Skip to main content
Erschienen in: Rare Metals 5/2017

29.04.2017

Recent advances in cathode materials for Li–S battery: structure and performance

verfasst von: Chao Li, Zhen-Bo Wang, Qian Wang, Da-Ming Gu

Erschienen in: Rare Metals | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Li–S battery is one of the most promising candidates for next-generation energy storage technology. However, the rapid capacity fading and low-energy-density limit its large-scale applications. Scholars invest a lot of effort to introduce new materials. A neglected problem is that reasonable structure is as important as new material. In this review, four kinds of cathode structures were analyzed through morphology and electrochemical properties. The relationship between structures and properties was elaborated through reaction mechanism. The advantages and disadvantages of each structure were discussed. We hope the summary and discussion provide inspiration for structure design in Li–S battery cathode materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Wu XL, Jiang LY, Cao FF, Guo YG, Wan LJ. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: superior cathode material for electrochemical energy-storage devices. Adv Mater. 2009;21(2526):2710.CrossRef Wu XL, Jiang LY, Cao FF, Guo YG, Wan LJ. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: superior cathode material for electrochemical energy-storage devices. Adv Mater. 2009;21(2526):2710.CrossRef
[2]
Zurück zum Zitat Wang H, Cui LF, Yang Y, Sanchez CH, Robinson JT, Liang Y, Cui Y, Dai H. Mn3O4–graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc. 2010;132(40):13978.CrossRef Wang H, Cui LF, Yang Y, Sanchez CH, Robinson JT, Liang Y, Cui Y, Dai H. Mn3O4–graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc. 2010;132(40):13978.CrossRef
[3]
Zurück zum Zitat Sheem K, Lee YH, Lim HS. High-density positive electrodes containing carbon nanotubes for use in Li-ion cells. J Power Sources. 2006;158(2):1425.CrossRef Sheem K, Lee YH, Lim HS. High-density positive electrodes containing carbon nanotubes for use in Li-ion cells. J Power Sources. 2006;158(2):1425.CrossRef
[4]
Zurück zum Zitat Nishi Y. Lithium ion secondary batteries; past 10 years and the future. J Power Sources. 2001;100(1):101.CrossRef Nishi Y. Lithium ion secondary batteries; past 10 years and the future. J Power Sources. 2001;100(1):101.CrossRef
[5]
Zurück zum Zitat Wang G, Chen Y, Konstantinov K, Lindsay M, Liu H, Dou S. Investigation of cobalt oxides as anode materials for Li-ion batteries. J Power Sources. 2002;109(1):142.CrossRef Wang G, Chen Y, Konstantinov K, Lindsay M, Liu H, Dou S. Investigation of cobalt oxides as anode materials for Li-ion batteries. J Power Sources. 2002;109(1):142.CrossRef
[6]
Zurück zum Zitat Yao Y, McDowell MT, Ryu I, Wu H, Liu N, Hu L, Nix WD, Cui Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011;11(7):2949.CrossRef Yao Y, McDowell MT, Ryu I, Wu H, Liu N, Hu L, Nix WD, Cui Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011;11(7):2949.CrossRef
[7]
Zurück zum Zitat Masarapu C, Subramanian V, Zhu H, Wei B. Long-cycle electrochemical behavior of multiwall carbon nanotubes synthesized on stainless steel in Li ion batteries. Adv Func Mater. 2009;19(7):101.CrossRef Masarapu C, Subramanian V, Zhu H, Wei B. Long-cycle electrochemical behavior of multiwall carbon nanotubes synthesized on stainless steel in Li ion batteries. Adv Func Mater. 2009;19(7):101.CrossRef
[8]
Zurück zum Zitat Zaghib K, Dontigny M, Guerfi A, Charest P, Rodrigues I, Mauger A, Julien C. Safe and fast-charging Li-ion battery with long shelf life for power applications. J Power Sources. 2011;196(8):3949.CrossRef Zaghib K, Dontigny M, Guerfi A, Charest P, Rodrigues I, Mauger A, Julien C. Safe and fast-charging Li-ion battery with long shelf life for power applications. J Power Sources. 2011;196(8):3949.CrossRef
[9]
Zurück zum Zitat Suo L, Hu YS, Li H, Armand M, Chen L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun. 2013;4:1481.CrossRef Suo L, Hu YS, Li H, Armand M, Chen L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun. 2013;4:1481.CrossRef
[10]
Zurück zum Zitat Liang C, Dudney NJ, Howe JY. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem Mater. 2009;21(19):4724.CrossRef Liang C, Dudney NJ, Howe JY. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem Mater. 2009;21(19):4724.CrossRef
[11]
Zurück zum Zitat Herbert D, Ulam J. Electric dry cells and storage batteries.US Patent, 3043896. 1962. Herbert D, Ulam J. Electric dry cells and storage batteries.US Patent, 3043896. 1962.
[12]
Zurück zum Zitat Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li–S batteries. Adv Mater. 2011;23(47):5641.CrossRef Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li–S batteries. Adv Mater. 2011;23(47):5641.CrossRef
[13]
Zurück zum Zitat Ma G, Wen Z, Jin J, Lu Y, Wu X, Liu C, Chen C. Enhancement of long stability of Li–S battery by thin wall hollow spherical structured polypyrrole based sulfur cathode. RSC Adv. 2014;4(41):21612.CrossRef Ma G, Wen Z, Jin J, Lu Y, Wu X, Liu C, Chen C. Enhancement of long stability of Li–S battery by thin wall hollow spherical structured polypyrrole based sulfur cathode. RSC Adv. 2014;4(41):21612.CrossRef
[14]
Zurück zum Zitat Kumaresan K, Mikhaylik Y, White RE. A mathematical model for a lithium–sulfur cell. J Electrochem Soc. 2008;155(8):576.CrossRef Kumaresan K, Mikhaylik Y, White RE. A mathematical model for a lithium–sulfur cell. J Electrochem Soc. 2008;155(8):576.CrossRef
[15]
Zurück zum Zitat Yamin H, Peled E. Electrochemistry of a nonaqueous lithium/sulfur cell. J Power Sources. 1983;9(3):281.CrossRef Yamin H, Peled E. Electrochemistry of a nonaqueous lithium/sulfur cell. J Power Sources. 1983;9(3):281.CrossRef
[16]
Zurück zum Zitat Wang DW, Zeng QC, Zhou GM, Yin LC, Li F, Cheng HM, Gentle LR, Lu GQM. Carbon-sulfur composites for Li-S batteries: status and prospects. J Mater Chem A. 2013;1(33):9382. Wang DW, Zeng QC, Zhou GM, Yin LC, Li F, Cheng HM, Gentle LR, Lu GQM. Carbon-sulfur composites for Li-S batteries: status and prospects. J Mater Chem A. 2013;1(33):9382.
[17]
Zurück zum Zitat Zheng G, Yang Y, Cha JJ, Hong SS, Cui Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 2011;11(10):4462.CrossRef Zheng G, Yang Y, Cha JJ, Hong SS, Cui Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 2011;11(10):4462.CrossRef
[18]
Zurück zum Zitat Evers S, Nazar LF. Graphene-enveloped sulfur in a one pot reaction: a cathode with good coulombic efficiency and high practical sulfur content. Chem Commun. 2012;48(9):1233.CrossRef Evers S, Nazar LF. Graphene-enveloped sulfur in a one pot reaction: a cathode with good coulombic efficiency and high practical sulfur content. Chem Commun. 2012;48(9):1233.CrossRef
[19]
Zurück zum Zitat Marmorstein D, Yu T, Striebel K, McLarnon F, Hou J, Cairns E. Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J Power Sources. 2000;89(2):219.CrossRef Marmorstein D, Yu T, Striebel K, McLarnon F, Hou J, Cairns E. Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J Power Sources. 2000;89(2):219.CrossRef
[20]
Zurück zum Zitat Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA. Porous hollow carbon@ sulfur composites for high-power lithium–sulfur batteries. Angew Chem. 2011;123(26):6026.CrossRef Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA. Porous hollow carbon@ sulfur composites for high-power lithium–sulfur batteries. Angew Chem. 2011;123(26):6026.CrossRef
[21]
Zurück zum Zitat Ji X, Nazar LF. Advances in Li–S batteries. J Mater Chem. 2010;20(44):9821.CrossRef Ji X, Nazar LF. Advances in Li–S batteries. J Mater Chem. 2010;20(44):9821.CrossRef
[22]
Zurück zum Zitat Ryu H, Ahn H, Kim K, Ahn J, Cho K, Nam T. Self-discharge characteristics of lithium/sulfur batteries using TEGDME liquid electrolyte. Electrochim Acta. 2006;52(4):1563.CrossRef Ryu H, Ahn H, Kim K, Ahn J, Cho K, Nam T. Self-discharge characteristics of lithium/sulfur batteries using TEGDME liquid electrolyte. Electrochim Acta. 2006;52(4):1563.CrossRef
[23]
Zurück zum Zitat Cheon SE, Choi SS, Han JS, Choi YS, Jung BH, Lim HS. Capacity fading mechanisms on cycling a high-capacity secondary sulfur cathode. J Electrochem Soc. 2004;151(12):A2067.CrossRef Cheon SE, Choi SS, Han JS, Choi YS, Jung BH, Lim HS. Capacity fading mechanisms on cycling a high-capacity secondary sulfur cathode. J Electrochem Soc. 2004;151(12):A2067.CrossRef
[24]
Zurück zum Zitat Wang C, Chen H, Dong W, Ge J, Lu W, Wu X, Guo L, Chen L. Sulfur–amine chemistry-based synthesis of multi-walled carbon nanotube–sulfur composites for high performance Li–S batteries. Chem Commun. 2014;50(10):1202.CrossRef Wang C, Chen H, Dong W, Ge J, Lu W, Wu X, Guo L, Chen L. Sulfur–amine chemistry-based synthesis of multi-walled carbon nanotube–sulfur composites for high performance Li–S batteries. Chem Commun. 2014;50(10):1202.CrossRef
[25]
Zurück zum Zitat Li J, Qin F, Zhang L, Zhang K, Li Q, Lai Y, Zhang Z, Fang J. Mesoporous carbon from biomass: one-pot synthesis and application for Li–S batteries. J Mater Chem A. 2014;2(34):13916.CrossRef Li J, Qin F, Zhang L, Zhang K, Li Q, Lai Y, Zhang Z, Fang J. Mesoporous carbon from biomass: one-pot synthesis and application for Li–S batteries. J Mater Chem A. 2014;2(34):13916.CrossRef
[26]
Zurück zum Zitat Zhang Y, Zhao Y, Bakenov Z, Tuiyebayeva M, Konarov A, Chen P. Synthesis of hierarchical porous sulfur/polypyrrole/multiwalled carbon nanotube composite cathode for lithium batteries. Electrochimica Acta. 2014;143(2):49.CrossRef Zhang Y, Zhao Y, Bakenov Z, Tuiyebayeva M, Konarov A, Chen P. Synthesis of hierarchical porous sulfur/polypyrrole/multiwalled carbon nanotube composite cathode for lithium batteries. Electrochimica Acta. 2014;143(2):49.CrossRef
[27]
Zurück zum Zitat Liang X, Wen Z, Liu Y, Zhang H, Huang L, Jin J. Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery. J Power Sources. 2011;196(7):3655.CrossRef Liang X, Wen Z, Liu Y, Zhang H, Huang L, Jin J. Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery. J Power Sources. 2011;196(7):3655.CrossRef
[28]
Zurück zum Zitat Wu F, Chen J, Chen R, Wu S, Li L, Chen S, Zhao T. Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. Journal of Physical Chemistry C. 2011;115(13):6057.CrossRef Wu F, Chen J, Chen R, Wu S, Li L, Chen S, Zhao T. Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. Journal of Physical Chemistry C. 2011;115(13):6057.CrossRef
[29]
Zurück zum Zitat Guo J, Xu Y, Wang C. Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett. 2011;11(10):4288.CrossRef Guo J, Xu Y, Wang C. Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett. 2011;11(10):4288.CrossRef
[30]
Zurück zum Zitat Dörfler S, Hagen M, Althues H, Tübke J, Kaskel S, Hoffmann MJ. High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium–sulfur batteries. Chem Commun. 2012;48(34):4097.CrossRef Dörfler S, Hagen M, Althues H, Tübke J, Kaskel S, Hoffmann MJ. High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium–sulfur batteries. Chem Commun. 2012;48(34):4097.CrossRef
[31]
Zurück zum Zitat Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes–the route toward applications. Science. 2002;297(5582):787.CrossRef Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes–the route toward applications. Science. 2002;297(5582):787.CrossRef
[32]
Zurück zum Zitat Yang Y, Liu J, Wan M. Self-assembled conducting polypyrrole micro/nanotubes. Nanotechnology. 2002;13(6):771.CrossRef Yang Y, Liu J, Wan M. Self-assembled conducting polypyrrole micro/nanotubes. Nanotechnology. 2002;13(6):771.CrossRef
[33]
Zurück zum Zitat Wen Z, Wang Q, Zhang Q, Li J. In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: a novel composite with porous-tube structure as anode for lithium batteries. Adv Func Mater. 2007;17(15):2772.CrossRef Wen Z, Wang Q, Zhang Q, Li J. In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: a novel composite with porous-tube structure as anode for lithium batteries. Adv Func Mater. 2007;17(15):2772.CrossRef
[34]
Zurück zum Zitat Ma XZ, Jin B, Wang HY, Hou JZ, Bin ZX, Wang HH, Xin PM. S–TiO2 composite cathode materials for lithium/sulfur batteries. J Electroanal Chem. 2015;736:127.CrossRef Ma XZ, Jin B, Wang HY, Hou JZ, Bin ZX, Wang HH, Xin PM. S–TiO2 composite cathode materials for lithium/sulfur batteries. J Electroanal Chem. 2015;736:127.CrossRef
[35]
Zurück zum Zitat Rümmeli MH, Schäffel F, Kramberger C, Gemming T, Bachmatiuk A, Kalenczuk RJ, Rellinghaus B, Büchner B, Pichler T. Oxide-driven carbon nanotube growth in supported catalyst CVD. J Am Chem Soc. 2007;129(51):15772.CrossRef Rümmeli MH, Schäffel F, Kramberger C, Gemming T, Bachmatiuk A, Kalenczuk RJ, Rellinghaus B, Büchner B, Pichler T. Oxide-driven carbon nanotube growth in supported catalyst CVD. J Am Chem Soc. 2007;129(51):15772.CrossRef
[36]
Zurück zum Zitat Peng Y, Liu C, Pan C, Qiu L, Wang S, Yan F. PPyNT-Im-PtAu alloy nanoparticle hybrids with tunable electroactivity and enhanced durability for methanol electrooxidation and oxygen reduction reaction. ACS Appl Mater Interfaces. 2013;5(7):2752.CrossRef Peng Y, Liu C, Pan C, Qiu L, Wang S, Yan F. PPyNT-Im-PtAu alloy nanoparticle hybrids with tunable electroactivity and enhanced durability for methanol electrooxidation and oxygen reduction reaction. ACS Appl Mater Interfaces. 2013;5(7):2752.CrossRef
[37]
Zurück zum Zitat Gojny FH, Nastalczyk J, Roslaniec Z, Schulte K. Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chem Phys Lett. 2003;370(5):820.CrossRef Gojny FH, Nastalczyk J, Roslaniec Z, Schulte K. Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chem Phys Lett. 2003;370(5):820.CrossRef
[38]
Zurück zum Zitat Zhang Y, Zhang X, Zhang H, Zhao Z, Li F, Liu C, Cheng H. Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries. Electrochim Acta. 2006;51(23):4994.CrossRef Zhang Y, Zhang X, Zhang H, Zhao Z, Li F, Liu C, Cheng H. Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries. Electrochim Acta. 2006;51(23):4994.CrossRef
[39]
Zurück zum Zitat Xu Y, Ye X, Yang L, He P, Fang Y. Impedance DNA biosensor using electropolymerized polypyrrole/multiwalled carbon nanotubes modified electrode. Electroanalysis. 2006;18(15):1471.CrossRef Xu Y, Ye X, Yang L, He P, Fang Y. Impedance DNA biosensor using electropolymerized polypyrrole/multiwalled carbon nanotubes modified electrode. Electroanalysis. 2006;18(15):1471.CrossRef
[40]
Zurück zum Zitat Kumar A, Maschmann MR, Hodson SL, Baur J, Fisher TS. Carbon nanotube arrays decorated with multi-layer graphene-nanopetals enhance mechanical strength and durability. Carbon. 2015;84:236.CrossRef Kumar A, Maschmann MR, Hodson SL, Baur J, Fisher TS. Carbon nanotube arrays decorated with multi-layer graphene-nanopetals enhance mechanical strength and durability. Carbon. 2015;84:236.CrossRef
[41]
Zurück zum Zitat Fan S, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai H. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science. 1999;283(5401):512.CrossRef Fan S, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai H. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science. 1999;283(5401):512.CrossRef
[42]
Zurück zum Zitat Moon S, Jung YH, Jung WK, Jung DS, Choi JW, Kim DK. Encapsulated monoclinic sulfur for stable cycling of Li–S rechargeable batteries. Adv Mater. 2013;25(45):6547.CrossRef Moon S, Jung YH, Jung WK, Jung DS, Choi JW, Kim DK. Encapsulated monoclinic sulfur for stable cycling of Li–S rechargeable batteries. Adv Mater. 2013;25(45):6547.CrossRef
[43]
Zurück zum Zitat Zhou G, Wang DW, Li F, Hou PX, Yin L, Liu C, Lu GQM, Gentle IR, Cheng HM. A flexible nanostructured sulphur–carbon nanotube cathode with high rate performance for Li–S batteries. Energy Environ Sci. 2012;5(10):8901.CrossRef Zhou G, Wang DW, Li F, Hou PX, Yin L, Liu C, Lu GQM, Gentle IR, Cheng HM. A flexible nanostructured sulphur–carbon nanotube cathode with high rate performance for Li–S batteries. Energy Environ Sci. 2012;5(10):8901.CrossRef
[44]
Zurück zum Zitat Li Z, Zhang J, Lou XW. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium–sulfur batteries. Angew Chem Int Ed Engl. 2015;54(44):12886.CrossRef Li Z, Zhang J, Lou XW. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium–sulfur batteries. Angew Chem Int Ed Engl. 2015;54(44):12886.CrossRef
[45]
Zurück zum Zitat Zhao Y, Wu W, Li J, Xu Z, Guan L. Encapsulating MWNTs into hollow porous carbon nanotubes: a tube-in-tube carbon nanostructure for high-performance lithium–sulfur batteries. Adv Mater. 2014;26(30):5113.CrossRef Zhao Y, Wu W, Li J, Xu Z, Guan L. Encapsulating MWNTs into hollow porous carbon nanotubes: a tube-in-tube carbon nanostructure for high-performance lithium–sulfur batteries. Adv Mater. 2014;26(30):5113.CrossRef
[46]
Zurück zum Zitat Yang Y, Yu G, Cha JJ, Wu H, Vosgueritchian M, Yao Y, Bao Z, Cui Y. Improving the performance of lithium–sulfur batteries by conductive polymer coating. ACS Nano. 2011;5(11):9187.CrossRef Yang Y, Yu G, Cha JJ, Wu H, Vosgueritchian M, Yao Y, Bao Z, Cui Y. Improving the performance of lithium–sulfur batteries by conductive polymer coating. ACS Nano. 2011;5(11):9187.CrossRef
[47]
Zurück zum Zitat Liang X, Liu Y, Wen Z, Huang L, Wang X, Zhang H. A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium–sulfur batteries. J Power Sources. 2011;196(16):6951.CrossRef Liang X, Liu Y, Wen Z, Huang L, Wang X, Zhang H. A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium–sulfur batteries. J Power Sources. 2011;196(16):6951.CrossRef
[48]
Zurück zum Zitat Xiao L, Cao Y, Xiao J, Schwenzer B, Engelhard MH, Saraf LV, Nie Z, Exarhos GJ, Liu J. A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium–sulfur batteries with long cycle life. Adv Mater. 2012;24(9):1176.CrossRef Xiao L, Cao Y, Xiao J, Schwenzer B, Engelhard MH, Saraf LV, Nie Z, Exarhos GJ, Liu J. A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium–sulfur batteries with long cycle life. Adv Mater. 2012;24(9):1176.CrossRef
[49]
Zurück zum Zitat Zhao Y, Zhu W, Chen GZ, Cairns EJ. Polypyrrole/TiO2 nanotube arrays with coaxial heterogeneous structure as sulfur hosts for lithium sulfur batteries. J Power Sources. 2016;327:447.CrossRef Zhao Y, Zhu W, Chen GZ, Cairns EJ. Polypyrrole/TiO2 nanotube arrays with coaxial heterogeneous structure as sulfur hosts for lithium sulfur batteries. J Power Sources. 2016;327:447.CrossRef
[50]
Zurück zum Zitat Jang J, Oh JH. Facile fabrication of photochromic dye-conducting polymer core–shell nanomaterials and their photoluminescence. Adv Mater. 2003;15(12):977.CrossRef Jang J, Oh JH. Facile fabrication of photochromic dye-conducting polymer core–shell nanomaterials and their photoluminescence. Adv Mater. 2003;15(12):977.CrossRef
[51]
Zurück zum Zitat Kim H, Achermann M, Balet LP, Hollingsworth JA, Klimov VI. Synthesis and characterization of Co/CdSe core/shell nanocomposites: bifunctional magnetic-optical nanocrystals. J Am Chem Soc. 2005;127(2):544.CrossRef Kim H, Achermann M, Balet LP, Hollingsworth JA, Klimov VI. Synthesis and characterization of Co/CdSe core/shell nanocomposites: bifunctional magnetic-optical nanocrystals. J Am Chem Soc. 2005;127(2):544.CrossRef
[52]
Zurück zum Zitat Zhong CJ, Maye MM. Core–shell assembled nanoparticles as catalysts. Adv Mater. 2001;13(19):1507.CrossRef Zhong CJ, Maye MM. Core–shell assembled nanoparticles as catalysts. Adv Mater. 2001;13(19):1507.CrossRef
[53]
Zurück zum Zitat Liu L, Guo K, Lu J, Venkatraman SS, Luo D, Ng KC, Ling EA, Moochhala S, Yang YY. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG–TAT for drug delivery across the blood-brain barrier. Biomaterials. 2008;29(10):1509.CrossRef Liu L, Guo K, Lu J, Venkatraman SS, Luo D, Ng KC, Ling EA, Moochhala S, Yang YY. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG–TAT for drug delivery across the blood-brain barrier. Biomaterials. 2008;29(10):1509.CrossRef
[54]
Zurück zum Zitat Fu Y, Manthiram A. Core–shell structured sulfur-polypyrrole composite cathodes for lithium–sulfur batteries. RSC Adv. 2012;2(14):5927.CrossRef Fu Y, Manthiram A. Core–shell structured sulfur-polypyrrole composite cathodes for lithium–sulfur batteries. RSC Adv. 2012;2(14):5927.CrossRef
[55]
Zurück zum Zitat Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H. Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011;11(7):2644.CrossRef Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H. Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011;11(7):2644.CrossRef
[56]
Zurück zum Zitat Li GC, Li GR, Ye SH, Gao XP. A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv Energy Mater. 2012;2(10):1238.CrossRef Li GC, Li GR, Ye SH, Gao XP. A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv Energy Mater. 2012;2(10):1238.CrossRef
[57]
Zurück zum Zitat Wang C, Chen JJ, Shi YN, Zheng MS, Dong QF. Preparation and performance of a core–shell carbon/sulfur material for lithium/sulfur battery. Electrochim Acta. 2010;55(23):7010.CrossRef Wang C, Chen JJ, Shi YN, Zheng MS, Dong QF. Preparation and performance of a core–shell carbon/sulfur material for lithium/sulfur battery. Electrochim Acta. 2010;55(23):7010.CrossRef
[58]
Zurück zum Zitat Chen H, Dong W, Ge J, Wang C, Wu X, Lu W, Chen L. Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries. Sci Rep. 1910;2013:3. Chen H, Dong W, Ge J, Wang C, Wu X, Lu W, Chen L. Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries. Sci Rep. 1910;2013:3.
[59]
Zurück zum Zitat Hirakawa T, Kamat PV. Charge separation and catalytic activity of Ag@ TiO2 core–shell composite clusters under UV-irradiation. J Am Chem Soc. 2005;127(11):3928.CrossRef Hirakawa T, Kamat PV. Charge separation and catalytic activity of Ag@ TiO2 core–shell composite clusters under UV-irradiation. J Am Chem Soc. 2005;127(11):3928.CrossRef
[60]
Zurück zum Zitat Su L, Zhou Z, Ren M. Core double-shell Si@ SiO2@ C nanocomposites as anode materials for Li-ion batteries. Chem Commun. 2010;46(15):2590.CrossRef Su L, Zhou Z, Ren M. Core double-shell Si@ SiO2@ C nanocomposites as anode materials for Li-ion batteries. Chem Commun. 2010;46(15):2590.CrossRef
[61]
Zurück zum Zitat Xiao M, Huang M, Zeng S, Han D, Wang S, Sun L, Meng Y. Sulfur@ graphene oxide core–shell particles as a rechargeable lithium–sulfur battery cathode material with high cycling stability and capacity. RSC Adv. 2013;3(15):4914.CrossRef Xiao M, Huang M, Zeng S, Han D, Wang S, Sun L, Meng Y. Sulfur@ graphene oxide core–shell particles as a rechargeable lithium–sulfur battery cathode material with high cycling stability and capacity. RSC Adv. 2013;3(15):4914.CrossRef
[62]
Zurück zum Zitat Wang D, Yu Y, Zhou W, Chen H, DiSalvo FJ, Muller DA, Abruña HD. Infiltrating sulfur in hierarchical architecture MWCNT@ meso C core–shell nanocomposites for lithium–sulfur batteries. Phys Chem Chem Phys. 2013;15(23):9051.CrossRef Wang D, Yu Y, Zhou W, Chen H, DiSalvo FJ, Muller DA, Abruña HD. Infiltrating sulfur in hierarchical architecture MWCNT@ meso C core–shell nanocomposites for lithium–sulfur batteries. Phys Chem Chem Phys. 2013;15(23):9051.CrossRef
[63]
Zurück zum Zitat Zhang K, Zhao Q, Tao Z, Chen J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li–S batteries with high performance. Nano Res. 2013;6(1):38.CrossRef Zhang K, Zhao Q, Tao Z, Chen J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li–S batteries with high performance. Nano Res. 2013;6(1):38.CrossRef
[64]
Zurück zum Zitat Zhang C, Wu HB, Yuan C, Guo Z, Lou XWD. Confining sulfur in double-shelled hollow carbon spheres for lithium–sulfur batteries. Angew Chem. 2012;124(38):9730.CrossRef Zhang C, Wu HB, Yuan C, Guo Z, Lou XWD. Confining sulfur in double-shelled hollow carbon spheres for lithium–sulfur batteries. Angew Chem. 2012;124(38):9730.CrossRef
[65]
Zurück zum Zitat Cao B, Li D, Hou B, Mo Y, Yin L, Chen Y. Synthesis of double-shell SnO2@C hollow nanospheres as sulfur/sulfide cages for lithium-sulfur batteries. ACS Appl Mater Interfaces. 2016;8(41):27795.CrossRef Cao B, Li D, Hou B, Mo Y, Yin L, Chen Y. Synthesis of double-shell SnO2@C hollow nanospheres as sulfur/sulfide cages for lithium-sulfur batteries. ACS Appl Mater Interfaces. 2016;8(41):27795.CrossRef
[66]
Zurück zum Zitat Wang ZS, Li FY, Huang CH, Wang L, Wei M, Jin LP, Li NQ. Photoelectric conversion properties of nanocrystalline TiO2 electrodes sensitized with hemicyanine derivatives. J Phys Chem B. 2000;104(41):9676.CrossRef Wang ZS, Li FY, Huang CH, Wang L, Wei M, Jin LP, Li NQ. Photoelectric conversion properties of nanocrystalline TiO2 electrodes sensitized with hemicyanine derivatives. J Phys Chem B. 2000;104(41):9676.CrossRef
[67]
Zurück zum Zitat Yu J, Qi L, Jaroniec M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J Phys Chem C. 2010;114(30):13118.CrossRef Yu J, Qi L, Jaroniec M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J Phys Chem C. 2010;114(30):13118.CrossRef
[68]
Zurück zum Zitat Kim H, Kim MG, Shin TJ, Shin HJ, Cho J. TiO2@ Sn core–shell nanotubes for fast and high density Li-ion storage material. Electrochem Commun. 2008;10(11):1669.CrossRef Kim H, Kim MG, Shin TJ, Shin HJ, Cho J. TiO2@ Sn core–shell nanotubes for fast and high density Li-ion storage material. Electrochem Commun. 2008;10(11):1669.CrossRef
[69]
Zurück zum Zitat Li J, Ding B, Xu G, Hou L, Zhang X, Yuan C. Enhanced cycling performance and electrochemical reversibility of a novel sulfur-impregnated mesoporous hollow TiO2 sphere cathode for advanced Li–S batteries. Nanoscale. 2013;5(13):5743.CrossRef Li J, Ding B, Xu G, Hou L, Zhang X, Yuan C. Enhanced cycling performance and electrochemical reversibility of a novel sulfur-impregnated mesoporous hollow TiO2 sphere cathode for advanced Li–S batteries. Nanoscale. 2013;5(13):5743.CrossRef
[70]
Zurück zum Zitat Seh ZW, Li W, Cha JJ, Zheng G, Yang Y, McDowell MT, Hsu PC, Cui Y. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat Commun. 2013;4:1331.CrossRef Seh ZW, Li W, Cha JJ, Zheng G, Yang Y, McDowell MT, Hsu PC, Cui Y. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat Commun. 2013;4:1331.CrossRef
[71]
Zurück zum Zitat Jang J, Lim B. Facile fabrication of inorganic-polymer core–shell nanostructures by a one-step vapor deposition polymerization. Angew Chem. 2003;115(45):5758.CrossRef Jang J, Lim B. Facile fabrication of inorganic-polymer core–shell nanostructures by a one-step vapor deposition polymerization. Angew Chem. 2003;115(45):5758.CrossRef
[72]
Zurück zum Zitat Dong Z, Zhang J, Zhao X, Tu J, Su Q, Du G. Sulfur@hollow polypyrrole sphere nanocomposites for rechargeable Li–S batteries. RSC Adv. 2013;3(47):24914.CrossRef Dong Z, Zhang J, Zhao X, Tu J, Su Q, Du G. Sulfur@hollow polypyrrole sphere nanocomposites for rechargeable Li–S batteries. RSC Adv. 2013;3(47):24914.CrossRef
[73]
Zurück zum Zitat Chen H, Dong W, Ge J, Wang C, Wu X, Lu W, Chen L. Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries. Sci Rep. 1910;2013:3. Chen H, Dong W, Ge J, Wang C, Wu X, Lu W, Chen L. Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries. Sci Rep. 1910;2013:3.
[74]
Zurück zum Zitat Li GC, Li GR, Ye SH, Gao XP. A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv Energy Mater. 2012;2(10):1238.CrossRef Li GC, Li GR, Ye SH, Gao XP. A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv Energy Mater. 2012;2(10):1238.CrossRef
[75]
Zurück zum Zitat Liu G, Li X, Ganesan P, Popov BN. Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon. Appl Catal B. 2009;93(1):156.CrossRef Liu G, Li X, Ganesan P, Popov BN. Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon. Appl Catal B. 2009;93(1):156.CrossRef
[76]
Zurück zum Zitat Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater. 2012;24(15):2047.CrossRef Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater. 2012;24(15):2047.CrossRef
[77]
Zurück zum Zitat Zhu Y, Murali S, Stoller MD, Ganesh K, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M. Carbon-based supercapacitors produced by activation of graphene. Science. 2011;332(6037):1537.CrossRef Zhu Y, Murali S, Stoller MD, Ganesh K, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M. Carbon-based supercapacitors produced by activation of graphene. Science. 2011;332(6037):1537.CrossRef
[78]
Zurück zum Zitat Seo JS, Whang D, Lee H, Jun SI, Oh J, Jeon YJ, Kim K. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature. 2000;404(6781):982.CrossRef Seo JS, Whang D, Lee H, Jun SI, Oh J, Jeon YJ, Kim K. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature. 2000;404(6781):982.CrossRef
[79]
Zurück zum Zitat Balgis R, Ogi T, Arif AF, Anilkumar GM, Mori T, Okuyama K. Morphology control of hierarchical porous carbon particles from phenolic resin and polystyrene latex template via aerosol process. Carbon. 2015;84:281.CrossRef Balgis R, Ogi T, Arif AF, Anilkumar GM, Mori T, Okuyama K. Morphology control of hierarchical porous carbon particles from phenolic resin and polystyrene latex template via aerosol process. Carbon. 2015;84:281.CrossRef
[80]
Zurück zum Zitat Mascotto S, Kuzmicz D, Wallacher D, Siebenbürger M, Clemens D, Risse S, Yuan J, Antonietti M, Ballauff M. Poly (ionic liquid)-derived nanoporous carbon analyzed by combination of gas physisorption and small-angle neutron scattering. Carbon. 2015;82:425.CrossRef Mascotto S, Kuzmicz D, Wallacher D, Siebenbürger M, Clemens D, Risse S, Yuan J, Antonietti M, Ballauff M. Poly (ionic liquid)-derived nanoporous carbon analyzed by combination of gas physisorption and small-angle neutron scattering. Carbon. 2015;82:425.CrossRef
[81]
Zurück zum Zitat Otake Y, Jenkins RG. Characterization of oxygen-containing surface complexes created on a microporous carbon by air and nitric acid treatment. Carbon. 1993;31(1):109.CrossRef Otake Y, Jenkins RG. Characterization of oxygen-containing surface complexes created on a microporous carbon by air and nitric acid treatment. Carbon. 1993;31(1):109.CrossRef
[82]
Zurück zum Zitat Liu R, Wan L, Liu S, Pan L, Wu D, Zhao D. Supercapacitors: an interface-induced co-assembly approach towards ordered mesoporous carbon/graphene aerogel for high-performance supercapacitors. Adv Func Mater. 2015;25(4):526.CrossRef Liu R, Wan L, Liu S, Pan L, Wu D, Zhao D. Supercapacitors: an interface-induced co-assembly approach towards ordered mesoporous carbon/graphene aerogel for high-performance supercapacitors. Adv Func Mater. 2015;25(4):526.CrossRef
[83]
Zurück zum Zitat Ding N, Chen SF, Geng DS, Chien SW, An T, Hor T, Liu ZL, Yu SH, Zong Y. Tellurium@ordered macroporous carbon composite and free-standing tellurium nanowire mat as cathode materials for rechargeable lithium–tellurium batteries. Adv Energy Mater. 2015;5(8):14019991.CrossRef Ding N, Chen SF, Geng DS, Chien SW, An T, Hor T, Liu ZL, Yu SH, Zong Y. Tellurium@ordered macroporous carbon composite and free-standing tellurium nanowire mat as cathode materials for rechargeable lithium–tellurium batteries. Adv Energy Mater. 2015;5(8):14019991.CrossRef
[84]
Zurück zum Zitat Liang C, Hong K, Guiochon GA, Mays JW, Dai S. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angew Chem Int Ed. 2004;43(43):5785.CrossRef Liang C, Hong K, Guiochon GA, Mays JW, Dai S. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angew Chem Int Ed. 2004;43(43):5785.CrossRef
[85]
Zurück zum Zitat Vix-Guterl C, Frackowiak E, Jurewicz K, Friebe M, Parmentier J, Béguin F. Electrochemical energy storage in ordered porous carbon materials. Carbon. 2005;43(6):1293.CrossRef Vix-Guterl C, Frackowiak E, Jurewicz K, Friebe M, Parmentier J, Béguin F. Electrochemical energy storage in ordered porous carbon materials. Carbon. 2005;43(6):1293.CrossRef
[86]
Zurück zum Zitat Coasne B, Jain SK, Naamar L, Gubbins KE. Freezing of argon in ordered and disordered porous carbon. Phys Rev B. 2007;76(8):085416.CrossRef Coasne B, Jain SK, Naamar L, Gubbins KE. Freezing of argon in ordered and disordered porous carbon. Phys Rev B. 2007;76(8):085416.CrossRef
[87]
Zurück zum Zitat Zhao C, Wang W, Yu Z, Zhang H, Wang A, Yang Y. Nano-CaCO3 as template for preparation of disordered large mesoporous carbon with hierarchical porosities. J Mater Chem. 2010;20(5):976.CrossRef Zhao C, Wang W, Yu Z, Zhang H, Wang A, Yang Y. Nano-CaCO3 as template for preparation of disordered large mesoporous carbon with hierarchical porosities. J Mater Chem. 2010;20(5):976.CrossRef
[88]
Zurück zum Zitat Shi ZG, Feng YQ, Xu L, Da SL, Zhang M. A template method to control the shape and porosity of carbon materials. Carbon. 2004;42(8):1677.CrossRef Shi ZG, Feng YQ, Xu L, Da SL, Zhang M. A template method to control the shape and porosity of carbon materials. Carbon. 2004;42(8):1677.CrossRef
[89]
Zurück zum Zitat Liu B, Shioyama H, Akita T, Xu Q. Metal-organic framework as a template for porous carbon synthesis. J Am Chem Soc. 2008;130(16):5390.CrossRef Liu B, Shioyama H, Akita T, Xu Q. Metal-organic framework as a template for porous carbon synthesis. J Am Chem Soc. 2008;130(16):5390.CrossRef
[90]
Zurück zum Zitat Lu Y. Surfactant-templated mesoporous materials: from inorganic to hybrid to organic. Angew Chem Int Ed. 2006;45(46):7664.CrossRef Lu Y. Surfactant-templated mesoporous materials: from inorganic to hybrid to organic. Angew Chem Int Ed. 2006;45(46):7664.CrossRef
[91]
Zurück zum Zitat Che S, Lund K, Tatsumi T, Iijima S, Joo SH, Ryoo R, Terasaki O. Direct observation of 3D mesoporous structure by scanning electron microscopy (SEM): sBA-15 silica and CMK-5 carbon. Angew Chem Int Ed. 2003;42(19):2182.CrossRef Che S, Lund K, Tatsumi T, Iijima S, Joo SH, Ryoo R, Terasaki O. Direct observation of 3D mesoporous structure by scanning electron microscopy (SEM): sBA-15 silica and CMK-5 carbon. Angew Chem Int Ed. 2003;42(19):2182.CrossRef
[92]
Zurück zum Zitat Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials. Adv Mater. 2006;18(16):2073.CrossRef Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials. Adv Mater. 2006;18(16):2073.CrossRef
[93]
Zurück zum Zitat Vinu A, Streb C, Murugesan V, Hartmann M. Adsorption of cytochrome c on new mesoporous carbon molecular sieves. J Phys Chem B. 2003;107(33):8297.CrossRef Vinu A, Streb C, Murugesan V, Hartmann M. Adsorption of cytochrome c on new mesoporous carbon molecular sieves. J Phys Chem B. 2003;107(33):8297.CrossRef
[94]
Zurück zum Zitat Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater. 2009;8(6):500.CrossRef Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater. 2009;8(6):500.CrossRef
[95]
Zurück zum Zitat Li X, Cao Y, Qi W, Saraf LV, Xiao J, Nie Z, Mietek J, Zhang J-G, Schwenzer B, Liu J. Optimization of mesoporous carbon structures for lithium–sulfur battery applications. J Mater Chem. 2011;21(41):16603.CrossRef Li X, Cao Y, Qi W, Saraf LV, Xiao J, Nie Z, Mietek J, Zhang J-G, Schwenzer B, Liu J. Optimization of mesoporous carbon structures for lithium–sulfur battery applications. J Mater Chem. 2011;21(41):16603.CrossRef
[96]
Zurück zum Zitat Sun F, Wang J, Chen H, Li W, Qiao W, Long D, Ling L. High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li–S batteries. ACS Appl Mater Interfaces. 2013;5(12):5630.CrossRef Sun F, Wang J, Chen H, Li W, Qiao W, Long D, Ling L. High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li–S batteries. ACS Appl Mater Interfaces. 2013;5(12):5630.CrossRef
[97]
Zurück zum Zitat Sun XG, Wang X, Mayes RT, Dai S. Lithium–sulfur batteries based on nitrogen-doped carbon and an ionic-liquid electrolyte. Chemsuschem. 2012;5(10):2079.CrossRef Sun XG, Wang X, Mayes RT, Dai S. Lithium–sulfur batteries based on nitrogen-doped carbon and an ionic-liquid electrolyte. Chemsuschem. 2012;5(10):2079.CrossRef
[98]
Zurück zum Zitat Xu H, Deng Y, Zhao Z, Xu H, Qin X, Chen G. The superior cycle and rate performance of a novel sulfur cathode by immobilizing sulfur into porous N-doped carbon microspheres. Chem Commun. 2014;50(72):10468.CrossRef Xu H, Deng Y, Zhao Z, Xu H, Qin X, Chen G. The superior cycle and rate performance of a novel sulfur cathode by immobilizing sulfur into porous N-doped carbon microspheres. Chem Commun. 2014;50(72):10468.CrossRef
[99]
Zurück zum Zitat Jia L, Wu T, Lu J, Ma L, Zhu W, Qiu X. Polysulfides capture-copper additive for long cycle life lithium sulfur batteries. ACS Appl Mater Interfaces. 2016;8(44):30248.CrossRef Jia L, Wu T, Lu J, Ma L, Zhu W, Qiu X. Polysulfides capture-copper additive for long cycle life lithium sulfur batteries. ACS Appl Mater Interfaces. 2016;8(44):30248.CrossRef
[100]
Zurück zum Zitat Zheng S, Yi F, Li Z, Zhu Y, Xu Y, Luo C, Yang J, Wang C. Copper-stabilized sulfur-microporous carbon cathodes for Li–S batteries. Adv Func Mater. 2014;24(26):4156.CrossRef Zheng S, Yi F, Li Z, Zhu Y, Xu Y, Luo C, Yang J, Wang C. Copper-stabilized sulfur-microporous carbon cathodes for Li–S batteries. Adv Func Mater. 2014;24(26):4156.CrossRef
[101]
Zurück zum Zitat Liang J, Zhou RF, Chen XM, Tang YH, Qiao SZ. Fe–N decorated hybrids of CNTs grown on hierarchically porous carbon for high-performance oxygen reduction. Adv Mater. 2014;26(35):6074.CrossRef Liang J, Zhou RF, Chen XM, Tang YH, Qiao SZ. Fe–N decorated hybrids of CNTs grown on hierarchically porous carbon for high-performance oxygen reduction. Adv Mater. 2014;26(35):6074.CrossRef
[102]
Zurück zum Zitat Qie L, Chen W, Xu H, Xiong X, Jiang Y, Zou F, Hu X, Xin Y, Zhang Z, Huang Y. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ Sci. 2013;6(8):2497.CrossRef Qie L, Chen W, Xu H, Xiong X, Jiang Y, Zou F, Hu X, Xin Y, Zhang Z, Huang Y. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ Sci. 2013;6(8):2497.CrossRef
[103]
Zurück zum Zitat He G, Ji X, Nazar L. High “C” rate Li–S cathodes: sulfur imbibed bimodal porous carbons. Energy Environ Sci. 2011;4(8):2878.CrossRef He G, Ji X, Nazar L. High “C” rate Li–S cathodes: sulfur imbibed bimodal porous carbons. Energy Environ Sci. 2011;4(8):2878.CrossRef
[104]
Zurück zum Zitat Wang DW, Zhou G, Li F, Wu KH, Lu GQ, Cheng HM, Gentle IR. A microporous–mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li–S batteries. Phys Chem Chem Phys. 2012;14(24):8703.CrossRef Wang DW, Zhou G, Li F, Wu KH, Lu GQ, Cheng HM, Gentle IR. A microporous–mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li–S batteries. Phys Chem Chem Phys. 2012;14(24):8703.CrossRef
[105]
Zurück zum Zitat Chung S-H, Manthiram A. Low-cost, porous carbon current collector with high sulfur loading for lithium–sulfur batteries. Electrochem Commun. 2014;38:91.CrossRef Chung S-H, Manthiram A. Low-cost, porous carbon current collector with high sulfur loading for lithium–sulfur batteries. Electrochem Commun. 2014;38:91.CrossRef
[106]
Zurück zum Zitat Jung DS, Hwang TH, Lee JH, Koo HY, Shakoor RA, Kahraman R, Jo YN, Park M-S, Choi JW. Hierarchical porous carbon by ultrasonic spray pyrolysis yields stable cycling in lithium–sulfur battery. Nano Lett. 2014;14(8):4418.CrossRef Jung DS, Hwang TH, Lee JH, Koo HY, Shakoor RA, Kahraman R, Jo YN, Park M-S, Choi JW. Hierarchical porous carbon by ultrasonic spray pyrolysis yields stable cycling in lithium–sulfur battery. Nano Lett. 2014;14(8):4418.CrossRef
[107]
Zurück zum Zitat Zhu J, Chen C, Lu Y, Zang J, Jiang M, Kim D, Zhang X. Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium–sulfur batteries. Carbon. 2016;101:272.CrossRef Zhu J, Chen C, Lu Y, Zang J, Jiang M, Kim D, Zhang X. Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium–sulfur batteries. Carbon. 2016;101:272.CrossRef
[108]
Zurück zum Zitat Kang WM, Ma XM, Zhao YX, Zhao HH, Cheng BW, Liu YB. Research progress of separator materials for lithium–sulfur batteries. Acta Polym Sin. 2015;11:1258. Kang WM, Ma XM, Zhao YX, Zhao HH, Cheng BW, Liu YB. Research progress of separator materials for lithium–sulfur batteries. Acta Polym Sin. 2015;11:1258.
[109]
Zurück zum Zitat Ding K, Liu Q, Bu Y, Meng K, Wang W, Yuan D, Wang Y. High surface area porous polymer frameworks: potential host material for lithium–sulfur batteries. J Alloy Compd. 2016;657:626.CrossRef Ding K, Liu Q, Bu Y, Meng K, Wang W, Yuan D, Wang Y. High surface area porous polymer frameworks: potential host material for lithium–sulfur batteries. J Alloy Compd. 2016;657:626.CrossRef
[110]
Zurück zum Zitat Tiemann M. Porous metal oxides as gas sensors. Chem A Eur J. 2007;13(30):8376.CrossRef Tiemann M. Porous metal oxides as gas sensors. Chem A Eur J. 2007;13(30):8376.CrossRef
[111]
Zurück zum Zitat Thakuria H, Borah BM, Das G. Macroporous metal oxides as an efficient heterogeneous catalyst for various organic transformations—a comparative study. J Mol Catal A Chem. 2007;274(1):1.CrossRef Thakuria H, Borah BM, Das G. Macroporous metal oxides as an efficient heterogeneous catalyst for various organic transformations—a comparative study. J Mol Catal A Chem. 2007;274(1):1.CrossRef
[112]
Zurück zum Zitat Wang S, Yang Z, Zhang H, Tan H, Yu J, Wu J. Mesoporous β-MnO2/sulfur composite as cathode material for Li–S batteries. Electrochim Acta. 2013;106:307.CrossRef Wang S, Yang Z, Zhang H, Tan H, Yu J, Wu J. Mesoporous β-MnO2/sulfur composite as cathode material for Li–S batteries. Electrochim Acta. 2013;106:307.CrossRef
[113]
Zurück zum Zitat Zhecheva E, Stoyanova R. Stabilization of the layered crystal structure of LiNiO2 by co-substitution. Solid State Ionics. 1993;66(1):143.CrossRef Zhecheva E, Stoyanova R. Stabilization of the layered crystal structure of LiNiO2 by co-substitution. Solid State Ionics. 1993;66(1):143.CrossRef
[114]
Zurück zum Zitat Lu Z, MacNeil D, Dahn J. Layered cathode materials Li [Ni x Li(1/3−2x/3)Mn(2/3−x/3)]O2 for lithium-ion batteries. Electrochem Solid State Lett. 2001;4(11):A191.CrossRef Lu Z, MacNeil D, Dahn J. Layered cathode materials Li [Ni x Li(1/3−2x/3)Mn(2/3−x/3)]O2 for lithium-ion batteries. Electrochem Solid State Lett. 2001;4(11):A191.CrossRef
[115]
Zurück zum Zitat Ito A, Li D, Sato Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y. Cyclic deterioration and its improvement for Li-rich layered cathode material Li [Ni0.17 Li 0.2Co0.07Mn0.56]O2. J Power Sources. 2010;195(2):567.CrossRef Ito A, Li D, Sato Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y. Cyclic deterioration and its improvement for Li-rich layered cathode material Li [Ni0.17 Li 0.2Co0.07Mn0.56]O2. J Power Sources. 2010;195(2):567.CrossRef
[116]
Zurück zum Zitat Liu S, Wang J, Zeng J, Ou J, Li Z, Liu X, Yang S. “Green” electrochemical synthesis of Pt/graphene sheet nanocomposite film and its electrocatalytic property. J Power Sources. 2010;195(15):4628.CrossRef Liu S, Wang J, Zeng J, Ou J, Li Z, Liu X, Yang S. “Green” electrochemical synthesis of Pt/graphene sheet nanocomposite film and its electrocatalytic property. J Power Sources. 2010;195(15):4628.CrossRef
[117]
Zurück zum Zitat Zhou G, Wang DW, Li F, Zhang L, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater. 2010;22(18):5306.CrossRef Zhou G, Wang DW, Li F, Zhang L, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater. 2010;22(18):5306.CrossRef
[118]
Zurück zum Zitat Lu S, Chen Y, Wu X, Wang Z, Li Y. Three-dimensional sulfur/graphene multifunctional hybrid sponges for lithium–sulfur batteries with large areal mass loading. Sci Rep. 2014;4:4629.CrossRef Lu S, Chen Y, Wu X, Wang Z, Li Y. Three-dimensional sulfur/graphene multifunctional hybrid sponges for lithium–sulfur batteries with large areal mass loading. Sci Rep. 2014;4:4629.CrossRef
[119]
Zurück zum Zitat Yin L, Wang J, Lin F, Yang J, Nuli Y. Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li–S batteries. Energy Environ Sci. 2012;5(5):6966.CrossRef Yin L, Wang J, Lin F, Yang J, Nuli Y. Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li–S batteries. Energy Environ Sci. 2012;5(5):6966.CrossRef
[120]
Zurück zum Zitat Zhang C, Lv W, Zhang W, Zheng X, Wu MB, Wei W, Tao Y, Li Z, Yang QH. Reduction of graphene oxide by hydrogen sulfide: a promising strategy for pollutant control and as an electrode for Li–S batteries. Adv Energy Mater. 2014;4(7):1301565.CrossRef Zhang C, Lv W, Zhang W, Zheng X, Wu MB, Wei W, Tao Y, Li Z, Yang QH. Reduction of graphene oxide by hydrogen sulfide: a promising strategy for pollutant control and as an electrode for Li–S batteries. Adv Energy Mater. 2014;4(7):1301565.CrossRef
[121]
Zurück zum Zitat Wang H, Wang G, Ling Y, Qian F, Song Y, Lu X, Chen S, Tong Y, Li Y. High power density microbial fuel cell with flexible 3D graphene–nickel foam as anode. Nanoscale. 2013;5(21):10283.CrossRef Wang H, Wang G, Ling Y, Qian F, Song Y, Lu X, Chen S, Tong Y, Li Y. High power density microbial fuel cell with flexible 3D graphene–nickel foam as anode. Nanoscale. 2013;5(21):10283.CrossRef
[122]
Zurück zum Zitat Wang L, Wang D, Zhang F, Jin J. Interface chemistry guided long-cycle-life Li–S battery. Nano Lett. 2013;13(9):4206.CrossRef Wang L, Wang D, Zhang F, Jin J. Interface chemistry guided long-cycle-life Li–S battery. Nano Lett. 2013;13(9):4206.CrossRef
[123]
Zurück zum Zitat Wang YX, Huang L, Sun LC, Xie SY, Xu GL, Chen SR, Xu YF, Li JT, Chou SL, Dou SX, Sun SG. Facile synthesis of a interleaved expanded graphite-embedded sulphur nanocomposite as cathode of Li–S batteries with excellent lithium storage performance. J Mater Chem. 2012;22(11):4744.CrossRef Wang YX, Huang L, Sun LC, Xie SY, Xu GL, Chen SR, Xu YF, Li JT, Chou SL, Dou SX, Sun SG. Facile synthesis of a interleaved expanded graphite-embedded sulphur nanocomposite as cathode of Li–S batteries with excellent lithium storage performance. J Mater Chem. 2012;22(11):4744.CrossRef
[124]
Zurück zum Zitat Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns EJ, Zhang Y. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc. 2011;133(46):18522.CrossRef Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns EJ, Zhang Y. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc. 2011;133(46):18522.CrossRef
[125]
Zurück zum Zitat Liang X, Garsuch A, Nazar LF. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew Chem Int Ed Engl. 2015;54(13):3907.CrossRef Liang X, Garsuch A, Nazar LF. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew Chem Int Ed Engl. 2015;54(13):3907.CrossRef
Metadaten
Titel
Recent advances in cathode materials for Li–S battery: structure and performance
verfasst von
Chao Li
Zhen-Bo Wang
Qian Wang
Da-Ming Gu
Publikationsdatum
29.04.2017
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 5/2017
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-017-0900-2

Weitere Artikel der Ausgabe 5/2017

Rare Metals 5/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.