Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

12.08.2020 | Original Article | Ausgabe 2/2021

International Journal of Machine Learning and Cybernetics 2/2021

Real-time human posture recognition using an adaptive hybrid classifier

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 2/2021
Autoren:
Shumei Zhang, Victor Callaghan

Abstract

A reliable adaptive hybrid classifier (hAHC), which combines a posture-based adaptive signal segmentation algorithm with a multi-layer perceptron (MLP) classifier, together with a plurality voting approach, was proposed and evaluated in this study. The hAHC model was evaluated using a real-time posture recognition framework that sought to identify five behaviours (sitting, walking, standing, running, and lying) based on simulated crowd security scenarios. It was compared to a single MLP classifier (sMLP) and a static hybrid classifier (hSHC) from three perspectives (classification precision, recall and F1-score) that used the real-time dataset collected from unfamiliar subjects. Experimental results showed that the hAHC model improved the classification accuracy and robustness slightly more than the hSHC, and significantly more compared to the sMLP (hAHC 82%; hSHC 79%; sMLP 71%). Additionally, the hAHC approach displayed the real-time results as animated figures in an adaptive window, in contrast to the hSHC which used a fixed size-sliding temporal window that as our results demonstrated, was less suitable for presenting real-time results. The main research contribution from this study has been the development of an efficient software-only-based sensor calibration algorithm that can improve accelerometer precision, together with the design of a posture-based adaptive signal segmentation algorithm that cooperated with an adaptive hybrid classifier to improve the performance of real-time posture recognition.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2021

International Journal of Machine Learning and Cybernetics 2/2021 Zur Ausgabe