Skip to main content

2016 | OriginalPaper | Buchkapitel

13. Recent Advances in Global Fracture Mechanics of Growth of Large Hydraulic Crack Systems in Gas or Oil Shale: A Review

verfasst von : Zdeněk P. Bažant, Viet T. Chau

Erschienen in: New Frontiers in Oil and Gas Exploration

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter reviews the recent progress toward computer simulation of the growth of vast systems of branched hydraulic cracks needed for the efficient extraction of gas or oil from shale strata. It is emphasized that, to achieve significant gas extraction, the spacing of parallel hydraulic cracks must be on the order of 0.1 m, which means that the fracturing of the entire fracking stage would require creating about a million vertical cracks. Another emphasized feature is that the viscous flow of fracking water along the hydraulic cracks must be combined with Darcy diffusion of a large amount of water into the pores and flaws in shale. The fracture mechanics on the global scale is handled by the crack band model with gradual postpeak softening and a localization limiter in the form of a material characteristic length. Small scale computer simulations demonstrate that the computational approach produces realistically looking results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adachi, J., Siebrits, E., Peirce, A., & Desroches, J. (2007). Computer simulation of hydraulic fractures. International Journal of Rock Mechanics and Mining Sciences, 44(5), 739–757. Adachi, J., Siebrits, E., Peirce, A., & Desroches, J. (2007). Computer simulation of hydraulic fractures. International Journal of Rock Mechanics and Mining Sciences, 44(5), 739–757.
2.
Zurück zum Zitat Adachi, J. I., & Detournay, E. (2008). Plane strain propagation of a hydraulic fracture in a permeable rock. Engineering Fracture Mechanics, 75, 4666–4694.CrossRef Adachi, J. I., & Detournay, E. (2008). Plane strain propagation of a hydraulic fracture in a permeable rock. Engineering Fracture Mechanics, 75, 4666–4694.CrossRef
3.
Zurück zum Zitat American Petroleum Institute. (1998). Recommended Practices for Core Analysis. API RP40. American Petroleum Institute. (1998). Recommended Practices for Core Analysis. API RP40.
4.
Zurück zum Zitat Bažant, Z. P., Caner, F. C., Adley, M. D., & Akers, S. A. (2000). Microplane model M4 for concrete: I. Formulation with work-conjugate deviatoric stress. Journal of Engineering Mechanics ASCE, 126(9), 944–953.CrossRef Bažant, Z. P., Caner, F. C., Adley, M. D., & Akers, S. A. (2000). Microplane model M4 for concrete: I. Formulation with work-conjugate deviatoric stress. Journal of Engineering Mechanics ASCE, 126(9), 944–953.CrossRef
5.
Zurück zum Zitat Bažant, Z. P., & Cedolin, L. (1991). Stability of structures: Elastic, inelastic, fracture and damage theories. New York: Oxford University Press (also 2nd ed. Dover Publ. 2003, 3rd ed. World Scientific 2010). Bažant, Z. P., & Cedolin, L. (1991). Stability of structures: Elastic, inelastic, fracture and damage theories. New York: Oxford University Press (also 2nd ed. Dover Publ. 2003, 3rd ed. World Scientific 2010).
6.
Zurück zum Zitat Bažant, Z. P., & Oh, B. H. (1983). Crack band theory for fracture of concrete. Materials and Structures, 16, 155–177. Bažant, Z. P., & Oh, B. H. (1983). Crack band theory for fracture of concrete. Materials and Structures, 16, 155–177.
7.
Zurück zum Zitat Bažant, Z. P., & Ohtsubo, H. (1977). Stability conditions for propagation of a system of cracks in a brittle solid. Mechanics Research Communications, 4(5), 353–366.CrossRefMATH Bažant, Z. P., & Ohtsubo, H. (1977). Stability conditions for propagation of a system of cracks in a brittle solid. Mechanics Research Communications, 4(5), 353–366.CrossRefMATH
8.
Zurück zum Zitat Bažant, Z. P., & Ohtsubo, H. (1978). Geothermal heat extraction by water circulation through a large crack in dry hot rock mass. International Journal for Numerical and Analytical Methods in Geomechanics, 2(4), 317–327. Bažant, Z. P., & Ohtsubo, H. (1978). Geothermal heat extraction by water circulation through a large crack in dry hot rock mass. International Journal for Numerical and Analytical Methods in Geomechanics, 2(4), 317–327.
9.
Zurück zum Zitat Bažant, Z. P., Ohtsubo, R., & Aoh, K. (1979). Stability and post-critical growth of a system of cooling and shrinkage cracks. International Journal of Fracture, 15, 443–456.CrossRef Bažant, Z. P., Ohtsubo, R., & Aoh, K. (1979). Stability and post-critical growth of a system of cooling and shrinkage cracks. International Journal of Fracture, 15, 443–456.CrossRef
10.
Zurück zum Zitat Bažant, Z. P., & Planas, J. (1998). Fracture and size effect in concrete and other quasibrittle material. Boca Raton: CRC Press. Bažant, Z. P., & Planas, J. (1998). Fracture and size effect in concrete and other quasibrittle material. Boca Raton: CRC Press.
11.
Zurück zum Zitat Bažant, Z. P., Salviato, M., Chau, V. T., Viswanathan, H., & Zubelewicz, A. (2014). Why fracking works. ASME Journal of Applied Mechanics, 81(Oct.), 101010-1–101010-10. Bažant, Z. P., Salviato, M., Chau, V. T., Viswanathan, H., & Zubelewicz, A. (2014). Why fracking works. ASME Journal of Applied Mechanics, 81(Oct.), 101010-1–101010-10.
12.
Zurück zum Zitat Bažant, Z. P., & Wahab, A. B. (1979). Instability and spacing of cooling or shrinkage cracks. ASCE Journal of Engineering Mechanics, 105, 873–889. Bažant, Z. P., & Wahab, A. B. (1979). Instability and spacing of cooling or shrinkage cracks. ASCE Journal of Engineering Mechanics, 105, 873–889.
13.
Zurück zum Zitat Bear, J. (1988). Dynamics of fluids in porous media. Mineola, NY: Dover Publications, ISBN 0486656756.MATH Bear, J. (1988). Dynamics of fluids in porous media. Mineola, NY: Dover Publications, ISBN 0486656756.MATH
14.
Zurück zum Zitat Beckwith, R. (2010). Hydraulic fracturing: The fuss, the facts, the future. Journal of Petroleum Technology, 63(12), 34–41.CrossRef Beckwith, R. (2010). Hydraulic fracturing: The fuss, the facts, the future. Journal of Petroleum Technology, 63(12), 34–41.CrossRef
15.
Zurück zum Zitat Bunger, A. (2013). Analysis of the power input needed to propagate multiple hydraulic fractures. International Journal of Solids and Structures, 50. doi:12.1016/j.ijsolstr.2013.01.004. Bunger, A. (2013). Analysis of the power input needed to propagate multiple hydraulic fractures. International Journal of Solids and Structures, 50. doi:12.1016/j.ijsolstr.2013.01.004.
16.
Zurück zum Zitat Bunger, A., Detournay, E., & Garagash, D. (2005). Toughness-dominated hydraulic fracture with leak-off. International Journal of Fracture, 134(02), 175–190.CrossRefMATH Bunger, A., Detournay, E., & Garagash, D. (2005). Toughness-dominated hydraulic fracture with leak-off. International Journal of Fracture, 134(02), 175–190.CrossRefMATH
17.
Zurück zum Zitat Bunger, A., Jeffrey, R. G., & Zhang, X. (2014). Constraints on simultaneous growth of hydraulic fractures from multiple perforation clusters in horizontal wells. SPE Journal, 19(04), 608–620.CrossRef Bunger, A., Jeffrey, R. G., & Zhang, X. (2014). Constraints on simultaneous growth of hydraulic fractures from multiple perforation clusters in horizontal wells. SPE Journal, 19(04), 608–620.CrossRef
18.
Zurück zum Zitat Bunger, A., & Pierce, A. (2014). Numerical simulation of simultaneous growth of multiple fracturing interacting hydraulic fractures from horizontal wells. In Proceedings of ASCE Shale Energy Conference, Pittsburgh, PA. Bunger, A., & Pierce, A. (2014). Numerical simulation of simultaneous growth of multiple fracturing interacting hydraulic fractures from horizontal wells. In Proceedings of ASCE Shale Energy Conference, Pittsburgh, PA.
19.
Zurück zum Zitat Bunger, A. P., & Cardella, D. J. (2015). Spatial distribution of production in a Marcellus Shale well: Evidence for hydraulic fracture stress interaction. Journal of Petroleum Science and Engineering, 133, 162–166.CrossRef Bunger, A. P., & Cardella, D. J. (2015). Spatial distribution of production in a Marcellus Shale well: Evidence for hydraulic fracture stress interaction. Journal of Petroleum Science and Engineering, 133, 162–166.CrossRef
20.
Zurück zum Zitat Červenka, J., Bažant, Z.P., & Wierer, M. (2005). Equivalent localization element for crack band approach to mesh-sensitivity in microplane model. International Journal for Numerical Methods in Engineering, 62(5), 700–726.CrossRefMATH Červenka, J., Bažant, Z.P., & Wierer, M. (2005). Equivalent localization element for crack band approach to mesh-sensitivity in microplane model. International Journal for Numerical Methods in Engineering, 62(5), 700–726.CrossRefMATH
21.
Zurück zum Zitat Chau, V. T., Bažant, Z. P. & Su, Y. (2016). Growth model of large branched 3D hydraulic system in gas or oil shale. Philosophical Transactions. Accepted. Chau, V. T., Bažant, Z. P. & Su, Y. (2016). Growth model of large branched 3D hydraulic system in gas or oil shale. Philosophical Transactions. Accepted.
22.
Zurück zum Zitat Cipolla, C. L., Mayerhofer, M. J., & Warpinski, N. R. (2009). Fracture design considerations in horizontal wells drilled in unconventional gas reservoirs. In SPE Hydraulic Fracturing Technology Conference, 19–21 January, Texas. Cipolla, C. L., Mayerhofer, M. J., & Warpinski, N. R. (2009). Fracture design considerations in horizontal wells drilled in unconventional gas reservoirs. In SPE Hydraulic Fracturing Technology Conference, 19–21 January, Texas.
23.
Zurück zum Zitat Cui, X., Bustin A. M. M., & Bustin R. M. (2009). Measurements of gas permeability and diffusivity of tight reservoir rocks: Different approaches and their applications. Geofluids, 9, 208–223.CrossRef Cui, X., Bustin A. M. M., & Bustin R. M. (2009). Measurements of gas permeability and diffusivity of tight reservoir rocks: Different approaches and their applications. Geofluids, 9, 208–223.CrossRef
24.
Zurück zum Zitat Detournay, E. (2004). Propagation regimes of fluid-driven fractures in impermeable rocks. International Journal of Geomechanics, 4, 35. doi:10.1061/(ASCE)1532-3641(2004)4:1(35).CrossRef Detournay, E. (2004). Propagation regimes of fluid-driven fractures in impermeable rocks. International Journal of Geomechanics, 4, 35. doi:10.1061/(ASCE)1532-3641(2004)4:1(35).CrossRef
25.
Zurück zum Zitat Detournay, E. (2016). Mechanics of hydraulic fractures. Annual Review of Fluid Mechanics, 48(1), 311–339.CrossRefMATH Detournay, E. (2016). Mechanics of hydraulic fractures. Annual Review of Fluid Mechanics, 48(1), 311–339.CrossRefMATH
26.
Zurück zum Zitat Detournay, E., & Peirce, A. (2014). On the moving boundary conditions for a hydraulic fracture. International Journal of Engineering Science, 84, 147–155.CrossRef Detournay, E., & Peirce, A. (2014). On the moving boundary conditions for a hydraulic fracture. International Journal of Engineering Science, 84, 147–155.CrossRef
27.
Zurück zum Zitat Eymard, R., Gallouet, T. R., & Herbin, R. (2000). The finite volume method. In P. G. Ciarlet & J. L. Lions (Eds.), Handbook of numerical analysis (Vol. VII, pp. 713–1020). Amsterdam: North-Holland Eymard, R., Gallouet, T. R., & Herbin, R. (2000). The finite volume method. In P. G. Ciarlet & J. L. Lions (Eds.), Handbook of numerical analysis (Vol. VII, pp. 713–1020). Amsterdam: North-Holland
28.
Zurück zum Zitat Gale, J. F. W. (2002). Specifying lengths of horizontal wells in fractured reservoirs. SPE Reservoir Evaluation & Engineering, 78600, 266–272.CrossRef Gale, J. F. W. (2002). Specifying lengths of horizontal wells in fractured reservoirs. SPE Reservoir Evaluation & Engineering, 78600, 266–272.CrossRef
29.
Zurück zum Zitat Gale, J. F. W., Reed, R. M., & Holder, J. (2007). Natural fractures in the Barnett shale and their importance for fracture treatments. American Association of Petroleum Geologists Memoirs, 91(4), 603–622.CrossRef Gale, J. F. W., Reed, R. M., & Holder, J. (2007). Natural fractures in the Barnett shale and their importance for fracture treatments. American Association of Petroleum Geologists Memoirs, 91(4), 603–622.CrossRef
30.
Zurück zum Zitat Garagash, D., & Detournay, E. (2000). The tip region of a fluid-driven fracture in an elastic medium. Journal of Applied Mechanics, 67(1), 183–192.CrossRefMATH Garagash, D., & Detournay, E. (2000). The tip region of a fluid-driven fracture in an elastic medium. Journal of Applied Mechanics, 67(1), 183–192.CrossRefMATH
31.
Zurück zum Zitat Guidry, K., Luffel D., & Curtis J. (1995). Development of laboratory and petrophysical techniques for evaluating shale reservoirs - final technical report, Gas Shale Project Area, Restech, Inc., GRI Contract No. 5086-213-1390. Guidry, K., Luffel D., & Curtis J. (1995). Development of laboratory and petrophysical techniques for evaluating shale reservoirs - final technical report, Gas Shale Project Area, Restech, Inc., GRI Contract No. 5086-213-1390.
32.
Zurück zum Zitat Haifeng, Z., Hang, L. Guohua C., Yawei, L., Jun, S., & Peng, R. (2013). New insight into mechanisms of fracture network generation in shale gas reservoir. Journal of Petroleum Science and Engineering, 110, 193–198.CrossRef Haifeng, Z., Hang, L. Guohua C., Yawei, L., Jun, S., & Peng, R. (2013). New insight into mechanisms of fracture network generation in shale gas reservoir. Journal of Petroleum Science and Engineering, 110, 193–198.CrossRef
33.
Zurück zum Zitat Javadpour, F. (2009). Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstones). Journal of Canadian Petroleum Technology, 48, 16–21.CrossRef Javadpour, F. (2009). Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstones). Journal of Canadian Petroleum Technology, 48, 16–21.CrossRef
34.
Zurück zum Zitat Javadpour, F., Fisher, D., & Unsworth, M. (2007). Nanoscale gas flow in shale gas sediments. Journal of Canadian Petroleum Technology, 46, 55–61. Javadpour, F., Fisher, D., & Unsworth, M. (2007). Nanoscale gas flow in shale gas sediments. Journal of Canadian Petroleum Technology, 46, 55–61.
35.
Zurück zum Zitat Lecampion, B. (2009). An extended finite element method for hydraulic fracture problems. Communications in Numerical Methods in Engineering, 25(2), 121–133.MathSciNetCrossRefMATH Lecampion, B. (2009). An extended finite element method for hydraulic fracture problems. Communications in Numerical Methods in Engineering, 25(2), 121–133.MathSciNetCrossRefMATH
36.
Zurück zum Zitat Louck, R.G., Reed, R.M., Ruppel, S.C., & Jarvie, D.M. (2009). Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale. Journal of Sedimentary Research, 79, 848–861.CrossRef Louck, R.G., Reed, R.M., Ruppel, S.C., & Jarvie, D.M. (2009). Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale. Journal of Sedimentary Research, 79, 848–861.CrossRef
37.
Zurück zum Zitat Mason, J. E. (2011). Well production profiles assess Fayetteville shale gas potential. Oil & Gas Journal, 109(11), 76–76. Mason, J. E. (2011). Well production profiles assess Fayetteville shale gas potential. Oil & Gas Journal, 109(11), 76–76.
38.
Zurück zum Zitat Maurel, O., Reess, T., Matallah, M., de Ferron, A., Chen, W., La Borderie, C., et al. (2010). Electrohydraulic shock wave generation as a means to increase intrinsic permeability of mortar. Cement and Concrete Research, 40, 1631–1638.CrossRef Maurel, O., Reess, T., Matallah, M., de Ferron, A., Chen, W., La Borderie, C., et al. (2010). Electrohydraulic shock wave generation as a means to increase intrinsic permeability of mortar. Cement and Concrete Research, 40, 1631–1638.CrossRef
39.
Zurück zum Zitat Metwally, Y. M., & Sondergeld C. H. (2010). Measuring low permeabilities of gas-sands and shales using a pressure transmission technique. International Journal of Rock Mechanics and Mining, 48, 1135–1144.CrossRef Metwally, Y. M., & Sondergeld C. H. (2010). Measuring low permeabilities of gas-sands and shales using a pressure transmission technique. International Journal of Rock Mechanics and Mining, 48, 1135–1144.CrossRef
40.
Zurück zum Zitat Montgomery, C. T., & Smith, M. B. (2010). Hydraulic fracturing: History of an enduring technology. Journal of Petroleum Technology, 63(12), 26–32.CrossRef Montgomery, C. T., & Smith, M. B. (2010). Hydraulic fracturing: History of an enduring technology. Journal of Petroleum Technology, 63(12), 26–32.CrossRef
41.
Zurück zum Zitat Nemat-Nasser, S., Keer, L. M., & Parihar, K. S. (1976). Unstable growth of thermally induced interacting cracks in Brittle solids. International Journal of Solids and Structures 14, 409–430. Nemat-Nasser, S., Keer, L. M., & Parihar, K. S. (1976). Unstable growth of thermally induced interacting cracks in Brittle solids. International Journal of Solids and Structures 14, 409–430.
42.
Zurück zum Zitat Olson, J. E. (2004). Predicting fracture swarms: The influence of subcritical crack growth and the crack-tip process zone on joint spacing in rock. Journal of the Geological Society of London, 231, 73–87.CrossRef Olson, J. E. (2004). Predicting fracture swarms: The influence of subcritical crack growth and the crack-tip process zone on joint spacing in rock. Journal of the Geological Society of London, 231, 73–87.CrossRef
43.
Zurück zum Zitat Patankar, S. V. (1980). Numerical heat transfer and fluid flow. New York: Hemisphere Publishing Corporation.MATH Patankar, S. V. (1980). Numerical heat transfer and fluid flow. New York: Hemisphere Publishing Corporation.MATH
44.
Zurück zum Zitat Rijken, P., & Cooke, M. L. (2001). Role of shale thickness on vertical connectivity of fractures: Application of crack-bridging theory to the Austin Chalk, Texas. Tectonophysics, 337, 117–133.CrossRef Rijken, P., & Cooke, M. L. (2001). Role of shale thickness on vertical connectivity of fractures: Application of crack-bridging theory to the Austin Chalk, Texas. Tectonophysics, 337, 117–133.CrossRef
45.
Zurück zum Zitat Society of Petroleum Engineers. (2010). Legends of Hydraulic Fracturing (CDROM), ISBN:978-1-55563-298-4. Society of Petroleum Engineers. (2010). Legends of Hydraulic Fracturing (CDROM), ISBN:978-1-55563-298-4.
46.
Zurück zum Zitat Soeder, D. J. (1988). Porosity and permeability of eastern Devonian gas shale. SPE Formation Evaluation, 3, 116–124.CrossRef Soeder, D. J. (1988). Porosity and permeability of eastern Devonian gas shale. SPE Formation Evaluation, 3, 116–124.CrossRef
47.
Zurück zum Zitat Song, W., Jinzhou, Z., & Yongming, L. (2014). Hydraulic fracturing simulation of complex fractures growth in naturally fractured shale gas reservoir. Arabian Journal for Science and Engineering, 39(10), 7411–7419.CrossRef Song, W., Jinzhou, Z., & Yongming, L. (2014). Hydraulic fracturing simulation of complex fractures growth in naturally fractured shale gas reservoir. Arabian Journal for Science and Engineering, 39(10), 7411–7419.CrossRef
48.
Zurück zum Zitat Stevenson, A. C. (1945). Complex potentials in two-dimensional elasticity. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol. 184, No. 997, pp. 129–179). The Royal Society. Stevenson, A. C. (1945). Complex potentials in two-dimensional elasticity. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol. 184, No. 997, pp. 129–179). The Royal Society.
49.
Zurück zum Zitat Tang, Y., Tang, X., & Wang, G. Y. (2011). Summary of hydraulic fracturing technology in shale gas development. Geological Bulletin of China, 30, 393–399. Tang, Y., Tang, X., & Wang, G. Y. (2011). Summary of hydraulic fracturing technology in shale gas development. Geological Bulletin of China, 30, 393–399.
50.
Zurück zum Zitat Timoshenko, S., & Goodier, J. N. (1970). Theory of elasticity. New York: McGraw Hill.MATH Timoshenko, S., & Goodier, J. N. (1970). Theory of elasticity. New York: McGraw Hill.MATH
51.
Zurück zum Zitat Versteeg, H., & Malalasekera, W. (2007). An introduction to computational fluid dynamics: The finite volume method. New York: Pearson Education Limited. Versteeg, H., & Malalasekera, W. (2007). An introduction to computational fluid dynamics: The finite volume method. New York: Pearson Education Limited.
52.
Zurück zum Zitat Weng, X. (2015). Modeling of complex hydraulic fractures in naturally fractured formation. Journal of Unconventional Oil and Gas Resources, 9, 114–135.CrossRef Weng, X. (2015). Modeling of complex hydraulic fractures in naturally fractured formation. Journal of Unconventional Oil and Gas Resources, 9, 114–135.CrossRef
53.
54.
Zurück zum Zitat Zou, Y., Zhang, S., Ma, X., Zhou, T., & Zeng, B. (2016). Numerical investigation of hydraulic fracture network propagation in naturally fractured shale formations. Journal of Structural Geology, 84, 1–13.CrossRef Zou, Y., Zhang, S., Ma, X., Zhou, T., & Zeng, B. (2016). Numerical investigation of hydraulic fracture network propagation in naturally fractured shale formations. Journal of Structural Geology, 84, 1–13.CrossRef
Metadaten
Titel
Recent Advances in Global Fracture Mechanics of Growth of Large Hydraulic Crack Systems in Gas or Oil Shale: A Review
verfasst von
Zdeněk P. Bažant
Viet T. Chau
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-40124-9_13