Skip to main content

2025 | OriginalPaper | Buchkapitel

Real-Time Weather Prediction Using Multivariable Regression Model

verfasst von : Naiwrita Dey, Rijhi Dey, Manojeet Chowdhury, Rajarshi Roy

Erschienen in: Advances in Communication, Devices and Networking

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Weather prediction is a vital part of our life. The collective information about the change in temporal dynamics of weather is very significant. This present work summarizes to analyze the current research works on weather forecasting and compare different machine learning techniques that has been used by several researchers for weather prediction. Various input parameters to these machine learning models are also tested to determine the usefulness of each of them. The fundamental aim of this present study is to develop a real time integrated system for weather monitoring system which enables prediction of temperature, humidity, and pressure information. Multivariable linear regression-based prediction model is used here to obtain the appropriate prediction model. Dataset is considered here of a city of tropical country India for the prediction model. It is an existing dataset which has been downloaded from online data repository. This work elaborates the proposed prediction model and the corresponding analytics supported by comparative study with the variation of different parameter. Temperature and humidity is predicted here among different weather parameters. Along with this, a hardware prototype model for real time for weather data acquisition using Raspberry Pi 3B model is reported in this present work. Raspberry Pi will fetch the data from the sensor, and all those data will be stored into a database and display of this data using a GUI is also shown for monitoring purpose.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mishra D, Joshi P (2021) A comprehensive study on weather forecasting using machine learning. In: 9th international conference on reliability, Infocom technologies and optimization (trends and future directions) (ICRITO), pp 1–5 Mishra D, Joshi P (2021) A comprehensive study on weather forecasting using machine learning. In: 9th international conference on reliability, Infocom technologies and optimization (trends and future directions) (ICRITO), pp 1–5
2.
Zurück zum Zitat Madan S, Kumar P, Rawat S, Choudhury T (2018) Analysis of weather prediction using machine learning & big data. In: International conference on advances in computing and communication engineering (ICACCE), pp 259–264 Madan S, Kumar P, Rawat S, Choudhury T (2018) Analysis of weather prediction using machine learning & big data. In: International conference on advances in computing and communication engineering (ICACCE), pp 259–264
3.
Zurück zum Zitat Luminto, Harlili (2017) Weather analysis to predict rice cultivation time using multiple linear regression to escalate farmer’s exchange rate. In: 2017 international conference on advanced informatics, concepts, theory, and applications (ICAICTA), pp 1–4 Luminto, Harlili (2017) Weather analysis to predict rice cultivation time using multiple linear regression to escalate farmer’s exchange rate. In: 2017 international conference on advanced informatics, concepts, theory, and applications (ICAICTA), pp 1–4
4.
Zurück zum Zitat Krshnamurthi K, Thapa S, Kothari L, Prakas A (2015) Arduino based weather monitoring system. Int J Eng Res Gen Sci 3:1–7. ISSN 2091-2730 Krshnamurthi K, Thapa S, Kothari L, Prakas A (2015) Arduino based weather monitoring system. Int J Eng Res Gen Sci 3:1–7. ISSN 2091-2730
5.
Zurück zum Zitat Mahur P, Mathur S (2012) Simple weather forecasting model using mathematical regression. Indian Res J Ext Educ Spec Issue I:161–168 Mahur P, Mathur S (2012) Simple weather forecasting model using mathematical regression. Indian Res J Ext Educ Spec Issue I:161–168
6.
Zurück zum Zitat Sohn KT, Lee JH, Lee SH, Ryu CS (2005) Statistical prediction of heavy rain in South Korea. Adv Atmos Sci 22:703–710CrossRef Sohn KT, Lee JH, Lee SH, Ryu CS (2005) Statistical prediction of heavy rain in South Korea. Adv Atmos Sci 22:703–710CrossRef
7.
Zurück zum Zitat Hayati M, Mohebi MZ (2007) Temperature forecasting based on neural network approach. World Appl Sci J 2(6):613–620 Hayati M, Mohebi MZ (2007) Temperature forecasting based on neural network approach. World Appl Sci J 2(6):613–620
8.
Zurück zum Zitat Zhang J, Qiu X, Li X, Huang Z, Wu M, Dong Y (2021) Support vector machine weather prediction technology based on the improved quantum optimization algorithm. Comput Intell Neurosci 1–13 Zhang J, Qiu X, Li X, Huang Z, Wu M, Dong Y (2021) Support vector machine weather prediction technology based on the improved quantum optimization algorithm. Comput Intell Neurosci 1–13
9.
Zurück zum Zitat Mahale D, Dhane SS (2004) Probability analysis for prediction of annual maximum daily rainfall at Panvel. J Agrometeorol 6(1):150–152 Mahale D, Dhane SS (2004) Probability analysis for prediction of annual maximum daily rainfall at Panvel. J Agrometeorol 6(1):150–152
10.
Zurück zum Zitat Damle C, Yalcin A (2007) Flood prediction using time series data mining. J Hydrol 333(2–4):305–316CrossRef Damle C, Yalcin A (2007) Flood prediction using time series data mining. J Hydrol 333(2–4):305–316CrossRef
11.
Zurück zum Zitat Sreehari E, Srivastava S (2018) Prediction of climate variable using multiple linear regression. In: 2018 4th international conference on computing communication and automation (ICCCA), pp 1–4 Sreehari E, Srivastava S (2018) Prediction of climate variable using multiple linear regression. In: 2018 4th international conference on computing communication and automation (ICCCA), pp 1–4
12.
Zurück zum Zitat Sharaff A, Roy SR (2018) Comparative analysis of temperature prediction using regression methods and back propagation neural network. In: 2018 2nd international conference on trends in electronics and informatics (ICOEI), Tirunelveli, India, pp 739–742 Sharaff A, Roy SR (2018) Comparative analysis of temperature prediction using regression methods and back propagation neural network. In: 2018 2nd international conference on trends in electronics and informatics (ICOEI), Tirunelveli, India, pp 739–742
13.
Zurück zum Zitat Anusha N, Sai Chaithanya M, Reddy GJ (2014) Weather prediction using multi linear regression algorithm. IOP Conf Ser Mater Sci Eng 590:012034 Anusha N, Sai Chaithanya M, Reddy GJ (2014) Weather prediction using multi linear regression algorithm. IOP Conf Ser Mater Sci Eng 590:012034
14.
Zurück zum Zitat Ahmed HAY, Mohamed SWA (2021) Rainfall prediction using multiple linear regressions model. In: 2020 international conference on computer, control, electrical, and electronics engineering (ICCCEEE), Khartoum, Sudan, pp 1–5 Ahmed HAY, Mohamed SWA (2021) Rainfall prediction using multiple linear regressions model. In: 2020 international conference on computer, control, electrical, and electronics engineering (ICCCEEE), Khartoum, Sudan, pp 1–5
15.
Zurück zum Zitat Amritha AR, Rajalakshmi VR (2022) Weather prediction using machine learning algorithms. In: International conference on intelligent controller and computing for smart power (ICICCSP), Hyderabad, India, pp 1–5 Amritha AR, Rajalakshmi VR (2022) Weather prediction using machine learning algorithms. In: International conference on intelligent controller and computing for smart power (ICICCSP), Hyderabad, India, pp 1–5
Metadaten
Titel
Real-Time Weather Prediction Using Multivariable Regression Model
verfasst von
Naiwrita Dey
Rijhi Dey
Manojeet Chowdhury
Rajarshi Roy
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6465-5_13