Skip to main content
Erschienen in: Journal of Materials Science 28/2020

25.06.2020 | Review

Recent achievements in self-healing materials based on ionic liquids: a review

verfasst von: Weiran Zhang, Haiyun Jiang, Zigong Chang, Wei Wu, Guohua Wu, Ruomei Wu, Jieqing Li

Erschienen in: Journal of Materials Science | Ausgabe 28/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, self-healing materials have become popular for their repairable properties, which can stabilize the service performance and prolong lifetime. Ionic liquids, one of the most important self-healing agents, have attracted much attention because of their excellent conductive properties, high healing efficiency, and facile healing condition. In this review, the self-healing mechanism based on ionic liquids and the factors that affect their healing efficiency are explored. On the one hand, ionic liquids endow materials with self-healing character due to the presence of secondary bonds including hydrogen bonds, ion–dipole interactions, and ionic aggregation. One the other hand, ionic liquids are combined with other materials and impart self-healing properties due to reversible chemical reactions such as Diels–Alder, coordination, and electrochemical reaction. In addition, the effects on the self-healing function of ionic liquids are reviewed, including their ionic diffusion ability and environmental conditions. Last, challenges regarding self-healing materials concerning ionic liquids are presented.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Qiang Z, Liu L, Pan C, Dong L (2018) Review of recent achievements in self-healing conductive materials and their applications. J Mater Sci Lett 53:27–46 Qiang Z, Liu L, Pan C, Dong L (2018) Review of recent achievements in self-healing conductive materials and their applications. J Mater Sci Lett 53:27–46
2.
Zurück zum Zitat Huang X, Huang Z, Lai J, Li L, Yang G, Li C (2018) Self-healing improves the stability and safety of polymer bonded explosives. Compos Sci Technol 167:346–354 Huang X, Huang Z, Lai J, Li L, Yang G, Li C (2018) Self-healing improves the stability and safety of polymer bonded explosives. Compos Sci Technol 167:346–354
3.
Zurück zum Zitat Syrett JA, Becer RC, Haddleton DM (2010) Self-healing and self-mendable polymers. Polym Chem 1:978–987 Syrett JA, Becer RC, Haddleton DM (2010) Self-healing and self-mendable polymers. Polym Chem 1:978–987
4.
Zurück zum Zitat Fee P, Krull FF, Friederike A, Peter S, Peter W, Thomas M (2012) An adaptive self-healing ionic liquid nanocomposite membrane for olefin-paraffin separations. Adv Mater 24:4306–4310 Fee P, Krull FF, Friederike A, Peter S, Peter W, Thomas M (2012) An adaptive self-healing ionic liquid nanocomposite membrane for olefin-paraffin separations. Adv Mater 24:4306–4310
7.
Zurück zum Zitat Ali E (2017) Ionic liquid devices. Royal Society of Chemistry, London Ali E (2017) Ionic liquid devices. Royal Society of Chemistry, London
10.
Zurück zum Zitat Huang CH, Liu YL (2017) Self-healing polymeric materials for membrane separation: an example of a polybenzimidazole-based membrane for pervaporation dehydration on isopropanol aqueous solution. RSC Adv 7:38360 Huang CH, Liu YL (2017) Self-healing polymeric materials for membrane separation: an example of a polybenzimidazole-based membrane for pervaporation dehydration on isopropanol aqueous solution. RSC Adv 7:38360
11.
Zurück zum Zitat Qu J, Meyer HM III, Cai Z-B, Ma C, Luo H (2015) Characterization of ZDDP and ionic liquid tribofilms on non-metallic coatings providing insights of tribofilm formation mechanisms. Wear 332:1273–1285 Qu J, Meyer HM III, Cai Z-B, Ma C, Luo H (2015) Characterization of ZDDP and ionic liquid tribofilms on non-metallic coatings providing insights of tribofilm formation mechanisms. Wear 332:1273–1285
12.
Zurück zum Zitat Qu J, Barnhill WC, Luo H, Meyer HM III, Leonard DN, Landauer AK, Kheireddin B, Gao H et al (2015) Synergistic effects between phosphonium-alkylphosphate ionic liquids and zinc dialkyldithiophosphate (ZDDP) as lubricant additives. Adv Mater 27:4767–4774 Qu J, Barnhill WC, Luo H, Meyer HM III, Leonard DN, Landauer AK, Kheireddin B, Gao H et al (2015) Synergistic effects between phosphonium-alkylphosphate ionic liquids and zinc dialkyldithiophosphate (ZDDP) as lubricant additives. Adv Mater 27:4767–4774
13.
Zurück zum Zitat Das A, Sallat A, Böhme F, Suckow M, Basu D, Wiessner S, Stöckelhuber KW, Voit B et al (2015) Ionic modification turns commercial rubber into a self-healing material. ACS Appl Mater Interfaces 7:20623–20630 Das A, Sallat A, Böhme F, Suckow M, Basu D, Wiessner S, Stöckelhuber KW, Voit B et al (2015) Ionic modification turns commercial rubber into a self-healing material. ACS Appl Mater Interfaces 7:20623–20630
14.
Zurück zum Zitat Trivedi TJ, Bhattacharjya D, Yu JS, Kumar A (2015) Functionalized agarose self-healing ionogels suitable for supercapacitors. Chemsuschem 8:3294–3303 Trivedi TJ, Bhattacharjya D, Yu JS, Kumar A (2015) Functionalized agarose self-healing ionogels suitable for supercapacitors. Chemsuschem 8:3294–3303
16.
Zurück zum Zitat Jones CD, Steed JW (2016) Gels with sense: supramolecular materials that respond to heat, light and sound. Chem Soc Rev 45:6546–6596 Jones CD, Steed JW (2016) Gels with sense: supramolecular materials that respond to heat, light and sound. Chem Soc Rev 45:6546–6596
17.
Zurück zum Zitat Ko J, Kim Y-J, Kim YS (2016) Self-healing polymer dielectric for a high capacitance gate insulator. ACS Appl Mater Interfaces 8:23854–23861 Ko J, Kim Y-J, Kim YS (2016) Self-healing polymer dielectric for a high capacitance gate insulator. ACS Appl Mater Interfaces 8:23854–23861
18.
Zurück zum Zitat Liu H, Sui X, Xu H, Zhang L, Zhong Y, Mao Z (2016) Self-healing polysaccharide hydrogel based on dynamic covalent enamine bonds. Macromol Mater Eng 301:725–732 Liu H, Sui X, Xu H, Zhang L, Zhong Y, Mao Z (2016) Self-healing polysaccharide hydrogel based on dynamic covalent enamine bonds. Macromol Mater Eng 301:725–732
19.
Zurück zum Zitat Vila J, Ginés P, Pico JM, Franjo C, Jiménez E, Varela LM (2006) Temperature dependence of the electrical conductivity in EMIM-based ionic liquids: evidence of Vogel–Tamman–Fulcher behavior. Fluid Phase Equilib 242:141–146 Vila J, Ginés P, Pico JM, Franjo C, Jiménez E, Varela LM (2006) Temperature dependence of the electrical conductivity in EMIM-based ionic liquids: evidence of Vogel–Tamman–Fulcher behavior. Fluid Phase Equilib 242:141–146
20.
Zurück zum Zitat Tian B, Yao W, Zeng P, Li X, Wang H, Liu L, Feng Y, Luo C et al (2019) All-printed, low-cost, tunable sensing range strain sensors based on Ag nanodendrite conductive inks for wearable electronics. J Mater Chem C 7:809–818 Tian B, Yao W, Zeng P, Li X, Wang H, Liu L, Feng Y, Luo C et al (2019) All-printed, low-cost, tunable sensing range strain sensors based on Ag nanodendrite conductive inks for wearable electronics. J Mater Chem C 7:809–818
21.
Zurück zum Zitat Sharma M, Mondal D, Mukesh C, Prasad K (2013) Self-healing guar gum and guar gum-multiwalled carbon nanotubes nanocomposite gels prepared in an ionic liquid. Carbohyd Polym 98:1025–1030 Sharma M, Mondal D, Mukesh C, Prasad K (2013) Self-healing guar gum and guar gum-multiwalled carbon nanotubes nanocomposite gels prepared in an ionic liquid. Carbohyd Polym 98:1025–1030
22.
Zurück zum Zitat Oh JY, Kim S, Baik HK, Jeong U (2016) Conducting polymer dough for deformable electronics. Adv Mater 28:4455–4461 Oh JY, Kim S, Baik HK, Jeong U (2016) Conducting polymer dough for deformable electronics. Adv Mater 28:4455–4461
23.
Zurück zum Zitat Saurín N, Sanes J, Carrión F, Bermúdez M (2016) Self-healing of abrasion damage on epoxy resin controlled by ionic liquid. RSC Adv 6:37258–37264 Saurín N, Sanes J, Carrión F, Bermúdez M (2016) Self-healing of abrasion damage on epoxy resin controlled by ionic liquid. RSC Adv 6:37258–37264
25.
Zurück zum Zitat Huang Y, Huang Y, Zhu M, Meng W, Pei Z, Liu C, Hu H, Zhi C (2015) Magnetic-assisted, self-healable, yarn-based supercapacitor. ACS Nano 9:6242 Huang Y, Huang Y, Zhu M, Meng W, Pei Z, Liu C, Hu H, Zhi C (2015) Magnetic-assisted, self-healable, yarn-based supercapacitor. ACS Nano 9:6242
26.
Zurück zum Zitat Shi Y, Wang M, Ma C, Wang Y, Li X, Yu G (2015) A conductive self-healing hybrid gel enabled by metal–ligand supramolecule and nanostructured conductive polymer. Nano Lett 15:6276–6281 Shi Y, Wang M, Ma C, Wang Y, Li X, Yu G (2015) A conductive self-healing hybrid gel enabled by metal–ligand supramolecule and nanostructured conductive polymer. Nano Lett 15:6276–6281
27.
Zurück zum Zitat Hager MD, Zwaag SVD, Schubert US (2017) Self-healing Materials. Springer, Berlin Hager MD, Zwaag SVD, Schubert US (2017) Self-healing Materials. Springer, Berlin
28.
Zurück zum Zitat Eftekhari A, Saito T (2017) Synthesis and properties of polymerized ionic liquids. Eur Polymer J 90:245–272 Eftekhari A, Saito T (2017) Synthesis and properties of polymerized ionic liquids. Eur Polymer J 90:245–272
30.
Zurück zum Zitat Chen S, Zhang B, Zhang N, Ge F, Zhang B, Wang X, Song J (2018) Development of self-healing d-gluconic acetal-based supramolecular ionogels for potential use as smart quasisolid electrochemical materials. ACS Appl Mater Interfaces 10:5871–5879 Chen S, Zhang B, Zhang N, Ge F, Zhang B, Wang X, Song J (2018) Development of self-healing d-gluconic acetal-based supramolecular ionogels for potential use as smart quasisolid electrochemical materials. ACS Appl Mater Interfaces 10:5871–5879
31.
Zurück zum Zitat Chen T, Kong W, Zhang Z, Wang L, Jin Z (2018) Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy 54:17–25 Chen T, Kong W, Zhang Z, Wang L, Jin Z (2018) Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy 54:17–25
32.
Zurück zum Zitat An G, Ma W, Sun Z, Liu Z, Han B, Miao S, Miao Z, Ding K (2007) Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation. Carbon 45:1795–1801 An G, Ma W, Sun Z, Liu Z, Han B, Miao S, Miao Z, Ding K (2007) Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation. Carbon 45:1795–1801
33.
Zurück zum Zitat Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451:977–980 Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451:977–980
34.
Zurück zum Zitat Wool RP (2008) Self-healing materials: a review. Soft Matter 4:400–418 Wool RP (2008) Self-healing materials: a review. Soft Matter 4:400–418
35.
Zurück zum Zitat Zwaag S (2008) Self healing materials: an alternative approach to 20 centuries of materials science. Springer, Dordrecht Zwaag S (2008) Self healing materials: an alternative approach to 20 centuries of materials science. Springer, Dordrecht
37.
Zurück zum Zitat Ghosh SK (2009) Self-healing materials: fundamentals, design strategies, and applications. Wiley, New York Ghosh SK (2009) Self-healing materials: fundamentals, design strategies, and applications. Wiley, New York
39.
Zurück zum Zitat Rao Q, Li A, Zhang J, Jiang J, Zhang Q, Zhan X, Chen F (2019) Multi-functional fluorinated ionic liquid infused slippery surfaces with dual-responsive wettability switching and self-repairing. J Mater Chem A 7:2172–2183 Rao Q, Li A, Zhang J, Jiang J, Zhang Q, Zhan X, Chen F (2019) Multi-functional fluorinated ionic liquid infused slippery surfaces with dual-responsive wettability switching and self-repairing. J Mater Chem A 7:2172–2183
41.
Zurück zum Zitat Yang J, Chen M, Li P, Cheng F, Xu Y, Li Z, Wang Y, Li H (2018) Self-healing hydrogel containing Eu-polyoxometalate as acid-base vapor modulated luminescent switch. Sens Actuators Chem 273:153–158 Yang J, Chen M, Li P, Cheng F, Xu Y, Li Z, Wang Y, Li H (2018) Self-healing hydrogel containing Eu-polyoxometalate as acid-base vapor modulated luminescent switch. Sens Actuators Chem 273:153–158
42.
Zurück zum Zitat Sanes J, Saurín N, Carrión F, Ojados G, Bermudez M (2016) Synergy between single-walled carbon nanotubes and ionic liquid in epoxy resin nanocomposites. Compos B Eng 105:149–159 Sanes J, Saurín N, Carrión F, Ojados G, Bermudez M (2016) Synergy between single-walled carbon nanotubes and ionic liquid in epoxy resin nanocomposites. Compos B Eng 105:149–159
43.
Zurück zum Zitat Borré E, Stumbé JF, Bellemin-Laponnaz S, Mauro M (2016) Light-powered self-healable metallosupramolecular soft actuators. Angew Chem Int Ed 55:1313–1317 Borré E, Stumbé JF, Bellemin-Laponnaz S, Mauro M (2016) Light-powered self-healable metallosupramolecular soft actuators. Angew Chem Int Ed 55:1313–1317
44.
Zurück zum Zitat Yang M, Zhu X, Ren G, Men X, Guo F, Li P, Zhang Z (2015) Tribological behaviors of polyurethane composite coatings filled with ionic liquid core/silica gel shell microcapsules. Tribol Lett 58:1–9 Yang M, Zhu X, Ren G, Men X, Guo F, Li P, Zhang Z (2015) Tribological behaviors of polyurethane composite coatings filled with ionic liquid core/silica gel shell microcapsules. Tribol Lett 58:1–9
45.
Zurück zum Zitat Massaro M, Riela S, Cavallaro G, Gruttadauria M, Milioto S, Noto R, Lazzara G (2014) Eco-friendly functionalization of natural halloysite clay nanotube with ionic liquids by microwave irradiation for Suzuki coupling reaction. J Organomet Chem 749:410–415 Massaro M, Riela S, Cavallaro G, Gruttadauria M, Milioto S, Noto R, Lazzara G (2014) Eco-friendly functionalization of natural halloysite clay nanotube with ionic liquids by microwave irradiation for Suzuki coupling reaction. J Organomet Chem 749:410–415
46.
Zurück zum Zitat Bekas DG, Tsirka K, Baltzis D, Paipetis AS (2016) Self-healing materials: a review of advances in materials, evaluation, characterization and monitoring techniques. Compos B 87:92–119 Bekas DG, Tsirka K, Baltzis D, Paipetis AS (2016) Self-healing materials: a review of advances in materials, evaluation, characterization and monitoring techniques. Compos B 87:92–119
47.
Zurück zum Zitat Ahner J, Bode S, Micheel M, Dietzek B, Hager MD (2015) Self-healing functional polymeric materials. In: Hager MD, Zwaag SVD, Schubert US (eds) Self-healing materials. Springer, Berlin Ahner J, Bode S, Micheel M, Dietzek B, Hager MD (2015) Self-healing functional polymeric materials. In: Hager MD, Zwaag SVD, Schubert US (eds) Self-healing materials. Springer, Berlin
48.
Zurück zum Zitat Wojtecki RJ, Meador MA, Rowan SJ (2011) Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat Mater 10:14–27 Wojtecki RJ, Meador MA, Rowan SJ (2011) Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat Mater 10:14–27
49.
Zurück zum Zitat Williams KA, Boydston AJ, Bielawski CW (2007) Towards electrically conductive, self-healing materials. J R Soc Interface 4:359–362 Williams KA, Boydston AJ, Bielawski CW (2007) Towards electrically conductive, self-healing materials. J R Soc Interface 4:359–362
50.
Zurück zum Zitat Kessler MR, Sottos NR, White SR (2003) Self-healing structural composite materials. Compos Part A Appl Sci Manuf 34:743–753 Kessler MR, Sottos NR, White SR (2003) Self-healing structural composite materials. Compos Part A Appl Sci Manuf 34:743–753
51.
Zurück zum Zitat Li Y, Rios O, Keum JK, Chen J, Kessler MR (2016) Photoresponsive liquid crystalline epoxy networks with shape memory behavior and dynamic ester bonds. ACS Appl Mater Interfaces 8:15750–15757 Li Y, Rios O, Keum JK, Chen J, Kessler MR (2016) Photoresponsive liquid crystalline epoxy networks with shape memory behavior and dynamic ester bonds. ACS Appl Mater Interfaces 8:15750–15757
52.
Zurück zum Zitat Feldner T, Häring M, Saha S, Esquena J, Banerjee R, Diaz DD (2016) Supramolecular metallogel that imparts self-healing properties to other gel networks. Chem Mater 28:3210–3217 Feldner T, Häring M, Saha S, Esquena J, Banerjee R, Diaz DD (2016) Supramolecular metallogel that imparts self-healing properties to other gel networks. Chem Mater 28:3210–3217
53.
Zurück zum Zitat Chang R, Wang X, Li X, An H, Qin J (2016) Self-activated healable hydrogels with reversible temperature responsiveness. ACS Appl Mater Interfaces 8:25544–25551 Chang R, Wang X, Li X, An H, Qin J (2016) Self-activated healable hydrogels with reversible temperature responsiveness. ACS Appl Mater Interfaces 8:25544–25551
54.
Zurück zum Zitat Yu F, Cao X, Du J, Wang G, Chen X (2015) Multifunctional hydrogel with good structure integrity, self-healing, and tissue-adhesive property formed by combining Diels–Alder click reaction and acylhydrazone bond. ACS Appl Mater Interfaces 7:24023–24031 Yu F, Cao X, Du J, Wang G, Chen X (2015) Multifunctional hydrogel with good structure integrity, self-healing, and tissue-adhesive property formed by combining Diels–Alder click reaction and acylhydrazone bond. ACS Appl Mater Interfaces 7:24023–24031
55.
Zurück zum Zitat Saurín N, Sanes J, Bermúdez MD (2015) Self-healing of abrasion damage in epoxy resin-ionic liquid nanocomposites. Tribol Lett 58:1–9 Saurín N, Sanes J, Bermúdez MD (2015) Self-healing of abrasion damage in epoxy resin-ionic liquid nanocomposites. Tribol Lett 58:1–9
56.
Zurück zum Zitat Miyamae K, Nakahata M, Takashima Y, Harada A (2015) Self-healing, expansion–contraction, and shape-memory properties of a preorganized supramolecular hydrogel through host–guest interactions. Angew Chem Int Ed 54:8984–8987 Miyamae K, Nakahata M, Takashima Y, Harada A (2015) Self-healing, expansion–contraction, and shape-memory properties of a preorganized supramolecular hydrogel through host–guest interactions. Angew Chem Int Ed 54:8984–8987
57.
Zurück zum Zitat Aboudzadeh A, Shaplov AS, Hernandez G, Vygodskii YS, Vlasov PS, Lozinskaya EI, Pozo-Gonzalo G, Forsyth M et al (2015) Supramolecular ionic networks with superior thermal and transport properties based on novel delocalized di-anionic compounds. J Mater Chem A 3:2338–2343 Aboudzadeh A, Shaplov AS, Hernandez G, Vygodskii YS, Vlasov PS, Lozinskaya EI, Pozo-Gonzalo G, Forsyth M et al (2015) Supramolecular ionic networks with superior thermal and transport properties based on novel delocalized di-anionic compounds. J Mater Chem A 3:2338–2343
58.
Zurück zum Zitat Aboudzadeh MA, Zhu H, Pozo-Gonzalo C, Shaplov AS, Mecerreyes D, Forsyth M (2015) Ionic conductivity and molecular dynamic behavior in supramolecular ionic networks; the effect of lithium salt addition. Electrochim Acta 175:74–79 Aboudzadeh MA, Zhu H, Pozo-Gonzalo C, Shaplov AS, Mecerreyes D, Forsyth M (2015) Ionic conductivity and molecular dynamic behavior in supramolecular ionic networks; the effect of lithium salt addition. Electrochim Acta 175:74–79
59.
Zurück zum Zitat Bubel S, Menyo MS, Mates TE, Waite JH, Chabinyc ML (2015) Schmitt trigger using a self-healing ionic liquid gated transistor. Adv Mater 27:3331–3335 Bubel S, Menyo MS, Mates TE, Waite JH, Chabinyc ML (2015) Schmitt trigger using a self-healing ionic liquid gated transistor. Adv Mater 27:3331–3335
60.
Zurück zum Zitat Uhl B, Buchner F, Alwast D, Wagner N, Behm RJ (2013) Adsorption of the ionic liquid [BMP][TFSA] on Au(111) and Ag(111): substrate effects on the structure formation investigated by STM. Beilstein J Nanotechnol 4:903–918 Uhl B, Buchner F, Alwast D, Wagner N, Behm RJ (2013) Adsorption of the ionic liquid [BMP][TFSA] on Au(111) and Ag(111): substrate effects on the structure formation investigated by STM. Beilstein J Nanotechnol 4:903–918
61.
Zurück zum Zitat Endres F, Zein El Abedin S (2006) Air and water stable ionic liquids in physical chemistry. Phys Chem Chem Phys 8:2101–2116 Endres F, Zein El Abedin S (2006) Air and water stable ionic liquids in physical chemistry. Phys Chem Chem Phys 8:2101–2116
62.
Zurück zum Zitat Amabilino DB, Smith DK, Steed JW (2017) Supramolecular materials. Chem Soc Rev 46:2404–2420 Amabilino DB, Smith DK, Steed JW (2017) Supramolecular materials. Chem Soc Rev 46:2404–2420
63.
Zurück zum Zitat Whiteley JM, Taynton P, Zhang W, Lee SH (2016) Ultra-thin solid-state li-ion electrolyte membrane facilitated by a self-healing polymer matrix. Adv Mater 27:6922–6927 Whiteley JM, Taynton P, Zhang W, Lee SH (2016) Ultra-thin solid-state li-ion electrolyte membrane facilitated by a self-healing polymer matrix. Adv Mater 27:6922–6927
64.
Zurück zum Zitat Maka H (2014) Epoxy resin/phosphonium ionic liquid/carbon nanofiller systems: chemorheology and properties. Express Polym Lett 8:723–732 Maka H (2014) Epoxy resin/phosphonium ionic liquid/carbon nanofiller systems: chemorheology and properties. Express Polym Lett 8:723–732
65.
Zurück zum Zitat Guo J, Yuan C, Guo M, Wang L, Yan F (2014) Flexible and voltage-switchable polymer velcro constructed using host–guest recognition between poly (ionic liquid) strips. Chem Sci 5:3261–3266 Guo J, Yuan C, Guo M, Wang L, Yan F (2014) Flexible and voltage-switchable polymer velcro constructed using host–guest recognition between poly (ionic liquid) strips. Chem Sci 5:3261–3266
66.
Zurück zum Zitat D’Anna F, Rizzo C, Vitale P, Lazzara G, Noto R (2014) Dicationic organic salts: gelators for ionic liquids. Soft Matter 10:9281–9292 D’Anna F, Rizzo C, Vitale P, Lazzara G, Noto R (2014) Dicationic organic salts: gelators for ionic liquids. Soft Matter 10:9281–9292
67.
Zurück zum Zitat Eftekhari A (2017) Polymerized ionic liquids. Royal Socirty of Chemistry, London Eftekhari A (2017) Polymerized ionic liquids. Royal Socirty of Chemistry, London
68.
Zurück zum Zitat Torimoto T, Tsuda T, Okazaki KI, Kuwabata S (2010) New frontiers in materials science opened by ionic liquids. Adv Mater 22:1196–1221 Torimoto T, Tsuda T, Okazaki KI, Kuwabata S (2010) New frontiers in materials science opened by ionic liquids. Adv Mater 22:1196–1221
69.
Zurück zum Zitat Yuan C, Guo J, Tan M, Guo M, Qiu L, Yan F (2014) Multistimuli responsive and electroactive supramolecular gels based on ionic liquid gemini guest. ACS Macro Lett 3:271–275 Yuan C, Guo J, Tan M, Guo M, Qiu L, Yan F (2014) Multistimuli responsive and electroactive supramolecular gels based on ionic liquid gemini guest. ACS Macro Lett 3:271–275
70.
Zurück zum Zitat Voroshylova IV, Chaban VV (2014) Atomistic force field for pyridinium-based ionic liquids: reliable transport properties. J Phys Chem B 118:10716–10724 Voroshylova IV, Chaban VV (2014) Atomistic force field for pyridinium-based ionic liquids: reliable transport properties. J Phys Chem B 118:10716–10724
71.
Zurück zum Zitat Noda A, Hayamizu K, Watanabe M (2001) Pulsed-gradient spin-echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids. J Phys Chem B 105:4603–4610 Noda A, Hayamizu K, Watanabe M (2001) Pulsed-gradient spin-echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids. J Phys Chem B 105:4603–4610
72.
Zurück zum Zitat Hapiot P, Lagrost C (2008) Electrochemical reactivity in room-temperature ionic liquids. Chem Rev 108:2238–2264 Hapiot P, Lagrost C (2008) Electrochemical reactivity in room-temperature ionic liquids. Chem Rev 108:2238–2264
73.
Zurück zum Zitat Haoran G, Yanjing G, Shengling J, Materials SF (2018) Photocured materials with self-healing function through ionic interactions for flexible electronics. ACS Appl Mater Interfaces 10:26694–26704 Haoran G, Yanjing G, Shengling J, Materials SF (2018) Photocured materials with self-healing function through ionic interactions for flexible electronics. ACS Appl Mater Interfaces 10:26694–26704
74.
Zurück zum Zitat Wu J, Han S, Yang T, Li Z, Wu Z, Gui X, Tao K, Miao J et al (2018) Highly stretchable and transparent thermistor based on self-healing double network hydrogel. ACS Appl Mater Interfaces 10:19097–19105 Wu J, Han S, Yang T, Li Z, Wu Z, Gui X, Tao K, Miao J et al (2018) Highly stretchable and transparent thermistor based on self-healing double network hydrogel. ACS Appl Mater Interfaces 10:19097–19105
75.
Zurück zum Zitat Suckow M, Mordvinkin A, Roy M, Singha NK, Heinrich G, Voit B, Saalwächter K, Böhme F (2018) Tuning the properties and self-healing behavior of ionically modified poly(isobutylene-co-isoprene) rubber. Macromolecules 51:468–479 Suckow M, Mordvinkin A, Roy M, Singha NK, Heinrich G, Voit B, Saalwächter K, Böhme F (2018) Tuning the properties and self-healing behavior of ionically modified poly(isobutylene-co-isoprene) rubber. Macromolecules 51:468–479
76.
Zurück zum Zitat Liu Y, Liu Y, Hu H, Liu Z, Pei X, Yu B, Yan P, Zhou F (2015) Mechanically induced self-healing superhydrophobicity. J Phys Chem C 119:7109–7114 Liu Y, Liu Y, Hu H, Liu Z, Pei X, Yu B, Yan P, Zhou F (2015) Mechanically induced self-healing superhydrophobicity. J Phys Chem C 119:7109–7114
77.
Zurück zum Zitat Herrmann S (2015) New synthetic routes to polyoxometalate containing ionic liquids: an investigation of their properties. Springer, Berlin Herrmann S (2015) New synthetic routes to polyoxometalate containing ionic liquids: an investigation of their properties. Springer, Berlin
78.
Zurück zum Zitat Yuan J, Mecerreyes D, Antonietti M (2013) Progress in polymer science poly(ionic liquid)s: an update. Prog Polym Sci 38:1009–1036 Yuan J, Mecerreyes D, Antonietti M (2013) Progress in polymer science poly(ionic liquid)s: an update. Prog Polym Sci 38:1009–1036
79.
Zurück zum Zitat Landauer AK, Barnhill WC, Qu J (2016) Correlating mechanical properties and anti-wear performance of tribofilms formed by ionic liquids, ZDDP and their combinations. Wear 354:78–82 Landauer AK, Barnhill WC, Qu J (2016) Correlating mechanical properties and anti-wear performance of tribofilms formed by ionic liquids, ZDDP and their combinations. Wear 354:78–82
80.
Zurück zum Zitat Noro A, Matsushita Y, Lodge TP (2009) Gelation mechanism of thermoreversible supramacromolecular ion gels via hydrogen bonding. Macromolecules 42:5839–5844 Noro A, Matsushita Y, Lodge TP (2009) Gelation mechanism of thermoreversible supramacromolecular ion gels via hydrogen bonding. Macromolecules 42:5839–5844
81.
Zurück zum Zitat Folmer BJ, Sijbesma R, Versteegen R, Van der Rijt J, Meijer E (2000) Supramolecular polymer materials: chain extension of telechelic polymers using a reactive hydrogen-bonding synthon. Adv Mater 12:874–878 Folmer BJ, Sijbesma R, Versteegen R, Van der Rijt J, Meijer E (2000) Supramolecular polymer materials: chain extension of telechelic polymers using a reactive hydrogen-bonding synthon. Adv Mater 12:874–878
82.
Zurück zum Zitat Zheng J, Xiao P, Liu W, Zhang J, Huang Y, Chen T (2016) Mechanical robust and self-healable supramolecular hydrogel. Macromol Rapid Commun 37:265–270 Zheng J, Xiao P, Liu W, Zhang J, Huang Y, Chen T (2016) Mechanical robust and self-healable supramolecular hydrogel. Macromol Rapid Commun 37:265–270
87.
Zurück zum Zitat Li X, Zhang H, Zhang P, Yu Y (2018) A sunlight-degradable autonomous self-healing supramolecular elastomer for flexible electronic devices. Chem Mater 30:3752–3758 Li X, Zhang H, Zhang P, Yu Y (2018) A sunlight-degradable autonomous self-healing supramolecular elastomer for flexible electronic devices. Chem Mater 30:3752–3758
90.
Zurück zum Zitat Jing C, Nie F, Yang J, Li P, Zhe M, Li Y (2017) Novel imidazolium-based poly(ionic liquid)s with different counter ions for self-healing. J Mater Chem A 5:25220–25229 Jing C, Nie F, Yang J, Li P, Zhe M, Li Y (2017) Novel imidazolium-based poly(ionic liquid)s with different counter ions for self-healing. J Mater Chem A 5:25220–25229
91.
Zurück zum Zitat He X, Zhang C, Wang M, Zhang Y, Liu L, Yang W (2017) An electrically and mechanically autonomic self-healing hybrid hydrogel with tough and thermoplastic properties. ACS Appl Mater Interfaces 9:11134–11143 He X, Zhang C, Wang M, Zhang Y, Liu L, Yang W (2017) An electrically and mechanically autonomic self-healing hybrid hydrogel with tough and thermoplastic properties. ACS Appl Mater Interfaces 9:11134–11143
92.
Zurück zum Zitat Sharma A, Rawat K, Solanki PR, Bohidar H (2017) Self-healing gelatin ionogels. Int J Biol Macromol 95:603–607 Sharma A, Rawat K, Solanki PR, Bohidar H (2017) Self-healing gelatin ionogels. Int J Biol Macromol 95:603–607
93.
Zurück zum Zitat Zhou X, Ouyang C (2017) Self-healing effects by the Ce-rich precipitations on completing defective boundaries to manage microstructures and oxidation resistance of Ni-CeO2 coatings. Surf Coat Technol 315:67–79 Zhou X, Ouyang C (2017) Self-healing effects by the Ce-rich precipitations on completing defective boundaries to manage microstructures and oxidation resistance of Ni-CeO2 coatings. Surf Coat Technol 315:67–79
94.
Zurück zum Zitat Eisenberg A (1970) Clustering of ions in organic polymers. A theoretical approach. Macromolecules 3:147–154 Eisenberg A (1970) Clustering of ions in organic polymers. A theoretical approach. Macromolecules 3:147–154
95.
Zurück zum Zitat Cuthbert TJ, Jadischke JJ, de Bruyn JR, Ragogna PJ, Gillies ER (2017) Self-healing polyphosphonium ionic networks. Macromolecules 50:5253–5260 Cuthbert TJ, Jadischke JJ, de Bruyn JR, Ragogna PJ, Gillies ER (2017) Self-healing polyphosphonium ionic networks. Macromolecules 50:5253–5260
96.
Zurück zum Zitat Claus J, Sommer FO, Kragl U (2018) Ionic liquids in biotechnology and beyond. Solid State Ionics 314:119–128 Claus J, Sommer FO, Kragl U (2018) Ionic liquids in biotechnology and beyond. Solid State Ionics 314:119–128
97.
Zurück zum Zitat Cheng Y, Zhang L, Xu S, Zhang H, Ren B, Li T, Zhang S (2018) Ionic liquid functionalized electrospun gel polymer electrolyte for use in a high-performance lithium metal battery. J Mater Chem A 6:18479–18487 Cheng Y, Zhang L, Xu S, Zhang H, Ren B, Li T, Zhang S (2018) Ionic liquid functionalized electrospun gel polymer electrolyte for use in a high-performance lithium metal battery. J Mater Chem A 6:18479–18487
98.
Zurück zum Zitat Liu Y-J, Cao W-T, Ma M-G, Wan P (2017) Ultrasensitive wearable soft strain sensors of conductive, self-healing, and elastic hydrogels with synergistic “soft and hard” hybrid networks. ACS Appl Mater Interfaces 9:25559–25570 Liu Y-J, Cao W-T, Ma M-G, Wan P (2017) Ultrasensitive wearable soft strain sensors of conductive, self-healing, and elastic hydrogels with synergistic “soft and hard” hybrid networks. ACS Appl Mater Interfaces 9:25559–25570
99.
Zurück zum Zitat Prasad K, Mondal D, Sharma M, Freire MG, Mukesh C, Bhatt J (2018) Stimuli responsive ion gels based on polysaccharides and other polymers prepared using ionic liquids and deep eutectic solvents. Carbohyd Polym 180:328–336 Prasad K, Mondal D, Sharma M, Freire MG, Mukesh C, Bhatt J (2018) Stimuli responsive ion gels based on polysaccharides and other polymers prepared using ionic liquids and deep eutectic solvents. Carbohyd Polym 180:328–336
100.
Zurück zum Zitat Zhang B, Sudre G, Quintard G, Serghei A, Charlot A (2016) Guar gum as biosourced building block to generate highly conductive and elastic ionogels with poly(ionic liquid) and ionic liquid. Carbohyd Polym 157:586–595 Zhang B, Sudre G, Quintard G, Serghei A, Charlot A (2016) Guar gum as biosourced building block to generate highly conductive and elastic ionogels with poly(ionic liquid) and ionic liquid. Carbohyd Polym 157:586–595
101.
Zurück zum Zitat Lodge TP, Ueki T (2016) Mechanically tunable, readily processable ion gels by self-assembly of block copolymers in ionic liquids. Acc Chem Res 49:2107–2114 Lodge TP, Ueki T (2016) Mechanically tunable, readily processable ion gels by self-assembly of block copolymers in ionic liquids. Acc Chem Res 49:2107–2114
102.
Zurück zum Zitat Shi Y, Ha H, Al-Sudani A, Ellison CJ, Yu G (2016) Thermoplastic elastomer-enabled smart electrolyte for thermoresponsive self-protection of electrochemical energy storage devices. Adv Mater 28:7921–7928 Shi Y, Ha H, Al-Sudani A, Ellison CJ, Yu G (2016) Thermoplastic elastomer-enabled smart electrolyte for thermoresponsive self-protection of electrochemical energy storage devices. Adv Mater 28:7921–7928
103.
Zurück zum Zitat Ueki T, Usui R, Kitazawa Y, Lodge TP, Watanabe M (2015) Thermally reversible ion gels with photohealing properties based on triblock copolymer self-assembly. Macromolecules 48:5928–5933 Ueki T, Usui R, Kitazawa Y, Lodge TP, Watanabe M (2015) Thermally reversible ion gels with photohealing properties based on triblock copolymer self-assembly. Macromolecules 48:5928–5933
105.
Zurück zum Zitat Sun H-J, Zhang S, Percec V (2015) From structure to function via complex supramolecular dendrimer systems. Chem Soc Rev 44:3900–3923 Sun H-J, Zhang S, Percec V (2015) From structure to function via complex supramolecular dendrimer systems. Chem Soc Rev 44:3900–3923
107.
Zurück zum Zitat Li H, Cui Y, Wang H, Yan W, Tu J (2017) Preparation and application of polysulfone microcapsules containing tung oil in self-healing and self-lubricating epoxy coating. Colloids Surf A 518:181–187 Li H, Cui Y, Wang H, Yan W, Tu J (2017) Preparation and application of polysulfone microcapsules containing tung oil in self-healing and self-lubricating epoxy coating. Colloids Surf A 518:181–187
109.
Zurück zum Zitat Yin MJ, Yao M, Gao S, Zhang AP, Tam HY, Wai PKA (2016) Rapid 3D patterning of poly (acrylic acid) ionic hydrogel for miniature pH sensors. Adv Mater 28:1394–1399 Yin MJ, Yao M, Gao S, Zhang AP, Tam HY, Wai PKA (2016) Rapid 3D patterning of poly (acrylic acid) ionic hydrogel for miniature pH sensors. Adv Mater 28:1394–1399
Metadaten
Titel
Recent achievements in self-healing materials based on ionic liquids: a review
verfasst von
Weiran Zhang
Haiyun Jiang
Zigong Chang
Wei Wu
Guohua Wu
Ruomei Wu
Jieqing Li
Publikationsdatum
25.06.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 28/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04981-0

Weitere Artikel der Ausgabe 28/2020

Journal of Materials Science 28/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.