Skip to main content

2024 | OriginalPaper | Buchkapitel

Recall-Driven Precision Refinement: Unveiling Accurate Fall Detection Using LSTM

verfasst von : Rishabh Mondal, Prasun Ghosal

Erschienen in: Internet of Things. Advances in Information and Communication Technology

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents an innovative approach to address the pressing concern of fall incidents among the elderly by developing an accurate fall detection system. Our proposed system combines state-of-the-art technologies, including accelerometer and gyroscope sensors, with deep learning models, specifically Long Short-Term Memory (LSTM) networks. Real-time execution capabilities are achieved through the integration of Raspberry Pi hardware. We introduce pruning techniques that strategically fine-tune the LSTM model’s architecture and parameters to optimize the system’s performance. We prioritize recall over precision, aiming to accurately identify falls and minimize false negatives for timely intervention. Extensive experimentation and meticulous evaluation demonstrate remarkable performance metrics, emphasizing a high recall rate while maintaining a specificity of 96%. Our research culminates in a state-of-the-art fall detection system that promptly sends notifications, ensuring vulnerable individuals receive timely assistance and improve their overall well-being. Applying LSTM models and incorporating pruning techniques represent a significant advancement in fall detection technology, offering an effective and reliable fall prevention and intervention solution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aguiar, B., Rocha, T., Silva, J., Sousa, I.: Accelerometer-based fall detection for smartphones. In: 2014 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1–6. IEEE (2014) Aguiar, B., Rocha, T., Silva, J., Sousa, I.: Accelerometer-based fall detection for smartphones. In: 2014 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1–6. IEEE (2014)
2.
Zurück zum Zitat Anishchenko, L., Zhuravlev, A., Chizh, M.: Fall detection using multiple bioradars and convolutional neural networks. Sensors 19(24), 5569 (2019)CrossRef Anishchenko, L., Zhuravlev, A., Chizh, M.: Fall detection using multiple bioradars and convolutional neural networks. Sensors 19(24), 5569 (2019)CrossRef
4.
Zurück zum Zitat Helmy, A., Helmy, A.: Seizario: novel mobile algorithms for seizure and fall detection. In: 2015 IEEE Globecom Workshops (GC Wkshps), pp. 1–6. IEEE (2015) Helmy, A., Helmy, A.: Seizario: novel mobile algorithms for seizure and fall detection. In: 2015 IEEE Globecom Workshops (GC Wkshps), pp. 1–6. IEEE (2015)
5.
Zurück zum Zitat Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRef Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRef
6.
Zurück zum Zitat Kaewkannate, K., Kim, S.: A comparison of wearable fitness devices. BMC Pub. Health 16, 1–16 (2016)CrossRef Kaewkannate, K., Kim, S.: A comparison of wearable fitness devices. BMC Pub. Health 16, 1–16 (2016)CrossRef
8.
9.
Zurück zum Zitat Sase, P.S., Bhandari, S.H.: Human fall detection using depth videos. In: 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN), pp. 546–549. IEEE (2018) Sase, P.S., Bhandari, S.H.: Human fall detection using depth videos. In: 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN), pp. 546–549. IEEE (2018)
10.
Zurück zum Zitat Shi, Y., Shi, Y., Wang, X.: Fall detection on mobile phones using features from a five-phase model. In: 2012 9th International Conference on Ubiquitous Intelligence and Computing and 9th International Conference on Autonomic and Trusted Computing, pp. 951–956. IEEE (2012) Shi, Y., Shi, Y., Wang, X.: Fall detection on mobile phones using features from a five-phase model. In: 2012 9th International Conference on Ubiquitous Intelligence and Computing and 9th International Conference on Autonomic and Trusted Computing, pp. 951–956. IEEE (2012)
11.
Zurück zum Zitat Taramasco, C., et al.: A novel monitoring system for fall detection in older people. IEEE Access 6, 43563–43574 (2018)CrossRef Taramasco, C., et al.: A novel monitoring system for fall detection in older people. IEEE Access 6, 43563–43574 (2018)CrossRef
12.
Zurück zum Zitat Tran, H.A., Ngo, Q.T., Tong, V.: A new fall detection system on android smartphone: application to a SDN-based IoT system. In: 2017 9th International Conference on Knowledge and Systems Engineering (KSE), pp. 1–6. IEEE (2017) Tran, H.A., Ngo, Q.T., Tong, V.: A new fall detection system on android smartphone: application to a SDN-based IoT system. In: 2017 9th International Conference on Knowledge and Systems Engineering (KSE), pp. 1–6. IEEE (2017)
Metadaten
Titel
Recall-Driven Precision Refinement: Unveiling Accurate Fall Detection Using LSTM
verfasst von
Rishabh Mondal
Prasun Ghosal
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-45882-8_6