Skip to main content

2023 | OriginalPaper | Buchkapitel

Real-Time Detection and Tracking of Defects in Building Based on Augmented Reality and Computer Vision

verfasst von : Wenyu xu, Yi Tan, Shenghan Li

Erschienen in: Proceedings of the 27th International Symposium on Advancement of Construction Management and Real Estate

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Condition assessment and health monitoring (CAHM) of buildings require effective and continuous detection of any changes in the material and geometric properties of components to detect defects in time. However, traditional manual-based detection methods are inefficient and error-prone. Smartphone/tablet-based detection has achieved real-time detection of the CAHM with improved efficiency, however inspectors still need to hold the smart devices in hands, resulting in inconveniency and uncomfortable working experience. In this study, a head mounted display (HMD)-based collaborative method for real-time detection and tracking of defects (i.e., crack, swell, peel, seepage, and mould) in building was developed by combining an object detection algorithm you only look once version 5 (YOLOv5) with multi-object tracking algorithm Deepsort. According to the analysis of the experimental results, the developed method is promising and efficient to detect and track various types of building defects.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Shruthy, P., Gurmu, A.: Framework for building defects and their identification technologies: case studies of domestic buildings in Melbourne, Australia. In: Proceedings of the 54th International Conference of the Architectural Science Association, pp. 1–10 (2021) Shruthy, P., Gurmu, A.: Framework for building defects and their identification technologies: case studies of domestic buildings in Melbourne, Australia. In: Proceedings of the 54th International Conference of the Architectural Science Association, pp. 1–10 (2021)
4.
Zurück zum Zitat Mohseni, H., Setunge, S., Zhang, G.M., Wakefield, R.: Condition monitoring and condition aggregation for optimised decision making in management of buildings. Appl. Mech. Mater. 438–439 (2013) Mohseni, H., Setunge, S., Zhang, G.M., Wakefield, R.: Condition monitoring and condition aggregation for optimised decision making in management of buildings. Appl. Mech. Mater. 438–439 (2013)
7.
Zurück zum Zitat Kong, Q., Allen, R.M., Kohler, M.D., Heaton, T.H., Bunn, J.: Structural health monitoring of buildings using smartphone sensors. Seismol. Res. Lett. 89(2A), 594–602 (2018)CrossRef Kong, Q., Allen, R.M., Kohler, M.D., Heaton, T.H., Bunn, J.: Structural health monitoring of buildings using smartphone sensors. Seismol. Res. Lett. 89(2A), 594–602 (2018)CrossRef
13.
Zurück zum Zitat Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: 2016 IEEE International Conference on Image Processing (ICIP) (2016) Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: 2016 IEEE International Conference on Image Processing (ICIP) (2016)
14.
Zurück zum Zitat Kalman, R.E.: New approach to linear filtering and prediction problems transaction of the ASME. J. Basic Eng. 83, 95–108 (1960) Kalman, R.E.: New approach to linear filtering and prediction problems transaction of the ASME. J. Basic Eng. 83, 95–108 (1960)
15.
Zurück zum Zitat Maesschalck, R.D., Jouan-Rimbaud, D., Massart, D.L.: The mahalanobis distance. Chemometr. Intellig. Lab. Syst. 50(1), 1–18 (2000)CrossRef Maesschalck, R.D., Jouan-Rimbaud, D., Massart, D.L.: The mahalanobis distance. Chemometr. Intellig. Lab. Syst. 50(1), 1–18 (2000)CrossRef
17.
Zurück zum Zitat Wright, M.B.: Speeding up the Hungarian algorithm. Comput. Oper. Res 17, 95–96 (1990)CrossRef Wright, M.B.: Speeding up the Hungarian algorithm. Comput. Oper. Res 17, 95–96 (1990)CrossRef
18.
Zurück zum Zitat Modarres, C., Astorga, N, Droguett, E.L., Meruane, V.: Convolutional neural networks for automated damage recognition and damage type identification. Struct. Control Health Monit. 25(10), e2230 (2018) Modarres, C., Astorga, N, Droguett, E.L., Meruane, V.: Convolutional neural networks for automated damage recognition and damage type identification. Struct. Control Health Monit. 25(10), e2230 (2018)
19.
Zurück zum Zitat Tang, Z., Chen, Z., Bao, Y., Li, H.: Convolutional neural network-based data anomaly detection method using multiple information for structural health monitoring. Struct. Control Health Monit. 26(1), e2296 (2019). https://doi.org/10.1002/stc.2296 Tang, Z., Chen, Z., Bao, Y., Li, H.: Convolutional neural network-based data anomaly detection method using multiple information for structural health monitoring. Struct. Control Health Monit. 26(1), e2296 (2019). https://​doi.​org/​10.​1002/​stc.​2296
Metadaten
Titel
Real-Time Detection and Tracking of Defects in Building Based on Augmented Reality and Computer Vision
verfasst von
Wenyu xu
Yi Tan
Shenghan Li
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-3626-7_126