Skip to main content

2019 | OriginalPaper | Buchkapitel

Realizing Chosen Ciphertext Security Generically in Attribute-Based Encryption and Predicate Encryption

verfasst von : Venkata Koppula, Brent Waters

Erschienen in: Advances in Cryptology – CRYPTO 2019

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We provide generic and black box transformations from any chosen plaintext secure Attribute-Based Encryption (ABE) or One-sided Predicate Encryption system into a chosen ciphertext secure system. Our transformation requires only the IND-CPA security of the original ABE scheme coupled with a pseudorandom generator (PRG) with a special security property.
In particular, we consider a PRG with an n bit input \(s \in \{0,1\}^n\) and \(n \cdot \ell \) bit output \(y_1, \ldots , y_n\) where each \(y_i\) is an \(\ell \) bit string. Then for a randomly chosen s the following two distributions should be computationally indistinguishable. In the first distribution \(r_{s_i, i} = y_i\) and \(r_{\bar{s}_i, i}\) is chosen randomly for \(i \in [n]\). In the second distribution all \(r_{b, i}\) are chosen randomly for \(i \in [n], b \in \{0,1\}\).
We show that such PRGs can be built from either the computational Diffie-Hellman assumption (in non-bilinear groups) or the Learning with Errors (LWE) assumption (and potentially other assumptions). Thus, one can transform any IND-CPA secure system into a chosen ciphertext secure one by adding either assumption. (Or by simply assuming an existing PRG is hinting secure.) In addition, our work provides a new approach and perspective for obtaining chosen ciphertext security in the basic case of public key encryption.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The realization of NIZKs from the Learning with Errors assumption is a very recent and exciting development [38] and occured after the initial posting of this work.
 
2
The original definition of predicate encryption [7, 27] required hiding whether an attribute string of a challenge ciphertext was \(x_0\) or \(x_1\) from an attacker that had a key C where \(C(x_0)=C(x_1)\). A weaker form of predicate encryption is where this guarantee is given only if \(C(x_0)=C(x_1)=0\), but not when \(C(x_0)=C(x_1)=1\). This weaker form has been called predicate encryption with one-sided security and anonymous Attribute-Based Encryption. For this paper we will use the term one-sided predicate encryption.
 
3
More compactly, \(M_{s_i, i} = z_i\) and \(M_{\overline{s_i}, i} = v_i\).
 
4
Here, we assume the verification key is embedded in \(\mathbb {F}_{2^{\ell _{\mathrm {out}}}}\), and the addition and multiplication are performed in \(\mathbb {F}_{2^{\ell _{\mathrm {out}}}}\). Also, the function \(h(x) = a_i + B\cdot x\) serves as a pairwise independent hash function.
 
5
By signaling, we mean that any party that has the secret key for decryption can learn the bits of s one after another, by using the ciphertext components \(c_{0,i},c_{1,i},c_{2,i}\).
 
6
Note that hybrids \(H_4\) and \(H_5\) could have been clubbed into a single hybrid. We chose this distinction so that the hybrids for the PKE CCA proof are similar to the hybrids for our Predicate Encryption security proof.
 
7
We could have simplified this step by using https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-26951-7_23/487852_1_En_23_IEq498_HTML.gif instead of using https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-26951-7_23/487852_1_En_23_IEq499_HTML.gif . However, looking ahead, our proof for ABE/PE systems will require an analogous https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-26951-7_23/487852_1_En_23_IEq500_HTML.gif routine. Hence, we chose to add this minor additional complication here as well.
 
8
Alternatively, we could set \(\ell \) to be max of these two polynomials.
 
9
Here, we assume the verification key is embedded in \(\mathbb {F}_{2^{\ell _{\mathrm {out}}}}\), and the addition and multiplication are performed in \(\mathbb {F}_{2^{\ell _{\mathrm {out}}}}\).
 
Literatur
3.
Zurück zum Zitat Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73 (1993) Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73 (1993)
5.
Zurück zum Zitat Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In: STOC, pp. 103–112 (1988) Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In: STOC, pp. 103–112 (1988)
11.
Zurück zum Zitat Chase, M., Chow, S.S.M.: Improving privacy and security in multi-authority attribute-based encryption. In: ACM Conference on Computer and Communications Security, pp. 121–130 (2009) Chase, M., Chow, S.S.M.: Improving privacy and security in multi-authority attribute-based encryption. In: ACM Conference on Computer and Communications Security, pp. 121–130 (2009)
13.
Zurück zum Zitat Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract). In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, New Orleans, Louisiana, USA, 5–8 May 1991, pp. 542–552 (1991) Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract). In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, New Orleans, Louisiana, USA, 5–8 May 1991, pp. 542–552 (1991)
18.
Zurück zum Zitat Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, Baltimore, Maryland, USA, 13–17 May 1990, pp. 416–426 (1990) Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, Baltimore, Maryland, USA, 13–17 May 1990, pp. 416–426 (1990)
23.
Zurück zum Zitat Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: STOC (2013) Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: STOC (2013)
25.
Zurück zum Zitat Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, pp. 612–621 (2017) Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, pp. 612–621 (2017)
26.
Zurück zum Zitat Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS 2006 (2006) Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS 2006 (2006)
30.
33.
Zurück zum Zitat Lombardi, A., Quach, W., Rothblum, R.D., Wichs, D., Wu, D.J.: New constructions of reusable designated-verifier NIZKs. In: Boldyreva, A., Micciancia, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 670–700. Springer, Heidelberg (2019). https://eprint.iacr.org/2019/242 Lombardi, A., Quach, W., Rothblum, R.D., Wichs, D., Wu, D.J.: New constructions of reusable designated-verifier NIZKs. In: Boldyreva, A., Micciancia, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 670–700. Springer, Heidelberg (2019). https://​eprint.​iacr.​org/​2019/​242
36.
Zurück zum Zitat Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, Baltimore, Maryland, USA, 13–17 May 1990, pp. 427–437 (1990) Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, Baltimore, Maryland, USA, 13–17 May 1990, pp. 427–437 (1990)
39.
Zurück zum Zitat Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, 17–20 May 2008, pp. 187–196 (2008) Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, 17–20 May 2008, pp. 187–196 (2008)
41.
Zurück zum Zitat Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. SIAM J. Comput. 39(7), 3058–3088 (2010)MathSciNetCrossRef Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. SIAM J. Comput. 39(7), 3058–3088 (2010)MathSciNetCrossRef
43.
Zurück zum Zitat Shoup, V.: Why chosen ciphertext security matters (1998) Shoup, V.: Why chosen ciphertext security matters (1998)
46.
Zurück zum Zitat Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE. In: 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, pp. 600–611 (2017) Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE. In: 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, pp. 600–611 (2017)
47.
Metadaten
Titel
Realizing Chosen Ciphertext Security Generically in Attribute-Based Encryption and Predicate Encryption
verfasst von
Venkata Koppula
Brent Waters
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-26951-7_23