Skip to main content
Erschienen in:

11.03.2019

Real-Time Driver Drowsiness Detection Using Wavelet Transform and Ensemble Logistic Regression

verfasst von: Mohsen Babaeian, K. Amal Francis, Khalil Dajani, Mohammad Mozumdar

Erschienen in: International Journal of Intelligent Transportation Systems Research | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Drowsy-driver-related accidents has increased in recent years. Research and systems development aim to reduce traffic-accident-related injuries and fatalities. These potentially life-saving systems must operate in a timely manner with the highest precision. In the past two decades, researchers proposed method based on driving pattern changes, driver body position, and physiological signal processing patterns. There is a focus on human physiological signals, specifically the electrical signals from the heart and brain. In this paper, we are presenting an alternative method to determine and quantify driver drowsiness levels using a physiological signal that was collected in a non-intrusive method. This methodology utilizes heart rate variation (HRV), electrocardiogram (ECG), and machine learning for drowsiness detection. Thirty subjects were recruited and ECG data was collected as each subject drifted off to sleep and while sleeping for a duration of between four and eight hours of normal sleep. After using the continuous wavelet transform for the feature extraction, a new feature selection was executed using ensemble logistic regression (ELR), which achieved an average accuracy of 92.5% using data acquired from thirty subjects in an average of 21 s. Successful application of this drowsiness detection method may help prevent traffic accidents.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Chipman, M., Jin, Y.L.: Drowsy drivers: the effect of light and circadian rhythm on crash occurrence. Saf. Sci. 47(10), 1364–1370 (December 2009)CrossRef Chipman, M., Jin, Y.L.: Drowsy drivers: the effect of light and circadian rhythm on crash occurrence. Saf. Sci. 47(10), 1364–1370 (December 2009)CrossRef
2.
Zurück zum Zitat N. H. T. S. Administration. (01 May 2016). Research on Drowsy Driving N. H. T. S. Administration. (01 May 2016). Research on Drowsy Driving
3.
Zurück zum Zitat L. Tijerina, M. Gleckler, D. Stoltzfus, S. Johnston, M. J. Goodman, and W. W. Wierwille, “A Preliminary Assessment of Algorithms for Drowsy and Inattentive Driver Detection on the Road,” U.S. Department of Transportation National Highway Traffic Safety AdministrationMarch 1999 L. Tijerina, M. Gleckler, D. Stoltzfus, S. Johnston, M. J. Goodman, and W. W. Wierwille, “A Preliminary Assessment of Algorithms for Drowsy and Inattentive Driver Detection on the Road,” U.S. Department of Transportation National Highway Traffic Safety AdministrationMarch 1999
4.
Zurück zum Zitat G. D. Furman and A. Baharav, “Investigation of Drowsiness while Driving: Utilizing Analysis of Heart Rate Fluctuations,” Computing in Cardiology, pp. 1091–1094, 26–29 Sept. 2010 G. D. Furman and A. Baharav, “Investigation of Drowsiness while Driving: Utilizing Analysis of Heart Rate Fluctuations,” Computing in Cardiology, pp. 1091–1094, 26–29 Sept. 2010
5.
Zurück zum Zitat Lee, K.M., Lee, S.M., Sim, K.S., Kim, K.K., Park, K.S.: Noise reduction for non-contact electrocardiogram measurement in daily life. Comput. Cardiol. 36, 493–496 (2009) Lee, K.M., Lee, S.M., Sim, K.S., Kim, K.K., Park, K.S.: Noise reduction for non-contact electrocardiogram measurement in daily life. Comput. Cardiol. 36, 493–496 (2009)
6.
Zurück zum Zitat Tekade, P.M., Gawali, S.: Investigation and new method of no intrusive detection of driver drowsiness. International Journal of Engineering and Innovative Technology. 1, 210–216 (May 2012) Tekade, P.M., Gawali, S.: Investigation and new method of no intrusive detection of driver drowsiness. International Journal of Engineering and Innovative Technology. 1, 210–216 (May 2012)
7.
Zurück zum Zitat Y. G. Lim, G. S. Chung, and K. S. Park, "Capacitive Driven-right-leg Grounding in Indirect-contact ECG Measurement," presented at the 32nd Annual International Conference of the IEEE EMBS, Buenos Aires, Argentina, 2010 Y. G. Lim, G. S. Chung, and K. S. Park, "Capacitive Driven-right-leg Grounding in Indirect-contact ECG Measurement," presented at the 32nd Annual International Conference of the IEEE EMBS, Buenos Aires, Argentina, 2010
8.
Zurück zum Zitat Laguna, P., Moody, G.B., Mark, R.G.: Power spectral density of unevenly sampled data by Least-Square analysis: Perforrnance and application to heart rate signals. IEEE Trans. Biomed. Eng. 45(6), 698–715 (June 1998)CrossRef Laguna, P., Moody, G.B., Mark, R.G.: Power spectral density of unevenly sampled data by Least-Square analysis: Perforrnance and application to heart rate signals. IEEE Trans. Biomed. Eng. 45(6), 698–715 (June 1998)CrossRef
9.
Zurück zum Zitat Sztajzel, J.: Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med. Wkly. 134(35-36), 514–522 (2004) Sztajzel, J.: Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med. Wkly. 134(35-36), 514–522 (2004)
10.
Zurück zum Zitat Rajendra Acharya, U., Paul Joseph, K., Kannathal, N., Lim, C.M., Suri, J.S.: Heart rate variability: a review. Med Biol Eng Comput. 44(12), 1031–1051 (Dec 2006)CrossRef Rajendra Acharya, U., Paul Joseph, K., Kannathal, N., Lim, C.M., Suri, J.S.: Heart rate variability: a review. Med Biol Eng Comput. 44(12), 1031–1051 (Dec 2006)CrossRef
11.
Zurück zum Zitat Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from Data: a Short Course, 2012 Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from Data: a Short Course, 2012
12.
Zurück zum Zitat Yilmaz, B., Asyali, M.H., Arikan, E., Yetkin, S., Ozgen, F.: Sleep stage and obstructive apneaic epoch classification using single-lead ECG. Biomed. Eng. Online. 9, 14 (2010)CrossRef Yilmaz, B., Asyali, M.H., Arikan, E., Yetkin, S., Ozgen, F.: Sleep stage and obstructive apneaic epoch classification using single-lead ECG. Biomed. Eng. Online. 9, 14 (2010)CrossRef
13.
Zurück zum Zitat Khazaee, A., Ebrahimzadeh, A.: Classification of electrocardiogram signals with support vector machines and genetic algorithms using power spectral features. Biomedical Signal Processing and Control. 5(4), 252–263 (2010)CrossRef Khazaee, A., Ebrahimzadeh, A.: Classification of electrocardiogram signals with support vector machines and genetic algorithms using power spectral features. Biomedical Signal Processing and Control. 5(4), 252–263 (2010)CrossRef
14.
Zurück zum Zitat Jen, K.-K., Hwang, Y.-R.: ECG feature extraction and classification using Cepstrum and neural networks. Journal of Medical and Biological Engineering. 28, (2008) Jen, K.-K., Hwang, Y.-R.: ECG feature extraction and classification using Cepstrum and neural networks. Journal of Medical and Biological Engineering. 28, (2008)
15.
Zurück zum Zitat Zhao, Q., Zhan, L.: ECG feature extraction and classification using wavelet transform and support vector machines. presented at the International Conference on Neural Networks and Brain. (2005) Zhao, Q., Zhan, L.: ECG feature extraction and classification using wavelet transform and support vector machines. presented at the International Conference on Neural Networks and Brain. (2005)
16.
Zurück zum Zitat Li, G., Chung, W.Y.: Detection of driver drowsiness using wavelet analysis of heart rate variability and a support vector machine classifier. Sensors (Basel). 13(12), 16494–16511 (2013)CrossRef Li, G., Chung, W.Y.: Detection of driver drowsiness using wavelet analysis of heart rate variability and a support vector machine classifier. Sensors (Basel). 13(12), 16494–16511 (2013)CrossRef
17.
Zurück zum Zitat Babaeian, M., Bhardwaj, N., Esquivel, B., Mozumdar, M.: Real time driver drowsiness detection using a logistic-regression-based machine learning algorithm. presented at the Green Energy and Systems Conference (IGSEC), Long Beach, CA. (2016) Babaeian, M., Bhardwaj, N., Esquivel, B., Mozumdar, M.: Real time driver drowsiness detection using a logistic-regression-based machine learning algorithm. presented at the Green Energy and Systems Conference (IGSEC), Long Beach, CA. (2016)
18.
Zurück zum Zitat Zakharov, R., Dupont, P.: "Ensemble Logistic Regression for Feature Selection," Presented at the 6th IAPR International Conference on Pattern Recognition in Bioinformatics. Delft, The Netherlands (2011) Zakharov, R., Dupont, P.: "Ensemble Logistic Regression for Feature Selection," Presented at the 6th IAPR International Conference on Pattern Recognition in Bioinformatics. Delft, The Netherlands (2011)
19.
Zurück zum Zitat Xu, X., Frank, E.: "Logistic Regression and Boosting for Labeled Bags of Instances," Presented at the Proceedings 8th Pacific-Asia Conference, PAKDD 2004. Sydney, Australia (2004) Xu, X., Frank, E.: "Logistic Regression and Boosting for Labeled Bags of Instances," Presented at the Proceedings 8th Pacific-Asia Conference, PAKDD 2004. Sydney, Australia (2004)
20.
Zurück zum Zitat R. Polikar. (2001, September). The engineer's Ultimate Guide to Wavelet Analysis: the Wavelet Tutorial R. Polikar. (2001, September). The engineer's Ultimate Guide to Wavelet Analysis: the Wavelet Tutorial
21.
Zurück zum Zitat C. Li, C. Zheng, and C. Tai, "Detection of ECG characteristic points using wavelet transforms," IEEE Trans. Biomed. Eng., vol. 42, pp. 21–28, January 1998 C. Li, C. Zheng, and C. Tai, "Detection of ECG characteristic points using wavelet transforms," IEEE Trans. Biomed. Eng., vol. 42, pp. 21–28, January 1998
22.
Zurück zum Zitat S. Malik, "Feature selection, L1 vs . L2 regularization. And rotational invariance," Presented at the Proceedings of the 41st Annual Design Automation Conference, San Diego, CA, USA, 2004 S. Malik, "Feature selection, L1 vs . L2 regularization. And rotational invariance," Presented at the Proceedings of the 41st Annual Design Automation Conference, San Diego, CA, USA, 2004
Metadaten
Titel
Real-Time Driver Drowsiness Detection Using Wavelet Transform and Ensemble Logistic Regression
verfasst von
Mohsen Babaeian
K. Amal Francis
Khalil Dajani
Mohammad Mozumdar
Publikationsdatum
11.03.2019
Verlag
Springer US
Erschienen in
International Journal of Intelligent Transportation Systems Research / Ausgabe 3/2019
Print ISSN: 1348-8503
Elektronische ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-019-0176-z

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.