Skip to main content
Erschienen in:

01.07.2024 | Original Paper

Real-time implementation of IoT-enabled cyberattack detection system in advanced metering infrastructure using machine learning technique

verfasst von: K. Naveeda, S. M. H. Sithi Shameem Fathima

Erschienen in: Electrical Engineering | Ausgabe 1/2025

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The integration of the Internet of Things (IoT) and MultiFunction Energy Meter into the power grid underscores the critical need for robust cybersecurity measures to manage data effectively. Ensuring the accuracy and integrity of data transmitted and stored by smart meters is imperative for maintaining the reliability of the entire energy grid. Unauthorized alterations to energy consumption data pose risks of financial losses for utility companies and potential disruptions to service for consumers. Using machine learning (ML) techniques, this study presents an IoT-enabled cyberattack detection system (IoT-E-CADS) for the advanced metering infrastructure (AMI). According to industry standards, the suggested Bi-level IoT-E-CADS can identify two different kinds of threats in a smart grid setting. The Isolation Forest algorithm for ML is used at the initial level to identify anomalies and cyberattacks in real-time systems. Subsequently, the Decision Tree ML algorithm is utilized at the second level to identify cyberattacks and instances of false data injection in real-time systems. The designed hardware has been implemented and rigorously tested at Quantanics TechServ Pvt. Ltd., situated in Madurai, Tamil Nadu, India. This business runs an AMI facility with 10 smart meters, an information filter, and an exclusive server system. This allows for thorough tracking and archiving of the electrical parameters and energy profile of the business. At this location, the suggested IoT-E-CADS has been deployed successfully and has successfully detected two manually generated cyberattacks. Analysis of the obtained results demonstrates that the IoT-E-CADS is capable of detecting cyberthreats with an accuracy level of 95%, thereby providing comprehensive cybersecurity solutions for secure monitoring units in commercial environments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat SANS and Electricity Information Sharing and Analysis Center (E-ISAC), Analysis of the Cyber Attack on the Ukrainian Power Grid, (2016) SANS and Electricity Information Sharing and Analysis Center (E-ISAC), Analysis of the Cyber Attack on the Ukrainian Power Grid, (2016)
3.
Zurück zum Zitat Sun CC, Hahn A, Liu CC (2018) Cyber security of a power grid: state-of-the-art. Int J Electr Power Energy Syst 99:45–56CrossRefMATH Sun CC, Hahn A, Liu CC (2018) Cyber security of a power grid: state-of-the-art. Int J Electr Power Energy Syst 99:45–56CrossRefMATH
4.
Zurück zum Zitat Sun Q, Li H, Ma Z, Wang C, Campillo J, Zhang Q, Wallin F, Guo J (2016) A comprehensive review of smart energy meters in intelligent energy networks. IEEE Internet Things J 3(4):464–479CrossRef Sun Q, Li H, Ma Z, Wang C, Campillo J, Zhang Q, Wallin F, Guo J (2016) A comprehensive review of smart energy meters in intelligent energy networks. IEEE Internet Things J 3(4):464–479CrossRef
5.
Zurück zum Zitat Liu Y, Hu S, Zomaya AY (2016) The hierarchical smart home cyberattack detection considering power overloading and frequency disturbance. IEEE Trans Ind Inform 12(5):1973–1983CrossRefMATH Liu Y, Hu S, Zomaya AY (2016) The hierarchical smart home cyberattack detection considering power overloading and frequency disturbance. IEEE Trans Ind Inform 12(5):1973–1983CrossRefMATH
6.
Zurück zum Zitat Sgouras KI, Kyriakidis AN, Labridis DP (2017) Short-term risk assessment of botnet attacks on advanced metering infrastructure. IET Cyber Phys Syst Theory Appl 2(3):143–151CrossRef Sgouras KI, Kyriakidis AN, Labridis DP (2017) Short-term risk assessment of botnet attacks on advanced metering infrastructure. IET Cyber Phys Syst Theory Appl 2(3):143–151CrossRef
7.
Zurück zum Zitat Finster S, Baumgart I (2015) Privacy-aware smart metering: a survey. IEEE Commun Surv Tutor 17(2):1088–1101CrossRefMATH Finster S, Baumgart I (2015) Privacy-aware smart metering: a survey. IEEE Commun Surv Tutor 17(2):1088–1101CrossRefMATH
8.
Zurück zum Zitat Yan Y, Hu RQ, Das SK, Sharif H, Qian Y (2013) An efficient security protocol for advanced metering infrastructure in smart grid. IEEE Netw 27(4):64–71CrossRef Yan Y, Hu RQ, Das SK, Sharif H, Qian Y (2013) An efficient security protocol for advanced metering infrastructure in smart grid. IEEE Netw 27(4):64–71CrossRef
9.
Zurück zum Zitat Alsharif A, Nabil M, Mahmoud MMEA, Abdallah M (2019) EPDA: efficient and privacy-preserving data collection and access control scheme for multi-recipient AMI networks. IEEE Access 7:27829–27845CrossRef Alsharif A, Nabil M, Mahmoud MMEA, Abdallah M (2019) EPDA: efficient and privacy-preserving data collection and access control scheme for multi-recipient AMI networks. IEEE Access 7:27829–27845CrossRef
10.
Zurück zum Zitat Jokar P, Arianpoo N, Leung VCM (2016) Electricity theft detection in AMI using customers’ consumption patterns. IEEE Trans Smart Grid 7(1):216–226CrossRef Jokar P, Arianpoo N, Leung VCM (2016) Electricity theft detection in AMI using customers’ consumption patterns. IEEE Trans Smart Grid 7(1):216–226CrossRef
11.
Zurück zum Zitat Liu Y, Hu S (2015) Cyberthreat analysis and detection for energy theft in social networking of smart homes. IEEE Trans Comput Soc Syst 2(4):148–158CrossRefMATH Liu Y, Hu S (2015) Cyberthreat analysis and detection for energy theft in social networking of smart homes. IEEE Trans Comput Soc Syst 2(4):148–158CrossRefMATH
12.
Zurück zum Zitat McLaughlin S, Holbert B, Fawaz A, Berthier R, Zonouz S (2013) A multi-sensor energy theft detection framework for advanced metering infrastructures. IEEE J Sel Areas Commun 31(7):1319–1330CrossRef McLaughlin S, Holbert B, Fawaz A, Berthier R, Zonouz S (2013) A multi-sensor energy theft detection framework for advanced metering infrastructures. IEEE J Sel Areas Commun 31(7):1319–1330CrossRef
13.
Zurück zum Zitat Liu Y, Hu S, Ho T (2016) Leveraging strategic detection techniques for smart home pricing cyberattacks. IEEE Trans Dependable Secure Comput 13(2):220–235CrossRefMATH Liu Y, Hu S, Ho T (2016) Leveraging strategic detection techniques for smart home pricing cyberattacks. IEEE Trans Dependable Secure Comput 13(2):220–235CrossRefMATH
14.
Zurück zum Zitat Liu X, Zhu P, Zhang Y, Chen K (2015) A collaborative intrusion detection mechanism against false data injection attack in advanced metering infrastructure. IEEE Trans Smart Grid 6(5):2435–2443CrossRefMATH Liu X, Zhu P, Zhang Y, Chen K (2015) A collaborative intrusion detection mechanism against false data injection attack in advanced metering infrastructure. IEEE Trans Smart Grid 6(5):2435–2443CrossRefMATH
15.
Zurück zum Zitat Berthier R, Sanders WH (2011) Specification-based intrusion detection for advanced metering infrastructures. In: IEEE pacific rim international symposium on dependable computing (PRDC), Pasadena, CA, USA, pp 184–193 Berthier R, Sanders WH (2011) Specification-based intrusion detection for advanced metering infrastructures. In: IEEE pacific rim international symposium on dependable computing (PRDC), Pasadena, CA, USA, pp 184–193
16.
Zurück zum Zitat Faisal MA, Aung Z, Williams JR, Sanchez A (2015) Data-streambased intrusion detection system for advanced metering infrastructure in smart grid: a feasibility study. IEEE Syst J 9(1):31–44CrossRef Faisal MA, Aung Z, Williams JR, Sanchez A (2015) Data-streambased intrusion detection system for advanced metering infrastructure in smart grid: a feasibility study. IEEE Syst J 9(1):31–44CrossRef
17.
Zurück zum Zitat Ullah R, Faheem Y, Kim B (2017) Energy and congestion-aware routing metric for smart grid AMI networks in smart city. IEEE Access 5:13799–13810CrossRefMATH Ullah R, Faheem Y, Kim B (2017) Energy and congestion-aware routing metric for smart grid AMI networks in smart city. IEEE Access 5:13799–13810CrossRefMATH
18.
Zurück zum Zitat Stallings W, Brown L (2012) Computer security concepts. In: Computer security principles and practice, 2nd ed. Pearson, London, ch 1, sec 1, pp 10–17 Stallings W, Brown L (2012) Computer security concepts. In: Computer security principles and practice, 2nd ed. Pearson, London, ch 1, sec 1, pp 10–17
19.
Zurück zum Zitat Liang L, Wang Q, Chen Y (2011) Application of support vector machine in online monitoring of wastewater treatment based on combined kernel functions. In: 2011 International conference on electrical and control engineering, Yichang, pp 3840–3843 Liang L, Wang Q, Chen Y (2011) Application of support vector machine in online monitoring of wastewater treatment based on combined kernel functions. In: 2011 International conference on electrical and control engineering, Yichang, pp 3840–3843
20.
Zurück zum Zitat Zhang J (2015) A complete list of kernels used in support vector machines. Biochem Pharmacol Open Access 4(5):195MATH Zhang J (2015) A complete list of kernels used in support vector machines. Biochem Pharmacol Open Access 4(5):195MATH
21.
Zurück zum Zitat Brailovsky VL, Barzilay O, Shahave R (1999) On global, local, mixed and neighborhood kernels for support vector machines. Pattern Recogn Lett 20(11–13):1183–1190CrossRefMATH Brailovsky VL, Barzilay O, Shahave R (1999) On global, local, mixed and neighborhood kernels for support vector machines. Pattern Recogn Lett 20(11–13):1183–1190CrossRefMATH
22.
Zurück zum Zitat Abdelwahed S, Karsai G, Mahadevan N, Ofsthun SC (2008) Practical implementation of diagnosis systems using timed failure propagation graph models. IEEE Trans Instrum Meas 58(2):240–247CrossRefMATH Abdelwahed S, Karsai G, Mahadevan N, Ofsthun SC (2008) Practical implementation of diagnosis systems using timed failure propagation graph models. IEEE Trans Instrum Meas 58(2):240–247CrossRefMATH
23.
Zurück zum Zitat Laha SR, Pattanayak BK, Pattnaik S, Hosenkhan MR. Challenges associated with cybersecurity for smart grids based on IoT. In: Intelligent security solutions for cyber-physical systems. Chapman and Hall/CRC, pp 191–202 Laha SR, Pattanayak BK, Pattnaik S, Hosenkhan MR. Challenges associated with cybersecurity for smart grids based on IoT. In: Intelligent security solutions for cyber-physical systems. Chapman and Hall/CRC, pp 191–202
24.
Zurück zum Zitat Tyagi P, Manju Bargavi SK (2023) Using federated artificial intelligence system of intrusion detection for IoT healthcare system based on blockchain. Int J Data Inform Intell Comput 2(1):1–10MATH Tyagi P, Manju Bargavi SK (2023) Using federated artificial intelligence system of intrusion detection for IoT healthcare system based on blockchain. Int J Data Inform Intell Comput 2(1):1–10MATH
25.
Zurück zum Zitat Chaturvedi S (2023) IoT-based secure healthcare framework using blockchain technology with a novel simplified swarm-optimized Bayesian normalized neural networks. Int J Data Inform Intell Comput 2(2):63–71MATH Chaturvedi S (2023) IoT-based secure healthcare framework using blockchain technology with a novel simplified swarm-optimized Bayesian normalized neural networks. Int J Data Inform Intell Comput 2(2):63–71MATH
26.
Zurück zum Zitat Rajan P (2024) Integrating IoT analytics into marketing decision making: a smart data-driven approach. Int J Data Inform Intell Comput 3(1):12–22MATH Rajan P (2024) Integrating IoT analytics into marketing decision making: a smart data-driven approach. Int J Data Inform Intell Comput 3(1):12–22MATH
Metadaten
Titel
Real-time implementation of IoT-enabled cyberattack detection system in advanced metering infrastructure using machine learning technique
verfasst von
K. Naveeda
S. M. H. Sithi Shameem Fathima
Publikationsdatum
01.07.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 1/2025
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-024-02552-z