W. Kobel, M. Hanack, Inorg. Chem. 25, 103–107 (1986)
69.
Zurück zum Zitat H. Isago, Y. Kagaya, J. Porphyrins Phthalocyanines 13, 382–389 (2009) H. Isago, Y. Kagaya, J. Porphyrins Phthalocyanines 13, 382–389 (2009)
70.
71.
Zurück zum Zitat H. Isago, Y. Kagaya, Chem. Lett. 35, 8–9 (2005) H. Isago, Y. Kagaya, Chem. Lett. 35, 8–9 (2005)
72.
Zurück zum Zitat E. Cilibert, K.A. Doris, W.J. Pietro, G.M. Reisner, D.E. Ellis, I. Fragala, F.H. Herbstein, M.A. Ratner, T.J. Marks, J. Am. Chem. Soc. 106, 7748–7761 (1984) E. Cilibert, K.A. Doris, W.J. Pietro, G.M. Reisner, D.E. Ellis, I. Fragala, F.H. Herbstein, M.A. Ratner, T.J. Marks, J. Am. Chem. Soc. 106, 7748–7761 (1984)
73.
Zurück zum Zitat H. Isago, N. Ishikawa, unpublished results H. Isago, N. Ishikawa, unpublished results
74.
Zurück zum Zitat R. Guilard, A. Dormond, M. Belkalem, J.E. Anderson, Y.H. Liu, K.M. Kadish, Inorg. Chem. 26, 1410–1414 (1987) R. Guilard, A. Dormond, M. Belkalem, J.E. Anderson, Y.H. Liu, K.M. Kadish, Inorg. Chem. 26, 1410–1414 (1987)
75.
Zurück zum Zitat K. Schweiger, M. Göldner, H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 625, 1693–1699 (1999) K. Schweiger, M. Göldner, H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 625, 1693–1699 (1999)
76.
Zurück zum Zitat K. Frick, S. Verma, J. Sundermeyer, M. Hanack, Eur. J. Inorg. Chem. 1025–1030 (2000) K. Frick, S. Verma, J. Sundermeyer, M. Hanack, Eur. J. Inorg. Chem. 1025–1030 (2000)
77.
Zurück zum Zitat A. Tutaß, M. Göldner, H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 627, 2323–2336 (2001) A. Tutaß, M. Göldner, H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 627, 2323–2336 (2001)
78.
Zurück zum Zitat D. Eastwood, L. Edwards, M. Gouterman, J. Steinfeld, J. Mol. Spectrosc. 20, 381–390 (1966) D. Eastwood, L. Edwards, M. Gouterman, J. Steinfeld, J. Mol. Spectrosc. 20, 381–390 (1966)
79.
Zurück zum Zitat T. Nyokong, Z. Gasyna, M.J. Stillman, Inorg. Chem. 26, 1087–1095 (1987) T. Nyokong, Z. Gasyna, M.J. Stillman, Inorg. Chem. 26, 1087–1095 (1987)
80.
Zurück zum Zitat D. Wöhrle, V. Schmidt, J. Chem. Soc., Dalton Trans. 549–551 (1988) D. Wöhrle, V. Schmidt, J. Chem. Soc., Dalton Trans. 549–551 (1988)
81.
Zurück zum Zitat M. Gorsch, A. Franken, S. Sievertsen, H. Homborg, Z. Anorg, Allg. Chem. 621, 607–616 (1995) M. Gorsch, A. Franken, S. Sievertsen, H. Homborg, Z. Anorg, Allg. Chem. 621, 607–616 (1995)
82.
Zurück zum Zitat N. Kobayashi, A. Muranaka, K. Ishii, Inorg. Chem. 39, 2256–2257 (2000) N. Kobayashi, A. Muranaka, K. Ishii, Inorg. Chem. 39, 2256–2257 (2000)
83.
Zurück zum Zitat T. Nyokong, M.J. Stillman, unpublished results T. Nyokong, M.J. Stillman, unpublished results
84.
Zurück zum Zitat P. Sayer, M. Gouterman, C.R. Connell, Acc. Chem. Res. 15, 73–79 (1982) P. Sayer, M. Gouterman, C.R. Connell, Acc. Chem. Res. 15, 73–79 (1982)
85.
Zurück zum Zitat M. Gouterman, P. Sayer, E. Shankland, J.P. Smith, Inorg. Chem. 20, 87–92 (1981) M. Gouterman, P. Sayer, E. Shankland, J.P. Smith, Inorg. Chem. 20, 87–92 (1981)
86.
Zurück zum Zitat C.C. Leznoff, in Phthalocyanines: Properties and Applications, vol. 1, ed. by A.B.P. Lever, C.C. Leznoff (VCH, New York, 1989), pp. 1–54 C.C. Leznoff, in Phthalocyanines: Properties and Applications, vol. 1, ed. by A.B.P. Lever, C.C. Leznoff (VCH, New York, 1989), pp. 1–54
87.
Zurück zum Zitat E.A. Luk’yanets, Electronic Spectra of Phthalocyanines and Related Compounds (in Russian) (NIOPIK, Moscow, 1989) E.A. Luk’yanets, Electronic Spectra of Phthalocyanines and Related Compounds (in Russian) (NIOPIK, Moscow, 1989)
88.
Zurück zum Zitat Y. Ikeda, H. Konami, M. Hatano, K. Mochizuki, Chem. Lett. 763–766 (1992) Y. Ikeda, H. Konami, M. Hatano, K. Mochizuki, Chem. Lett. 763–766 (1992)
89.
Zurück zum Zitat N. Kobayashi, N. Sasaki, Y. Higashi, T. Osa, Inorg. Chem. 34, 1636–1637 (1995) N. Kobayashi, N. Sasaki, Y. Higashi, T. Osa, Inorg. Chem. 34, 1636–1637 (1995)
90.
Zurück zum Zitat Y. Kagaya, H. Isago, J. Porphyrins Phthalocyanines 3, 537–543 (1999) Y. Kagaya, H. Isago, J. Porphyrins Phthalocyanines 3, 537–543 (1999)
91.
Zurück zum Zitat S.A. Mikhalenko, S.V. Barkanova, O.L. Lebedev, E.A. Luk’yanets, Zh. Obshch. Khim. 41, 2735–2738 (1971) S.A. Mikhalenko, S.V. Barkanova, O.L. Lebedev, E.A. Luk’yanets, Zh. Obshch. Khim. 41, 2735–2738 (1971)
92.
Zurück zum Zitat S.A. Mikhalenko, S.V. Barkanova, O.L. Lebedev, E.A. Luk’yanets, J. Gen. Chem. USSR 41, 2770–2773 (1974) S.A. Mikhalenko, S.V. Barkanova, O.L. Lebedev, E.A. Luk’yanets, J. Gen. Chem. USSR 41, 2770–2773 (1974)
93.
Zurück zum Zitat S.A. Mikhalenko, E.A. Luk’yanets, Zh. Obshch. Khim. 39, 2129–2136 (1969) S.A. Mikhalenko, E.A. Luk’yanets, Zh. Obshch. Khim. 39, 2129–2136 (1969)
94.
Zurück zum Zitat S.A. Mikhalenko, E.A. Luk’yanets, J. Gen. Chem. USSR 39, 2081–2086 (1969) S.A. Mikhalenko, E.A. Luk’yanets, J. Gen. Chem. USSR 39, 2081–2086 (1969)
95.
Zurück zum Zitat N. Kobayashi, H. Ogata, N. Nonaka, E.A. Lukyanets, Chem. Eur. J. 9, 5123–5134 (2003) N. Kobayashi, H. Ogata, N. Nonaka, E.A. Lukyanets, Chem. Eur. J. 9, 5123–5134 (2003)
96.
Zurück zum Zitat V.M. Derkacheva, O.L. Kaliya, E.A. Luk’yanets, Zh. Obshch. Khim. 53, 188–192 (1983) V.M. Derkacheva, O.L. Kaliya, E.A. Luk’yanets, Zh. Obshch. Khim. 53, 188–192 (1983)
97.
Zurück zum Zitat V.M. Derkacheva, O.L. Kaliya, E.A. Luk’yanets, J. Gen. Chem. USSR 53, 163–167 (1983) V.M. Derkacheva, O.L. Kaliya, E.A. Luk’yanets, J. Gen. Chem. USSR 53, 163–167 (1983)
98.
Zurück zum Zitat V.M. Derkacheva, E.A. Luk’yanets, Zh. Obshch. Khim. 50, 2313–2318 (1980) V.M. Derkacheva, E.A. Luk’yanets, Zh. Obshch. Khim. 50, 2313–2318 (1980)
99.
Zurück zum Zitat V.M. Derkacheva, E.A. Luk’yanets, J. Gen. Chem. USSR 50, 1874–1878 (1980) V.M. Derkacheva, E.A. Luk’yanets, J. Gen. Chem. USSR 50, 1874–1878 (1980)
100.
Zurück zum Zitat D. Wöhrle, G. Meyer, Makromol. Chem. 181, 2127–2135 (1980) D. Wöhrle, G. Meyer, Makromol. Chem. 181, 2127–2135 (1980)
101.
Zurück zum Zitat H. Isago, C.C. Leznoff, F.R. Ryan, R.A. Metcalfe, R. Davids, A.B.P. Lever, Bull. Chem. Soc. Jpn. 71, 1039–1047 (1998) H. Isago, C.C. Leznoff, F.R. Ryan, R.A. Metcalfe, R. Davids, A.B.P. Lever, Bull. Chem. Soc. Jpn. 71, 1039–1047 (1998)
102.
Zurück zum Zitat J. Mets, O. Schneider, M. Hanack, Inorg. Chem. 23, 1065–1071 (1984) J. Mets, O. Schneider, M. Hanack, Inorg. Chem. 23, 1065–1071 (1984)
103.
Zurück zum Zitat T. Nyokong, Z. Gasyna, M.J. Stillman, ACS Symp. Ser. 321, 309–327 (1986) T. Nyokong, Z. Gasyna, M.J. Stillman, ACS Symp. Ser. 321, 309–327 (1986)
104.
Zurück zum Zitat V.M. Negrimovskii, V.M. Derkacheva, O.L. Kaliya, E.A. Luk’yanets, Zh. Obshch. Khim. 61, 460–470 (1991) V.M. Negrimovskii, V.M. Derkacheva, O.L. Kaliya, E.A. Luk’yanets, Zh. Obshch. Khim. 61, 460–470 (1991)
105.
Zurück zum Zitat V.M. Negrimovskii, V.M. Derkacheva, O.L. Kaliya, E.A. Luk’yanets, J. Gen. Chem. USSR 61, 419–428 (1991) V.M. Negrimovskii, V.M. Derkacheva, O.L. Kaliya, E.A. Luk’yanets, J. Gen. Chem. USSR 61, 419–428 (1991)
106.
107.
Zurück zum Zitat W. Freyer, L.Q. Minh, Monatsh. Chem. 117, 475–489 (1986) W. Freyer, L.Q. Minh, Monatsh. Chem. 117, 475–489 (1986)
108.
Zurück zum Zitat P.A. Barrett, E.F. Bradbrook, C.E. Dent, R.P. Linstead, J. Chem. Soc. 1820–1828 (1939) P.A. Barrett, E.F. Bradbrook, C.E. Dent, R.P. Linstead, J. Chem. Soc. 1820–1828 (1939)
109.
Zurück zum Zitat I.G. Oksengendler, N.V. Kondratenko, E.A. Luk’yanets, L.M. Yagupol’skii, Zh. Org. Khim. 14, 1046–1051 (1978) I.G. Oksengendler, N.V. Kondratenko, E.A. Luk’yanets, L.M. Yagupol’skii, Zh. Org. Khim. 14, 1046–1051 (1978)
110.
Zurück zum Zitat I.G. Oksengendler, N.V. Kondratenko, E.A. Luk’yanets, L.M. Yagupol’skii, J. Org. Chem. USSR 14, 976–980 (1978) I.G. Oksengendler, N.V. Kondratenko, E.A. Luk’yanets, L.M. Yagupol’skii, J. Org. Chem. USSR 14, 976–980 (1978)
111.
Zurück zum Zitat S.A. Mikhalenko, V.M. Derkacheva, E.A. Luk’yanets, Zh. Obshch. Khim. 51, 1650–1656 (1981) S.A. Mikhalenko, V.M. Derkacheva, E.A. Luk’yanets, Zh. Obshch. Khim. 51, 1650–1656 (1981)
112.
Zurück zum Zitat S.A. Mikhalenko, V.M. Derkacheva, E.A. Luk’yanets, J. Gen. Chem. USSR 51, 1405–1411 (1981) S.A. Mikhalenko, V.M. Derkacheva, E.A. Luk’yanets, J. Gen. Chem. USSR 51, 1405–1411 (1981)
113.
Zurück zum Zitat L.D. Rollman, R.T. Iwamoto, J. Am. Chem. Soc. 90, 1455–1463 (1968) L.D. Rollman, R.T. Iwamoto, J. Am. Chem. Soc. 90, 1455–1463 (1968)
114.
Zurück zum Zitat L.I. Solov’eva, S.A. Mikhalenko, E.A. Chernykh, E.A. Luk’yanets, Zh. Obshch. Khim. 52, 90–101 (1982) L.I. Solov’eva, S.A. Mikhalenko, E.A. Chernykh, E.A. Luk’yanets, Zh. Obshch. Khim. 52, 90–101 (1982)
115.
Zurück zum Zitat L.I. Solov’eva, S.A. Mikhalenko, E.A. Chernykh, E.A. Luk’yanets, J. Gen. Chem. USSR 52, 83–92 (1982) L.I. Solov’eva, S.A. Mikhalenko, E.A. Chernykh, E.A. Luk’yanets, J. Gen. Chem. USSR 52, 83–92 (1982)
116.
Zurück zum Zitat M. Sommerauer, C. Rager, M. Hanack, J. Am. Chem. Soc. 118, 10085–10093 (1996) M. Sommerauer, C. Rager, M. Hanack, J. Am. Chem. Soc. 118, 10085–10093 (1996)
117.
Zurück zum Zitat D.S. Terekhov, K.J.M. Nolan, C.R. McArthur, C.C. Leznoff, J. Org. Chem. 61, 3034–3040 (1996) D.S. Terekhov, K.J.M. Nolan, C.R. McArthur, C.C. Leznoff, J. Org. Chem. 61, 3034–3040 (1996)
118.
Zurück zum Zitat C.C. Leznoff, Z. Li, H. Isago, A.M.D. D’ascanio, D.S. Terekhov, J. Porphyrins Phthalocyanines 3, 406–416 (1999) C.C. Leznoff, Z. Li, H. Isago, A.M.D. D’ascanio, D.S. Terekhov, J. Porphyrins Phthalocyanines 3, 406–416 (1999)
119.
Zurück zum Zitat J.O. Morley, M.H. Charlton, J. Phys. Chem. 99, 1928–1934 (1995) J.O. Morley, M.H. Charlton, J. Phys. Chem. 99, 1928–1934 (1995)
120.
Zurück zum Zitat T. Sugimori, S. Okamoto, N. Kotoh, M. Handa, K. Kasuga, Chem. Lett. 1200–1201 (2000) T. Sugimori, S. Okamoto, N. Kotoh, M. Handa, K. Kasuga, Chem. Lett. 1200–1201 (2000)
121.
Zurück zum Zitat H. Konami, M. Hatano, Chem. Lett. 1359–1362 (1988) H. Konami, M. Hatano, Chem. Lett. 1359–1362 (1988)
122.
Zurück zum Zitat I. Chambrier, M.J. Cook, M.T. Wood, Chem. Commun. 2133–2134 (2000) I. Chambrier, M.J. Cook, M.T. Wood, Chem. Commun. 2133–2134 (2000)
123.
Zurück zum Zitat N. Kobayashi, T. Fukuda, K. Ueno, H. Ogino, J. Am. Chem. Soc. 123, 10740–10741 (2001) N. Kobayashi, T. Fukuda, K. Ueno, H. Ogino, J. Am. Chem. Soc. 123, 10740–10741 (2001)
124.
Zurück zum Zitat T. Fukuda, K. Ono, S. Homma, N. Kobayashi, Chem. Lett. 735–736 (2003) T. Fukuda, K. Ono, S. Homma, N. Kobayashi, Chem. Lett. 735–736 (2003)
125.
Zurück zum Zitat N. Kobayashi, S.-I. Nakajima, T. Osa, Inorg. Chim. Acta 210, 131–133 (1993) N. Kobayashi, S.-I. Nakajima, T. Osa, Inorg. Chim. Acta 210, 131–133 (1993)
126.
Zurück zum Zitat N. Kobayashi, S.-I. Nakajima, H. Ogata, T. Fukuda, Chem. Eur. J. 10, 6294–6312 (2004) N. Kobayashi, S.-I. Nakajima, H. Ogata, T. Fukuda, Chem. Eur. J. 10, 6294–6312 (2004)
127.
Zurück zum Zitat H. Konami, Y. Ikeda, M. Hatano, K. Mochizuki, Mol. Phys. 80, 153–160 (1993) H. Konami, Y. Ikeda, M. Hatano, K. Mochizuki, Mol. Phys. 80, 153–160 (1993)
128.
Zurück zum Zitat N. Kobayashi, H. Miwa, H. Isago, T. Tomura, Inorg. Chem. 38, 479–485 (1999) N. Kobayashi, H. Miwa, H. Isago, T. Tomura, Inorg. Chem. 38, 479–485 (1999)
129.
Zurück zum Zitat N. Kobayashi, H. Konami, in Phthalocyanines: Properties and Applications, ed. by C.C. Leznoff, A.B.P. Lever (VCH, New York, 1996), pp. 343–404 N. Kobayashi, H. Konami, in Phthalocyanines: Properties and Applications, ed. by C.C. Leznoff, A.B.P. Lever (VCH, New York, 1996), pp. 343–404
130.
Zurück zum Zitat N. Kobayashi, J. Mack, K. Ishii, M.J. Stillman, Inorg. Chem. 41, 5350–5363 (2002) N. Kobayashi, J. Mack, K. Ishii, M.J. Stillman, Inorg. Chem. 41, 5350–5363 (2002)
131.
Zurück zum Zitat W.A. Nevin, W. Liu, A.B.P. Lever, Can. J. Chem. 65, 855–858 (1987) W.A. Nevin, W. Liu, A.B.P. Lever, Can. J. Chem. 65, 855–858 (1987)
132.
Zurück zum Zitat A.R. Monahan, J.A. Brado, A.F. Deluca, J. Phys. Chem. 73, 1994–1996 (1972) A.R. Monahan, J.A. Brado, A.F. Deluca, J. Phys. Chem. 73, 1994–1996 (1972)
133.
Zurück zum Zitat A.R. Monahan, J.A. Brado, A.F. Deluca, J. Phys. Chem. 76, 446–449 (1972) A.R. Monahan, J.A. Brado, A.F. Deluca, J. Phys. Chem. 76, 446–449 (1972)
134.
Zurück zum Zitat H. Isago, Y. Kagaya, Y. Oyama, H. Fujita, T. Sugimori, J. Inorg. Biochem. 111, 91–98 (2012) H. Isago, Y. Kagaya, Y. Oyama, H. Fujita, T. Sugimori, J. Inorg. Biochem. 111, 91–98 (2012)
135.
Zurück zum Zitat M. Kasha, H.R. Rawls, M.A. El-Bayoumi, Pure Appl. Chem. 11, 371–392 (1965) M. Kasha, H.R. Rawls, M.A. El-Bayoumi, Pure Appl. Chem. 11, 371–392 (1965)
136.
Zurück zum Zitat N. Kobayashi, A.B.P. Lever, J. Am. Chem. Soc. 109, 7433–7441 (1987) N. Kobayashi, A.B.P. Lever, J. Am. Chem. Soc. 109, 7433–7441 (1987)
137.
Zurück zum Zitat Z. Gasyna, N. Kobayashi, M.J. Stillman, J. Chem. Soc. Dalton Trans. 2397–2405 (1989) Z. Gasyna, N. Kobayashi, M.J. Stillman, J. Chem. Soc. Dalton Trans. 2397–2405 (1989)
138.
Zurück zum Zitat N. Kobayashi, F. Furuya, G.-C. Yug, H. Wakita, M. Yokomizo, N. Ishikawa, Chem. Eur. J. 8, 1474–1484 (2002) N. Kobayashi, F. Furuya, G.-C. Yug, H. Wakita, M. Yokomizo, N. Ishikawa, Chem. Eur. J. 8, 1474–1484 (2002)
139.
Zurück zum Zitat Z. Ou, J. Shen, K.M. Kadish, Inorg. Chem. 45, 9569–9579 (2006) Z. Ou, J. Shen, K.M. Kadish, Inorg. Chem. 45, 9569–9579 (2006)
140.
Zurück zum Zitat L.A. Bottomley, C. Ercolani, J.-N. Gorce, G. Pennesi, G. Rossi, Inorg. Chem. 25, 2338–2342 (1986) L.A. Bottomley, C. Ercolani, J.-N. Gorce, G. Pennesi, G. Rossi, Inorg. Chem. 25, 2338–2342 (1986)
141.
Zurück zum Zitat S. Sievertsen, H. Homborg, Z. Anorg, Allg. Chem. 620, 1601–1606 (1994) S. Sievertsen, H. Homborg, Z. Anorg, Allg. Chem. 620, 1601–1606 (1994)
142.
Zurück zum Zitat K. Oniwa, S. Shimizu, Y. Shiina, T. Fukuda, N. Kobayashi, Chem. Commun. 49, 8341–8343 (2013) K. Oniwa, S. Shimizu, Y. Shiina, T. Fukuda, N. Kobayashi, Chem. Commun. 49, 8341–8343 (2013)
143.
Zurück zum Zitat T. Kaneko, T. Arai, K. Tokumaru, D. Matsunaga, H. Sakuragi, Chem. Lett. 345–346 (1996) T. Kaneko, T. Arai, K. Tokumaru, D. Matsunaga, H. Sakuragi, Chem. Lett. 345–346 (1996)
144.
Zurück zum Zitat M. Yoon, Y. Cheon, D. Kim, Photochem. Photobiol. 58, 31–36 (1993) M. Yoon, Y. Cheon, D. Kim, Photochem. Photobiol. 58, 31–36 (1993)
145.
Zurück zum Zitat A. Okada, H. Segawa, J. Am. Chem. Soc. 125, 2792–2796 (2003). (and references therein) A. Okada, H. Segawa, J. Am. Chem. Soc. 125, 2792–2796 (2003). (and references therein)
146.
Zurück zum Zitat K. Kameyama, M. Morisue, A. Satake, Y. Kobuke, Angew. Chem. Int. Ed. 44, 4763–4766 (2005) K. Kameyama, M. Morisue, A. Satake, Y. Kobuke, Angew. Chem. Int. Ed. 44, 4763–4766 (2005)
147.
Zurück zum Zitat W.A. Nevin, M.R. Hemstead, W. Liu, C.C. Leznoff, A.B.P. Lever, Inorg. Chem. 26, 570–577 (1987) W.A. Nevin, M.R. Hemstead, W. Liu, C.C. Leznoff, A.B.P. Lever, Inorg. Chem. 26, 570–577 (1987)
148.
Zurück zum Zitat S.M. Marcuccio, P.I. Svirskaya, S. Greenberg, A.B.P. Lever, C.C. Leznoff, Can. J. Chem. 63, 3057–3069 (1985) S.M. Marcuccio, P.I. Svirskaya, S. Greenberg, A.B.P. Lever, C.C. Leznoff, Can. J. Chem. 63, 3057–3069 (1985)
149.
Zurück zum Zitat E.S. Dodsworth, A.B.P. Lever, P. Seymour, C.C. Leznoff, J. Phys. Chem. 89, 5698–5705 (1985) E.S. Dodsworth, A.B.P. Lever, P. Seymour, C.C. Leznoff, J. Phys. Chem. 89, 5698–5705 (1985)
150.
Zurück zum Zitat H. Lam, S.M. Marcuccio, P.I. Svirskaya, S. Greenberg, A.B.P. Lever, C.C. Leznoff, R.L. Cerny, Can. J. Chem. 67, 1087–1097 (1989) H. Lam, S.M. Marcuccio, P.I. Svirskaya, S. Greenberg, A.B.P. Lever, C.C. Leznoff, R.L. Cerny, Can. J. Chem. 67, 1087–1097 (1989)
151.
Zurück zum Zitat W.E. Bennett, D.E. Broberg, N.C. Baenziger, Inorg. Chem. 12, 930–936 (1973) W.E. Bennett, D.E. Broberg, N.C. Baenziger, Inorg. Chem. 12, 930–936 (1973)
152.
Zurück zum Zitat O. Ohno, N. Ishikawa, H. Matsuzawa, Y. Kaizu, H. Kobayashi, J. Phys. Chem. 93, 1713–1718 (1989) O. Ohno, N. Ishikawa, H. Matsuzawa, Y. Kaizu, H. Kobayashi, J. Phys. Chem. 93, 1713–1718 (1989)
153.
Zurück zum Zitat N. Ishikawa, O. Ohno, Y. Kaizu, H. Kobayashi, J. Phys. Chem. 96, 8832–8839 (1992) N. Ishikawa, O. Ohno, Y. Kaizu, H. Kobayashi, J. Phys. Chem. 96, 8832–8839 (1992)
154.
Zurück zum Zitat N. Kobayashi, Coord. Chem. Rev. 227, 129–152 (2002) N. Kobayashi, Coord. Chem. Rev. 227, 129–152 (2002)
155.
Zurück zum Zitat H. Isago, M. Shimoda, Chem. Lett. 147–150 (1992) H. Isago, M. Shimoda, Chem. Lett. 147–150 (1992)
156.
Zurück zum Zitat M.S. Haghighi, C.L. Teske, H. Homborg, Z. Anorg, Allg. Chem. 608, 73–80 (1992) M.S. Haghighi, C.L. Teske, H. Homborg, Z. Anorg, Allg. Chem. 608, 73–80 (1992)
157.
Zurück zum Zitat P.N. Moskalev, G.N. Shapkin, A.N. Darovskikh, Russ. J. Inorg. Chem. 24, 188–192 (1979) P.N. Moskalev, G.N. Shapkin, A.N. Darovskikh, Russ. J. Inorg. Chem. 24, 188–192 (1979)
158.
Zurück zum Zitat P.N. Moskalev, G.N. Shapkin, A.N. Darovskikh, Zh Neorg, Khim 24, 340–346 (1979) P.N. Moskalev, G.N. Shapkin, A.N. Darovskikh, Zh Neorg, Khim 24, 340–346 (1979)
159.
Zurück zum Zitat P.N. Moskalev, N.I. Alimova, Russ. J. Inorg. Chem. 20, 1474–1477 (1975) P.N. Moskalev, N.I. Alimova, Russ. J. Inorg. Chem. 20, 1474–1477 (1975)
160.
Zurück zum Zitat P.N. Moskalev, N.I. Alimova, Zh Neorg, Khim 20, 2664–2668 (1975) P.N. Moskalev, N.I. Alimova, Zh Neorg, Khim 20, 2664–2668 (1975)
161.
Zurück zum Zitat L.G. Tomilova, N.A. Ovchinnikova, E.A. Luk’yanets, J. Gen. Chem. USSR 57, 1880−1883 (1987) L.G. Tomilova, N.A. Ovchinnikova, E.A. Luk’yanets, J. Gen. Chem. USSR 57, 1880−1883 (1987)
162.
Zurück zum Zitat L.G. Tomilova, N.A. Ovchinnikova, E.A. Luk’yanets, Zh. Obshch. Khim. 57, 2100–2104 (1987) L.G. Tomilova, N.A. Ovchinnikova, E.A. Luk’yanets, Zh. Obshch. Khim. 57, 2100–2104 (1987)
163.
Zurück zum Zitat N.A. Ovchinnikova, L.G. Tomilova, N.B. Seregina, V.V. Minin, G.M. Larin, E.A. Luky’anets, J Gen Chem. USSR 62, 1340–1345 (1992) N.A. Ovchinnikova, L.G. Tomilova, N.B. Seregina, V.V. Minin, G.M. Larin, E.A. Luky’anets, J Gen Chem. USSR 62, 1340–1345 (1992)
164.
Zurück zum Zitat N.A. Ovchinnikova, L.G. Tomilova, N.B. Seregina, V.V. Minin, G.M. Larin, E.A. Luk’yanets, Zh. Obshch. Khim. 62, 1631–1638 (1992) N.A. Ovchinnikova, L.G. Tomilova, N.B. Seregina, V.V. Minin, G.M. Larin, E.A. Luk’yanets, Zh. Obshch. Khim. 62, 1631–1638 (1992)
165.
Zurück zum Zitat G. Ostendorp, H. Homborg, Z. Anorg, Allg. Chem. 622, 1358–1364 (1998) G. Ostendorp, H. Homborg, Z. Anorg, Allg. Chem. 622, 1358–1364 (1998)
166.
Zurück zum Zitat G. Ostendorp, H. Homborg, Z. Anorg, Allg. Chem. 622, 873–880 (1998) G. Ostendorp, H. Homborg, Z. Anorg, Allg. Chem. 622, 873–880 (1998)
167.
Zurück zum Zitat H. Hückstädts, A. Tutaß, M. Göldner, U. Cornelissen, H. Homborg, Z. Anorg, Allg. Chem. 627, 485–497 (2001) H. Hückstädts, A. Tutaß, M. Göldner, U. Cornelissen, H. Homborg, Z. Anorg, Allg. Chem. 627, 485–497 (2001)
168.
Zurück zum Zitat K. Takahashi, J. Shimoda, M. Itoh, Y. Fuchita, H. Osawa, Chem. Lett. 173–174 (1998) K. Takahashi, J. Shimoda, M. Itoh, Y. Fuchita, H. Osawa, Chem. Lett. 173–174 (1998)
169.
Zurück zum Zitat T. Fukuda, T. Biyajima, N. Kobayashi, J. Am. Chem. Soc. 132, 6278–6279 (2010) T. Fukuda, T. Biyajima, N. Kobayashi, J. Am. Chem. Soc. 132, 6278–6279 (2010)
170.
Zurück zum Zitat H. Konami, M. Hatano, A. Tajiri, Chem. Phys. Lett. 166, 605–608 (1990) H. Konami, M. Hatano, A. Tajiri, Chem. Phys. Lett. 166, 605–608 (1990)
171.
Zurück zum Zitat H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 623, 369–378 (1997) H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 623, 369–378 (1997)
172.
Zurück zum Zitat H. Hückstädt, C. Bruhn, H. Homborg, J. Porphyrins Phthalocyanines 1, 367–378 (1997) H. Hückstädt, C. Bruhn, H. Homborg, J. Porphyrins Phthalocyanines 1, 367–378 (1997)
173.
Zurück zum Zitat M. Göldner, H. Hückstädt, K.S. Murray, B. Moubaraki, H. Homborg, Z. Anorg, Allg. Chem. 624, 288–294 (1998) M. Göldner, H. Hückstädt, K.S. Murray, B. Moubaraki, H. Homborg, Z. Anorg, Allg. Chem. 624, 288–294 (1998)
174.
Zurück zum Zitat H. Isago, H. Fujita, J. Porphyrins Phthalocyanines 17, 447–453 (2013) H. Isago, H. Fujita, J. Porphyrins Phthalocyanines 17, 447–453 (2013)
175.
Zurück zum Zitat M.E. Anderson, A.G. Barrett, B.M. Hoffman, Inorg. Chem. 38, 6143–6151 (1999) M.E. Anderson, A.G. Barrett, B.M. Hoffman, Inorg. Chem. 38, 6143–6151 (1999)
176.
Zurück zum Zitat K.A. Martin, M.J. Stillman, Inorg. Chem. 19, 2473–2475 (1980) K.A. Martin, M.J. Stillman, Inorg. Chem. 19, 2473–2475 (1980)
177.
Zurück zum Zitat A. Ogunsipe, T. Nyokong, J. Mol. Struct. 689, 89–97 (2004) A. Ogunsipe, T. Nyokong, J. Mol. Struct. 689, 89–97 (2004)
178.
Zurück zum Zitat P.A. Stuzhin, J. Porphyrins Phthalocyanines 3, 500–513 (1999) P.A. Stuzhin, J. Porphyrins Phthalocyanines 3, 500–513 (1999)
179.
Zurück zum Zitat P.A. Stuzhin, in Phthalocyanines—Properties and Applications, vol. 4, ed. by C.C. Leznoff, A.B.P. Lever (VCH, New York, 1996) pp. 19–77 P.A. Stuzhin, in Phthalocyanines—Properties and Applications, vol. 4, ed. by C.C. Leznoff, A.B.P. Lever (VCH, New York, 1996) pp. 19–77
180.
Zurück zum Zitat P.A. Bernstein, A.B.P. Lever, Inorg. Chim. Acta 198–200, 543–555 (1992) P.A. Bernstein, A.B.P. Lever, Inorg. Chim. Acta 198200, 543–555 (1992)
181.
Zurück zum Zitat V.M. Derkacheva, S.S. Iodko, O.L. Kaliya, E.A. Luk’yanets, J. Gen. Chem. USSR 51, 1998–2002 (1981) V.M. Derkacheva, S.S. Iodko, O.L. Kaliya, E.A. Luk’yanets, J. Gen. Chem. USSR 51, 1998–2002 (1981)
182.
Zurück zum Zitat V.M. Derkacheva, S.S. Iodko, O.L. Kaliya, E.A. Luk’yanets, Zh. Obshch. Khim. 51, 2319–2324 (1981) V.M. Derkacheva, S.S. Iodko, O.L. Kaliya, E.A. Luk’yanets, Zh. Obshch. Khim. 51, 2319–2324 (1981)
183.
Zurück zum Zitat O.L. Levedev, E.A. Luk’yanets, V.A. Puchnova, Opt. Spectrosc. 30, 347–349 (1971) O.L. Levedev, E.A. Luk’yanets, V.A. Puchnova, Opt. Spectrosc. 30, 347–349 (1971)
184.
Zurück zum Zitat O.L. Levedev, E.A. Luk’yanets, V.A. Puchnova, Opt. Spektrosc. 30, 640–643 (1971) O.L. Levedev, E.A. Luk’yanets, V.A. Puchnova, Opt. Spektrosc. 30, 640–643 (1971)
185.
Zurück zum Zitat S. Gaspard, M. Verdaguer, G. Viovy, J. Chem. Res. (S) 271 (1979) S. Gaspard, M. Verdaguer, G. Viovy, J. Chem. Res. (S) 271 (1979)
186.
Zurück zum Zitat AKh Khanamiryan, N. Bhardwaj, C.C. Leznoff, J. Porphyrins Phthalocyanines 4, 484–490 (2000) AKh Khanamiryan, N. Bhardwaj, C.C. Leznoff, J. Porphyrins Phthalocyanines 4, 484–490 (2000)
187.
Zurück zum Zitat A.B.P. Lever, E.R. Milaeva, G. Speier, in Phthalocyanines—Properties and Applications, vol. 3, ed. by Leznoff, C.C., Lever, A.B.P. (VCH, New York, 1993), pp. 1–69 A.B.P. Lever, E.R. Milaeva, G. Speier, in PhthalocyaninesProperties and Applications, vol. 3, ed. by Leznoff, C.C., Lever, A.B.P. (VCH, New York, 1993), pp. 1–69
188.
Zurück zum Zitat M.J. Stillman, in Phthalocyanines—Properties and Applications, vol. 3, ed. by C.C. Leznoff, A.B.P. Lever (VCH, New York, 1993), pp. 227–296 M.J. Stillman, in Phthalocyanines—Properties and Applications, vol. 3, ed. by C.C. Leznoff, A.B.P. Lever (VCH, New York, 1993), pp. 227–296
189.
Zurück zum Zitat H. Isago, J. Porphyrins Phthalocyanines 10, 1125–1131 (2006) H. Isago, J. Porphyrins Phthalocyanines 10, 1125–1131 (2006)
190.
Zurück zum Zitat E. Ough, Z. Gasyna, M.J. Stillman, Inorg. Chem. 30, 2301–2310 (1991) E. Ough, Z. Gasyna, M.J. Stillman, Inorg. Chem. 30, 2301–2310 (1991)
191.
Zurück zum Zitat H. Homborg, Z. Anorg, Allg. Chem. 507, 35–50 (1983) H. Homborg, Z. Anorg, Allg. Chem. 507, 35–50 (1983)
192.
Zurück zum Zitat T. Nyokong, Z. Gasyna, M.J. Stillman, Inorg. Chem. 26, 548–553 (1987) T. Nyokong, Z. Gasyna, M.J. Stillman, Inorg. Chem. 26, 548–553 (1987)
193.
Zurück zum Zitat H. Homborg, Q. Kalz, Z. Naturforsch. Sect. B 33, 1067–1071 (1978) H. Homborg, Q. Kalz, Z. Naturforsch. Sect. B 33, 1067–1071 (1978)
194.
Zurück zum Zitat E. Orti, J.L. Bredas, C. Clarisse, J. Chem. Phys. 92, 1228–1235 (1990) E. Orti, J.L. Bredas, C. Clarisse, J. Chem. Phys. 92, 1228–1235 (1990)
195.
Zurück zum Zitat J. Mack, M.J. Stillman, J. Phys. Chem. 99, 7935–7945 (1995) J. Mack, M.J. Stillman, J. Phys. Chem. 99, 7935–7945 (1995)
196.
Zurück zum Zitat J. Mack, M.J. Stillman, Coord. Chem. Rev. 219–221, 993–1032 (2001) J. Mack, M.J. Stillman, Coord. Chem. Rev. 219–221, 993–1032 (2001)
197.
Zurück zum Zitat N. Ishikawa, Y. Kaizu, Chem. Phys. Lett. 339, 125–132 (2001) N. Ishikawa, Y. Kaizu, Chem. Phys. Lett. 339, 125–132 (2001)
198.
Zurück zum Zitat T. Nyokong, Z. Gasyna, M.J. Stillman, Inorg. Chim. Acta 112, 11–15 (1986) T. Nyokong, Z. Gasyna, M.J. Stillman, Inorg. Chim. Acta 112, 11–15 (1986)
199.
Zurück zum Zitat M.M. Nicholson, in Phthalocyanines—Properties and Applications, vol. 3, ed. by C.C. Leznoff, A.B.P. Lever (VCH, New York, 1993), pp. 71–118 M.M. Nicholson, in Phthalocyanines—Properties and Applications, vol. 3, ed. by C.C. Leznoff, A.B.P. Lever (VCH, New York, 1993), pp. 71–118
200.
Zurück zum Zitat P. Turek, P. Petit, J.J. Andre, R. Evan, B. Boudjema, G. Guillaud, M. Maitrot, J. Am. Chem. Soc. 109, 5119–5122 (1987) P. Turek, P. Petit, J.J. Andre, R. Evan, B. Boudjema, G. Guillaud, M. Maitrot, J. Am. Chem. Soc. 109, 5119–5122 (1987)
201.
Zurück zum Zitat H. Isago, J. Porphyrins Phthalocyanines 12, 861–869 (2012) H. Isago, J. Porphyrins Phthalocyanines 12, 861–869 (2012)
202.
Zurück zum Zitat G. Ostendorp, H. Homborg, Z. Anorg, Allg. Chem. 622, 1358–1364 (1996) G. Ostendorp, H. Homborg, Z. Anorg, Allg. Chem. 622, 1358–1364 (1996)
203.
Zurück zum Zitat A. De Cian, M. Moussavi, J. Fischer, R. Weiss, Inorg. Chem. 24, 3162–3167 (1985) A. De Cian, M. Moussavi, J. Fischer, R. Weiss, Inorg. Chem. 24, 3162–3167 (1985)
204.
Zurück zum Zitat N. Ishikawa, O. Ohno, Y. Kaizu, Chem. Phys. Lett. 180, 51–56 (1991) N. Ishikawa, O. Ohno, Y. Kaizu, Chem. Phys. Lett. 180, 51–56 (1991)
205.
Zurück zum Zitat G. Ostendorp, H. Homborg, Z. Anorg, Allg. Chem. 622, 873–880 (1996) G. Ostendorp, H. Homborg, Z. Anorg, Allg. Chem. 622, 873–880 (1996)
206.
Zurück zum Zitat N. Ishikawa, O. Ohno, Y. Kaizu, J. Phys. Chem. 97, 1004–1010 (1993) N. Ishikawa, O. Ohno, Y. Kaizu, J. Phys. Chem. 97, 1004–1010 (1993)
207.
Zurück zum Zitat C.L. Dunford, B. Williamson, E. Krausz, J. Phys. Chem. A 104, 3537–3543 (2000) C.L. Dunford, B. Williamson, E. Krausz, J. Phys. Chem. A 104, 3537–3543 (2000)
208.
Zurück zum Zitat J.S. Shirk, J.R. Lindle, F.J. Bartoli, M.E. Boyle, J. Phys. Chem. 96, 5847–5852 (1992) J.S. Shirk, J.R. Lindle, F.J. Bartoli, M.E. Boyle, J. Phys. Chem. 96, 5847–5852 (1992)
209.
Zurück zum Zitat H. Sugimoto, M. Mori, H. Masuda, T. Taga, Chem. Commun. 962–963 (1986) H. Sugimoto, M. Mori, H. Masuda, T. Taga, Chem. Commun. 962–963 (1986)
210.
Zurück zum Zitat G. Ostendorp, H.W. Rotter, H. Homborg, Z. Anorg, Allg. Chem. 622, 235–244 (1996) G. Ostendorp, H.W. Rotter, H. Homborg, Z. Anorg, Allg. Chem. 622, 235–244 (1996)
211.
Zurück zum Zitat T. Fukuda, K. Hata, N. Ishikawa, J. Am. Chem. Soc. 134, 14698–14701 (2012) T. Fukuda, K. Hata, N. Ishikawa, J. Am. Chem. Soc. 134, 14698–14701 (2012)
212.
Zurück zum Zitat D.W. Clack, J.R. Yandle, Inorg. Chem. 11, 1738–1742 (1972) D.W. Clack, J.R. Yandle, Inorg. Chem. 11, 1738–1742 (1972)
213.
Zurück zum Zitat J. Mack, M.J. Stillman, J. Am. Chem. Soc. 116, 1292–1304 (1994) J. Mack, M.J. Stillman, J. Am. Chem. Soc. 116, 1292–1304 (1994)
214.
Zurück zum Zitat J. Mack, S. Kirkby, E.A. Ough, M.J. Stillman, Inorg. Chem. 31, 1717–1719 (1992) J. Mack, S. Kirkby, E.A. Ough, M.J. Stillman, Inorg. Chem. 31, 1717–1719 (1992)
215.
Zurück zum Zitat J. Mack, M.J. Stillman, Inorg. Chem. 36, 413–425 (1997) J. Mack, M.J. Stillman, Inorg. Chem. 36, 413–425 (1997)
216.
Zurück zum Zitat H. Isago, Y. Kagaya, Bull. Chem. Soc. Jpn. 69, 1281–1288 (1996) H. Isago, Y. Kagaya, Bull. Chem. Soc. Jpn. 69, 1281–1288 (1996)
217.
Zurück zum Zitat E.W.Y. Wong, D.B. Leznoff, J. Porphyrins Phthalocyanines 16, 154–162 (2012) E.W.Y. Wong, D.B. Leznoff, J. Porphyrins Phthalocyanines 16, 154–162 (2012)
218.
Zurück zum Zitat MdH Zahir, Y. Kagaya, H. Isago, T. Furubayashi, Inorg. Chim. Acta 357, 2755–2758 (2004) MdH Zahir, Y. Kagaya, H. Isago, T. Furubayashi, Inorg. Chim. Acta 357, 2755–2758 (2004)
219.
Zurück zum Zitat T. Harazono, I. Takagishi, Bull. Chem. Soc. Jpn. 66, 1016–1023 (1993) T. Harazono, I. Takagishi, Bull. Chem. Soc. Jpn. 66, 1016–1023 (1993)
220.
Zurück zum Zitat H. Isago, Y. Kagaya, A. Matsushita, Chem. Lett. 33, 862–863 (2004) H. Isago, Y. Kagaya, A. Matsushita, Chem. Lett. 33, 862–863 (2004)
221.
Zurück zum Zitat T. Inabe, Y. Maruyama, Bull. Chem. Soc. Jpn. 63, 2273–2280 (1990) T. Inabe, Y. Maruyama, Bull. Chem. Soc. Jpn. 63, 2273–2280 (1990)
222.
Zurück zum Zitat P. Suppan, J. Photochem. Photobiol. Sect. A 50, 293–330 (1990) P. Suppan, J. Photochem. Photobiol. Sect. A 50, 293–330 (1990)
223.
Zurück zum Zitat H. Isago, K. Miura, Y. Oyama, J. Inorg. Biochem. 102, 380–387 (2008) H. Isago, K. Miura, Y. Oyama, J. Inorg. Biochem. 102, 380–387 (2008)
224.
Zurück zum Zitat H. Isago, K. Miura, M. Kanesato, J. Photochem. Photobiol. A 197, 313–320 (2008) H. Isago, K. Miura, M. Kanesato, J. Photochem. Photobiol. A 197, 313–320 (2008)
225.
Zurück zum Zitat A.B.P. Lever, J.P. Wilshire, S.K. Quan, J. Am. Chem. Soc. 101, 3868–3869 (1979) A.B.P. Lever, J.P. Wilshire, S.K. Quan, J. Am. Chem. Soc. 101, 3868–3869 (1979)
226.
Zurück zum Zitat Ot. E. Sielcken, M.M. van Tillborg, M.F.M. Roks, R. Hendricks, W. Drenth, R.J.M. Nolte, J. Am. Chem. Soc. 109, 4261–4265 (1987) Ot. E. Sielcken, M.M. van Tillborg, M.F.M. Roks, R. Hendricks, W. Drenth, R.J.M. Nolte, J. Am. Chem. Soc. 109, 4261–4265 (1987)
227.
Zurück zum Zitat A. Ferencz, D. Neher, M. Schulze, G. Wegner, L. Viaene, F.C. De Schryver, Chem. Phys. Lett. 245, 23–29 (1995) A. Ferencz, D. Neher, M. Schulze, G. Wegner, L. Viaene, F.C. De Schryver, Chem. Phys. Lett. 245, 23–29 (1995)
228.
Zurück zum Zitat L. Oddos-Marcel, F. Madeore, A. Bock, D. Neher, A. Ferencz, H. Rengel, G. Wegner, C. Kryschi, H.P. Trommsdorff, J. Phys. Chem. 100, 11850–11856 (1996) L. Oddos-Marcel, F. Madeore, A. Bock, D. Neher, A. Ferencz, H. Rengel, G. Wegner, C. Kryschi, H.P. Trommsdorff, J. Phys. Chem. 100, 11850–11856 (1996)
229.
Zurück zum Zitat J. Kleinwächter, M. Hanack, J. Am. Chem. Soc. 119, 10684–10695 (1997) J. Kleinwächter, M. Hanack, J. Am. Chem. Soc. 119, 10684–10695 (1997)
230.
Zurück zum Zitat Z. Li, M. Lieberman, Inorg. Chem. 40, 932–939 (2001) Z. Li, M. Lieberman, Inorg. Chem. 40, 932–939 (2001)
231.
Zurück zum Zitat J. Ern, A. Bock, L. Oddos-Marcel, H. Rengel, G. Wegner, H.P. Trommsdorf, C. Kryschi, J. Phys. Chem. A 103, 2446–2450 (1999) J. Ern, A. Bock, L. Oddos-Marcel, H. Rengel, G. Wegner, H.P. Trommsdorf, C. Kryschi, J. Phys. Chem. A 103, 2446–2450 (1999)
232.
Zurück zum Zitat N. Kobayashi, T. Ishizaki, K. Ishii, H. Konami, J. Am. Chem. Soc. 121, 9096–9110 (1999) N. Kobayashi, T. Ishizaki, K. Ishii, H. Konami, J. Am. Chem. Soc. 121, 9096–9110 (1999)
233.
Zurück zum Zitat N. Kobayashi, Bull. Chem. Soc. Jpn. 75, 1–19 (2002) N. Kobayashi, Bull. Chem. Soc. Jpn. 75, 1–19 (2002)
234.
Zurück zum Zitat C.G. Claessens, D. González-Rodríguez, T. Torres, Chem. Rev. 102, 835–853 (2002) C.G. Claessens, D. González-Rodríguez, T. Torres, Chem. Rev. 102, 835–853 (2002)
235.
Zurück zum Zitat E.A. Cuellar, T.J. Marks, Inorg. Chem. 20, 3766–3770 (1981) E.A. Cuellar, T.J. Marks, Inorg. Chem. 20, 3766–3770 (1981)
236.
Zurück zum Zitat T.J. Marks, D.R. Stojakovic, J. Am. Chem. Soc. 100, 1695–1705 (1978) T.J. Marks, D.R. Stojakovic, J. Am. Chem. Soc. 100, 1695–1705 (1978)
237.
Zurück zum Zitat T. Furuyama, Y. Ogura, K. Yoza, N. Kobayashi, Angew. Chem. Int. Ed. 51, 11110–11114 (2012) T. Furuyama, Y. Ogura, K. Yoza, N. Kobayashi, Angew. Chem. Int. Ed. 51, 11110–11114 (2012)
238.
Zurück zum Zitat M. Fujiki, H. Tabei, K. Isa, J. Am. Chem. Soc. 108, 1532–1536 (1986) M. Fujiki, H. Tabei, K. Isa, J. Am. Chem. Soc. 108, 1532–1536 (1986)
239.
Zurück zum Zitat J. Li, L. R. Subramanian, M. Hanack, J. Chem. Soc. Chem. Commun. 679–680 (1997) J. Li, L. R. Subramanian, M. Hanack, J. Chem. Soc. Chem. Commun. 679–680 (1997)
240.
Zurück zum Zitat J. Mack, N. Kobayashi, Chem. Rev. 111, 281–321 (2011) J. Mack, N. Kobayashi, Chem. Rev. 111, 281–321 (2011)
241.
Zurück zum Zitat J. Mack, M. Bunya, D. Lansky, D.P. Goldberg, N. Kobayashi, Heterocycles 76, 1369–1380 (2008) J. Mack, M. Bunya, D. Lansky, D.P. Goldberg, N. Kobayashi, Heterocycles 76, 1369–1380 (2008)
242.
Zurück zum Zitat J. Liu, F. Zhang, F. Zhao, Y. Tang, X. Song, G. Yao, J. Photochem. Photobiol. Sect. A 91, 99–104 (1995) J. Liu, F. Zhang, F. Zhao, Y. Tang, X. Song, G. Yao, J. Photochem. Photobiol. Sect. A 91, 99–104 (1995)
243.
Zurück zum Zitat W.D. Kerber, B. Ramdhanie, D.P. Goldberg, Angew. Chem. Int. Ed. 46, 3718–3721 (2007) W.D. Kerber, B. Ramdhanie, D.P. Goldberg, Angew. Chem. Int. Ed. 46, 3718–3721 (2007)
244.
Zurück zum Zitat N. Kobayashi, M. Yokoyama, A. Muranaka, A. Ceulemans, Tetrahedron Lett. 45, 1755–1758 (2004) N. Kobayashi, M. Yokoyama, A. Muranaka, A. Ceulemans, Tetrahedron Lett. 45, 1755–1758 (2004)
245.
Zurück zum Zitat T. Birnbaum, T. Hahn, C. Martin, J. Kortus, M. Fronk, F. Lungwitz, D.R.T. Zahn, G. Salvan, J. Phys. Condens. Matter 26, 104201–104212 (2014) T. Birnbaum, T. Hahn, C. Martin, J. Kortus, M. Fronk, F. Lungwitz, D.R.T. Zahn, G. Salvan, J. Phys. Condens. Matter 26, 104201–104212 (2014)
246.
Zurück zum Zitat F.H. Moser, A.L. Thomas, The Phthalocyanines, vol. 1 (CRC Press, Bocca Raton, 1983) F.H. Moser, A.L. Thomas, The Phthalocyanines, vol. 1 (CRC Press, Bocca Raton, 1983)
247.
Zurück zum Zitat J.H. Sharp, M. Abkowitz, J. Phys. Chem. 77, 477–481 (1973) J.H. Sharp, M. Abkowitz, J. Phys. Chem. 77, 477–481 (1973)
248.
Zurück zum Zitat A. Hoshino, Y. Takenaka, H. Miyaji, Acta Crystallogr. Sect. B 59, 393–403 (2003) A. Hoshino, Y. Takenaka, H. Miyaji, Acta Crystallogr. Sect. B 59, 393–403 (2003)
249.
Zurück zum Zitat A. Hoshino, Y. Takenaka, H. Miyaji, C.J. Brown, J. Chem. Soc. A 2488–2493 (1968) A. Hoshino, Y. Takenaka, H. Miyaji, C.J. Brown, J. Chem. Soc. A 2488–2493 (1968)
250.
Zurück zum Zitat J. Mizuguchi, G. Rihs, H.R. Karfunkel, J. Phys. Chem. 44, 16217–16227 (1995) J. Mizuguchi, G. Rihs, H.R. Karfunkel, J. Phys. Chem. 44, 16217–16227 (1995)
251.
Zurück zum Zitat J. Mizuguchi, S. Matsumoto, J. Phys. Chem. A 103, 614–616 (1999) J. Mizuguchi, S. Matsumoto, J. Phys. Chem. A 103, 614–616 (1999)
252.
Zurück zum Zitat A. Endo, S. Matsumoto, J. Mizuguchi, J. Phys. Chem. A 103, 8193–8199 (1999) A. Endo, S. Matsumoto, J. Mizuguchi, J. Phys. Chem. A 103, 8193–8199 (1999)
253.
Zurück zum Zitat J. Mizuguchi, Shikizai 72, 510–514 (1999) J. Mizuguchi, Shikizai 72, 510–514 (1999)
254.
Zurück zum Zitat K. Nakai, K. Ishii, N. Kobayashi, H. Yonehara, C. Pac, J. Phys. Chem. B 107, 9749–9755 (2003) K. Nakai, K. Ishii, N. Kobayashi, H. Yonehara, C. Pac, J. Phys. Chem. B 107, 9749–9755 (2003)
255.
Zurück zum Zitat M. Ottmar, T. Ichisaka, L.R. Subramanian, M. Hanack, Y. Shirota, Chem. Lett. 788–789 (2001) M. Ottmar, T. Ichisaka, L.R. Subramanian, M. Hanack, Y. Shirota, Chem. Lett. 788–789 (2001)
Metadaten
Titel
Real Optical Absorption Spectra Observed in Laboratories
verfasst von
Hiroaki Isago
Copyright-Jahr
2015
Verlag
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-55102-7_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.