Skip to main content

2023 | OriginalPaper | Buchkapitel

4. Real-Time Hybrid Substructuring for Shock Applications Considering Effective Actuator Control

verfasst von : Christina Insam, Michael J. Harris, Matthew R. Stevens, Richard E. Christenson

Erschienen in: Dynamic Substructures, Volume 4

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Shock describes a rapid change in loading conditions and occurs in many mechanical, aerospace, and civil engineering systems. The shock response of these systems is of critical importance in their design and must therefore be studied. While experimental investigation of shock response offers accurate results, this approach is costly and requires highly specialized and unique facilities. In contrast, numerical investigation of shock events can be an effective alternative; however, modeling the systems accurately can be challenging. In this paper, the application of Real-Time Hybrid Substructuring (RTHS) to study the system response to a shock event is proposed. RTHS is a cyber-physical testing method, combining both experimental and numerical testing. The RTHS approach is intended to fully incorporate the dynamic interaction between the structure and the excitation source and realistically capture all dynamic phenomena. In this preliminary study of an RTHS shock test, the impact of a swinging pendulum on a mass–spring–damper system is investigated. This highly dynamic event requires precise actuator control and dynamics compensation. This work makes use of a model-based feedforward compensator, namely a minimum phase inverse compensator. To reduce any remaining frequency-dependent time delay or magnitude tracking errors, this compensator is combined with a P-type Iterative Learning Controller. The interaction force profile is studied for varying eigenfrequencies and mass ratios of the impacted mass–spring–damper system. The tests are able to replicate the free vibration response of the system accurately. Despite a good learning performance of the Iterative Learning Control, there are still tracking errors in the initial impact phase. Future work will look to improve actuator control and performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
For example, a proportional–integral controller is a feedback controller in time domain.
 
2
An anti-causal system is a system, where the output depends on future inputs.
 
3
The free vibration response is technically not an RTHS test, because the interface force is zero.
 
Literatur
1.
Zurück zum Zitat American Association of State Highway and Transportation Officials: AASHTO LRFD Bridge Design Specifications. American Association of State Highway and Transportation Officials, Washington DC (2012) American Association of State Highway and Transportation Officials: AASHTO LRFD Bridge Design Specifications. American Association of State Highway and Transportation Officials, Washington DC (2012)
2.
Zurück zum Zitat Bartl, A.: Real-time hybrid substructure testing. PhD. Thesis, Technical University of Munich (2019) Bartl, A.: Real-time hybrid substructure testing. PhD. Thesis, Technical University of Munich (2019)
3.
Zurück zum Zitat Botelho, R.M.: Real-time hybrid substructuring for marine applications of vibration control and structural acoustics. Phd Thesis, University of Connecticut (2015) Botelho, R.M.: Real-time hybrid substructuring for marine applications of vibration control and structural acoustics. Phd Thesis, University of Connecticut (2015)
4.
Zurück zum Zitat Bristow, D.A., Tharayil, M., Alleyne, A.G.: A survey of iterative learning control: a learning-based method for high-performance tracking control. IEEE Control Syst. Mag. 3, 96–114 (2006) Bristow, D.A., Tharayil, M., Alleyne, A.G.: A survey of iterative learning control: a learning-based method for high-performance tracking control. IEEE Control Syst. Mag. 3, 96–114 (2006)
5.
Zurück zum Zitat Carrion, J., Spencer, B.F.: Real-time hybrid testing using model-based delay compensation. In: 4th International Conference on Earthquake Engineering., Taipei, Tiawan, Paper No. 299, p. 10 (2006) Carrion, J., Spencer, B.F.: Real-time hybrid testing using model-based delay compensation. In: 4th International Conference on Earthquake Engineering., Taipei, Tiawan, Paper No. 299, p. 10 (2006)
6.
Zurück zum Zitat Carrion, J.E., Spencer Jr., B.F.: Model-based strategies for real-time hybrid testing. In: Newmark Structural Engineering Laboratory. Report Series No. 6. University of Illinois at Urbana-Champaign, Urbana, IL (2007) Carrion, J.E., Spencer Jr., B.F.: Model-based strategies for real-time hybrid testing. In: Newmark Structural Engineering Laboratory. Report Series No. 6. University of Illinois at Urbana-Champaign, Urbana, IL (2007)
7.
Zurück zum Zitat Darby, A.P., Blakeborough, A., Williams, M.S.: Real-time substructure tests using hydraulic actuator. J. Eng. Mech. 125(10), 1133–1139 (1999)CrossRef Darby, A.P., Blakeborough, A., Williams, M.S.: Real-time substructure tests using hydraulic actuator. J. Eng. Mech. 125(10), 1133–1139 (1999)CrossRef
8.
Zurück zum Zitat Department of the Navy (NAVY): MIL-S-901D: requirements for shock tests. H.I. (high-impact) shipboard machinery, equipment, and systems (1989) Department of the Navy (NAVY): MIL-S-901D: requirements for shock tests. H.I. (high-impact) shipboard machinery, equipment, and systems (1989)
9.
Zurück zum Zitat Federal Emergency Management Agency (FEMA): Risk management series: reference manual to mitigate potential terrorist attacks against buildings (FEMA 426) (2003) Federal Emergency Management Agency (FEMA): Risk management series: reference manual to mitigate potential terrorist attacks against buildings (FEMA 426) (2003)
10.
Zurück zum Zitat Fermandois, G.A., Spencer, B.F.: Model-based framework for multi-axial real-time hybrid simulation testing. Earthq. Eng. Eng. Vib. 16, 671–691 (2017)CrossRef Fermandois, G.A., Spencer, B.F.: Model-based framework for multi-axial real-time hybrid simulation testing. Earthq. Eng. Eng. Vib. 16, 671–691 (2017)CrossRef
11.
Zurück zum Zitat Harris, C.M., Piersol, A.G.: Harris’ Shock and Vibration Handbook, 5th edn. McGraw-Hill, New York (2002) Harris, C.M., Piersol, A.G.: Harris’ Shock and Vibration Handbook, 5th edn. McGraw-Hill, New York (2002)
12.
Zurück zum Zitat Hochrainer, M.J., Puhwein, A.M.: Investigation of nonlinear dynamic phenomena applying real-time hybrid simulation. In Nonlinear Structures and Systems, vol. 1, pp. 125–131. Springer, Berlin (2020) Hochrainer, M.J., Puhwein, A.M.: Investigation of nonlinear dynamic phenomena applying real-time hybrid simulation. In Nonlinear Structures and Systems, vol. 1, pp. 125–131. Springer, Berlin (2020)
13.
Zurück zum Zitat Horiuchi, T., Nakagawa, M., Sugano, M., Konno, T.: Development of a real-time hybrid experimental system with actuator delay compensation. In 11th World Conference on Earthquake Engineering, Paper No. 660 (1996) Horiuchi, T., Nakagawa, M., Sugano, M., Konno, T.: Development of a real-time hybrid experimental system with actuator delay compensation. In 11th World Conference on Earthquake Engineering, Paper No. 660 (1996)
14.
Zurück zum Zitat Horiuchi, T., Inoue, M., Konno, T., Namita, Y.: Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber. Earthq. Eng. Struct. Dyn. 28(10), 1121–1141 (1999)CrossRef Horiuchi, T., Inoue, M., Konno, T., Namita, Y.: Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber. Earthq. Eng. Struct. Dyn. 28(10), 1121–1141 (1999)CrossRef
15.
Zurück zum Zitat Insam, C., Kist, A., Rixen, D.J.: High fidelity real-time hybrid substructure testing using iterative learning control. In ISR - 52nd International Symposium on Robotics. VDE Verlag, Berlin, Offenbach (2020) Insam, C., Kist, A., Rixen, D.J.: High fidelity real-time hybrid substructure testing using iterative learning control. In ISR - 52nd International Symposium on Robotics. VDE Verlag, Berlin, Offenbach (2020)
16.
Zurück zum Zitat Insam, C., Kist, A., Schwalm, H., Rixen, D.J.: Robust and high fidelity real-time hybrid substructuring. Mech. Syst. Signal Process. 157, 107720 (2021)CrossRef Insam, C., Kist, A., Schwalm, H., Rixen, D.J.: Robust and high fidelity real-time hybrid substructuring. Mech. Syst. Signal Process. 157, 107720 (2021)CrossRef
17.
Zurück zum Zitat Lang, G.F.: Electrodynamic shaker fundamentals. Sound Vibration 31, 14–23 (1997) Lang, G.F.: Electrodynamic shaker fundamentals. Sound Vibration 31, 14–23 (1997)
18.
Zurück zum Zitat Lin, F., Maghareh, A., Dyke, S.J., Lu, X.: Experimental implementation of predictive indicators for configuring a real-time hybrid simulation. Eng. Struct. 101, 427–438 (2015)CrossRef Lin, F., Maghareh, A., Dyke, S.J., Lu, X.: Experimental implementation of predictive indicators for configuring a real-time hybrid simulation. Eng. Struct. 101, 427–438 (2015)CrossRef
19.
Zurück zum Zitat Ljung, L.: System Identification: Theory for the User. Prentice Hall Information and System Sciences Series. Prentice Hall, Hoboken (1999) Ljung, L.: System Identification: Theory for the User. Prentice Hall Information and System Sciences Series. Prentice Hall, Hoboken (1999)
20.
Zurück zum Zitat Maghareh, A., Dyke, S.J., Silva, C.E.: A self-tuning robust control system for nonlinear real-time hybrid simulation. Earthq. Eng. Struct. Dyn. 49(7), 695–715 (2020)CrossRef Maghareh, A., Dyke, S.J., Silva, C.E.: A self-tuning robust control system for nonlinear real-time hybrid simulation. Earthq. Eng. Struct. Dyn. 49(7), 695–715 (2020)CrossRef
21.
Zurück zum Zitat Nakashima, M., Masaoka, N.: Real-time on-line test for MDOF systems. Earthq. Eng. Struct. Dyn. 28, 393–420 (1999)CrossRef Nakashima, M., Masaoka, N.: Real-time on-line test for MDOF systems. Earthq. Eng. Struct. Dyn. 28, 393–420 (1999)CrossRef
22.
Zurück zum Zitat Nakashima, M., Kato, H., Takaoka, E.: Development of real-time pseudo dynamic testing. Earthq. Eng. Struct. Dyn. 21(1), 79–92 (1992)CrossRef Nakashima, M., Kato, H., Takaoka, E.: Development of real-time pseudo dynamic testing. Earthq. Eng. Struct. Dyn. 21(1), 79–92 (1992)CrossRef
23.
Zurück zum Zitat Norrlöf, M.: Iterative learning control - analysis, design, and experiments. Ph.D. Thesis, Linköping University (2000) Norrlöf, M.: Iterative learning control - analysis, design, and experiments. Ph.D. Thesis, Linköping University (2000)
24.
Zurück zum Zitat Owens, D.H.: Iterative Learning Control, pp. 1–8. Springer, London (2014) Owens, D.H.: Iterative Learning Control, pp. 1–8. Springer, London (2014)
25.
Zurück zum Zitat Owens, D., Daley, S.: Iterative learning control - monotonicity and optimization. Appl. Math. Comput. Sci. 18, 279–293 (2008)MathSciNetMATH Owens, D., Daley, S.: Iterative learning control - monotonicity and optimization. Appl. Math. Comput. Sci. 18, 279–293 (2008)MathSciNetMATH
26.
Zurück zum Zitat Phillips, B.M., Spencer, B.F.: Model-based feedforward-feedback actuator control for real-time hybrid simulation. J. Struct. Eng. 139(7), 1205–1214 (2013)CrossRef Phillips, B.M., Spencer, B.F.: Model-based feedforward-feedback actuator control for real-time hybrid simulation. J. Struct. Eng. 139(7), 1205–1214 (2013)CrossRef
27.
Zurück zum Zitat Phillips, B.M., Spencer, B.F.: Model-based multiactuator control for real-time hybrid simulation. J. Eng. Mech. 139(2), 219–228 (2013)CrossRef Phillips, B.M., Spencer, B.F.: Model-based multiactuator control for real-time hybrid simulation. J. Eng. Mech. 139(2), 219–228 (2013)CrossRef
28.
Zurück zum Zitat Ryschkewitsch, M.G.: Pyroshock test criteria. NASA-STD-7003A (2011) Ryschkewitsch, M.G.: Pyroshock test criteria. NASA-STD-7003A (2011)
29.
Zurück zum Zitat Saouma, V., Sivaselvan, M.: Hybrid Simulation: Theory, Implementation and Applications. Taylor & Francis, Milton Park (2008) Saouma, V., Sivaselvan, M.: Hybrid Simulation: Theory, Implementation and Applications. Taylor & Francis, Milton Park (2008)
Metadaten
Titel
Real-Time Hybrid Substructuring for Shock Applications Considering Effective Actuator Control
verfasst von
Christina Insam
Michael J. Harris
Matthew R. Stevens
Richard E. Christenson
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-04094-8_4