Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 15/2019

18.07.2019 | Review

Recent advances in nano-materials for packaging of electronic devices

verfasst von: Shuye Zhang, Xiangyu Xu, Tiesong Lin, Peng He

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 15/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, Moore’s law had a remarkable effect on predicting the development of semiconductor technology. As the size of devices shrinks to micro scale or nano scale, Intel’s newest 10-nm logic technology is scheduled to start product shipments before the end of 2017. Moore’s law will not die out, as the research scale reaches the atomic scale, “new devices” and new interconnection methods are urgently needed. In this paper, based on emerging interconnection requirement, the contribution to the advanced electronic packaging containing novel nano-materials, such as the carbon nanotubes, nanoparticles sintering, interconnection of nano-solder, nano-silver and surface plasma nano-welding are discussed. For the next 5–10 years, two new types of interconnect solutions are gaining attentions: solder joint alternatives and Cu electrode alternatives. The former uses new materials such as graphene, carbon nanotubes and nanowires to replace traditional solder joints. The latter uses optical media to replace the traditional Cu metal. In general, advanced materials will make more and more outstanding contributions in the development of electronic packaging in the next 10–20 years.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C.C. Wu, D.W. Lin, A. Keshavarzi et al., High performance 22/20nm FinFET CMOS devices with advanced high-K/metal gate scheme. 2010 International Electron Devices Meeting (IEEE, 2010), pp. 27.1.1–27.1.4 C.C. Wu, D.W. Lin, A. Keshavarzi et al., High performance 22/20nm FinFET CMOS devices with advanced high-K/metal gate scheme. 2010 International Electron Devices Meeting (IEEE, 2010), pp. 27.1.1–27.1.4
2.
Zurück zum Zitat M.T. Bohr, I.A. Young, CMOS scaling trends and beyond. IEEE Micro 37(6), 20–29 (2017)CrossRef M.T. Bohr, I.A. Young, CMOS scaling trends and beyond. IEEE Micro 37(6), 20–29 (2017)CrossRef
3.
Zurück zum Zitat H.N. Khan, D.A. Hounshell, E.R.H. Fuchs, Science and research policy at the end of Moore’s law. Nat. Electron. 1(1), 14 (2018)CrossRef H.N. Khan, D.A. Hounshell, E.R.H. Fuchs, Science and research policy at the end of Moore’s law. Nat. Electron. 1(1), 14 (2018)CrossRef
4.
Zurück zum Zitat T.E. Kazior, Beyond CMOS: heterogeneous integration of III–V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems. Philos. Trans. R. Soc. A 372(2012), 20130105 (2014)CrossRef T.E. Kazior, Beyond CMOS: heterogeneous integration of III–V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems. Philos. Trans. R. Soc. A 372(2012), 20130105 (2014)CrossRef
5.
Zurück zum Zitat E. Stern, J.F. Klemic, D.A. Routenberg et al., Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445(7127), 519 (2007)CrossRef E. Stern, J.F. Klemic, D.A. Routenberg et al., Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445(7127), 519 (2007)CrossRef
6.
Zurück zum Zitat S. Dimov, E.B.J.P. Brousseau, R. Minev, S. Bigot, Micro-and nano-manufacturing: challenges and opportunities. Proc. Inst. Mech. Eng. C 226(1), 3–15 (2012)CrossRef S. Dimov, E.B.J.P. Brousseau, R. Minev, S. Bigot, Micro-and nano-manufacturing: challenges and opportunities. Proc. Inst. Mech. Eng. C 226(1), 3–15 (2012)CrossRef
7.
Zurück zum Zitat S. Yokogawa, S.P. Burgos, H.A. Atwater, Plasmonic color filters for CMOS image sensor applications. Nano Lett. 12(8), 4349–4354 (2012)CrossRef S. Yokogawa, S.P. Burgos, H.A. Atwater, Plasmonic color filters for CMOS image sensor applications. Nano Lett. 12(8), 4349–4354 (2012)CrossRef
8.
Zurück zum Zitat W. Arden, M. Brillouët, P. Cogez, M. Graef, B. Huizing, R. Mahnkopf, More-than-Moore white paper. Version 2 (2010), p. 14 W. Arden, M. Brillouët, P. Cogez, M. Graef, B. Huizing, R. Mahnkopf, More-than-Moore white paper. Version 2 (2010), p. 14
9.
Zurück zum Zitat T.N. Theis, H.-S.P. Wong, The end of Moore’s law: a new beginning for information technology. Comput. Sci. Eng. 19(2), 41–50 (2017)CrossRef T.N. Theis, H.-S.P. Wong, The end of Moore’s law: a new beginning for information technology. Comput. Sci. Eng. 19(2), 41–50 (2017)CrossRef
10.
Zurück zum Zitat W. Lu, C.M. Lieber, Nanoelectronics from the bottom up, in Nanoscience and Technology: A Collection of Reviews from Nature Journals, ed. by W. Lu, C.M. Lieber (World Scientific, London, 2010), pp. 137–146 W. Lu, C.M. Lieber, Nanoelectronics from the bottom up, in Nanoscience and Technology: A Collection of Reviews from Nature Journals, ed. by W. Lu, C.M. Lieber (World Scientific, London, 2010), pp. 137–146
11.
Zurück zum Zitat W.M. Moreau, Semiconductor Lithography: Principles, Practices, and Materials (Springer, New York, 2012) W.M. Moreau, Semiconductor Lithography: Principles, Practices, and Materials (Springer, New York, 2012)
12.
Zurück zum Zitat J.K. Hagge, Ultra-reliable packaging for silicon-on-silicon WSI. IEEE Trans. Compon. Hybrids Manuf. Technol. 12(2), 170–179 (1989)CrossRef J.K. Hagge, Ultra-reliable packaging for silicon-on-silicon WSI. IEEE Trans. Compon. Hybrids Manuf. Technol. 12(2), 170–179 (1989)CrossRef
13.
Zurück zum Zitat J. Iannacci, Reliability of MEMS: a perspective on failure mechanisms, improvement solutions and best practices at development level. Displays 37, 62–71 (2015)CrossRef J. Iannacci, Reliability of MEMS: a perspective on failure mechanisms, improvement solutions and best practices at development level. Displays 37, 62–71 (2015)CrossRef
14.
Zurück zum Zitat R.R. Tummala, E.J. Rymaszewski, A.G. Klopfenstein, Microelectronics Packaging Handbook Technology Drivers (Springer, New York, 2012) R.R. Tummala, E.J. Rymaszewski, A.G. Klopfenstein, Microelectronics Packaging Handbook Technology Drivers (Springer, New York, 2012)
15.
Zurück zum Zitat J.H. Lau, Reliability of ROHS-compliant 2D and 3D IC Interconnects (McGraw Hill Professional, New York, 2010) J.H. Lau, Reliability of ROHS-compliant 2D and 3D IC Interconnects (McGraw Hill Professional, New York, 2010)
16.
Zurück zum Zitat R. Mahajan, R. Nair, V. Wakharkar et al., Emerging directions for packaging technologies. Intel Technol. J. 6(2), 62–75 (2002) R. Mahajan, R. Nair, V. Wakharkar et al., Emerging directions for packaging technologies. Intel Technol. J. 6(2), 62–75 (2002)
17.
Zurück zum Zitat R. Ghaffarian, Book of Knowledge (BOK) for NASA Electronic Packaging Roadmap (2015) R. Ghaffarian, Book of Knowledge (BOK) for NASA Electronic Packaging Roadmap (2015)
18.
Zurück zum Zitat X.C. Tong, Advanced Materials for Thermal Management of Electronic Packaging, vol. 30 (Springer, New York, 2011)CrossRef X.C. Tong, Advanced Materials for Thermal Management of Electronic Packaging, vol. 30 (Springer, New York, 2011)CrossRef
19.
Zurück zum Zitat M.T. Byrne, Y.K. Gun’ko, Recent advances in research on carbon nanotube–polymer composites. Adv. Mater. 22(15), 1672–1688 (2010)CrossRef M.T. Byrne, Y.K. Gun’ko, Recent advances in research on carbon nanotube–polymer composites. Adv. Mater. 22(15), 1672–1688 (2010)CrossRef
20.
Zurück zum Zitat Y. NormanáZhou, Room-temperature pressureless bonding with silver nanowire paste: towards organic electronic and heat-sensitive functional devices packaging. J. Mater. Chem. 22(26), 12997–13001 (2012)CrossRef Y. NormanáZhou, Room-temperature pressureless bonding with silver nanowire paste: towards organic electronic and heat-sensitive functional devices packaging. J. Mater. Chem. 22(26), 12997–13001 (2012)CrossRef
21.
Zurück zum Zitat J. Yan, G. Zou, A. Wu, J. Ren, J. Yan, A. Hu, Y. Zhou, Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging. Scripta Mater. 66(8), 582–585 (2012)CrossRef J. Yan, G. Zou, A. Wu, J. Ren, J. Yan, A. Hu, Y. Zhou, Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging. Scripta Mater. 66(8), 582–585 (2012)CrossRef
22.
Zurück zum Zitat S. Wang, M. Li, H. Ji, C. Wang, Rapid pressureless low-temperature sintering of Ag nanoparticles for high-power density electronic packaging. Scripta Mater. 69(11–12), 789–792 (2013)CrossRef S. Wang, M. Li, H. Ji, C. Wang, Rapid pressureless low-temperature sintering of Ag nanoparticles for high-power density electronic packaging. Scripta Mater. 69(11–12), 789–792 (2013)CrossRef
23.
Zurück zum Zitat K. Nagashio, T. Nishimura, K. Kita et al., Contact resistivity and current flow path at metal/graphene contact. Appl. Phys. Lett. 97(14), 143514 (2010)CrossRef K. Nagashio, T. Nishimura, K. Kita et al., Contact resistivity and current flow path at metal/graphene contact. Appl. Phys. Lett. 97(14), 143514 (2010)CrossRef
24.
Zurück zum Zitat S. Min Song, T. Yong Kim, O. Jae Sul et al., Improvement of graphene–metal contact resistance by introducing edge contacts at graphene under metal. Appl. Phys. Lett. 104(18), 183506 (2014)CrossRef S. Min Song, T. Yong Kim, O. Jae Sul et al., Improvement of graphene–metal contact resistance by introducing edge contacts at graphene under metal. Appl. Phys. Lett. 104(18), 183506 (2014)CrossRef
25.
Zurück zum Zitat R. Tummala (ed.), Fundamentals of Microsystems Packaging (McGraw-Hill, New York, 2001) R. Tummala (ed.), Fundamentals of Microsystems Packaging (McGraw-Hill, New York, 2001)
26.
Zurück zum Zitat R. Ulrich, W.D. Brown (eds.), Advanced Electronic Packaging, 2nd edn. (IEEE Press, Hoboken, 2005) R. Ulrich, W.D. Brown (eds.), Advanced Electronic Packaging, 2nd edn. (IEEE Press, Hoboken, 2005)
27.
Zurück zum Zitat J. Dally, P. Lall, J. Suhling, Mechanical Design of Electronic Systems (College House, Knoxville, 2008) J. Dally, P. Lall, J. Suhling, Mechanical Design of Electronic Systems (College House, Knoxville, 2008)
28.
Zurück zum Zitat K. Rahim, A. Mian, A review on laser processing in electronic and MEMS packaging. J. Electron. Packag. 139(3), 030801 (2017)CrossRef K. Rahim, A. Mian, A review on laser processing in electronic and MEMS packaging. J. Electron. Packag. 139(3), 030801 (2017)CrossRef
29.
Zurück zum Zitat Y. Zhong, R. An, H. Ma et al., Low-temperature-solderable intermetallic nanoparticles for 3D printable flexible electronics. Acta Mater. 162, 163–175 (2019)CrossRef Y. Zhong, R. An, H. Ma et al., Low-temperature-solderable intermetallic nanoparticles for 3D printable flexible electronics. Acta Mater. 162, 163–175 (2019)CrossRef
30.
Zurück zum Zitat R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)CrossRef R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)CrossRef
31.
Zurück zum Zitat B. Platek, K. Urbanski, T. Falat et al., The method of carbon nanotube dispersing for composites used in electronic packaging. 2011 11th IEEE International Conference on Nanotechnology (2011) B. Platek, K. Urbanski, T. Falat et al., The method of carbon nanotube dispersing for composites used in electronic packaging. 2011 11th IEEE International Conference on Nanotechnology (2011)
32.
Zurück zum Zitat J.C. Chiu, C.M. Chang, J.W. Lin et al., High electromagnetic shielding of multi-wall carbon nanotube composites using ionic liquid dispersant. 2008 58th Electronic Components and Technology Conference (IEEE, 2008), pp. 427–430 J.C. Chiu, C.M. Chang, J.W. Lin et al., High electromagnetic shielding of multi-wall carbon nanotube composites using ionic liquid dispersant. 2008 58th Electronic Components and Technology Conference (IEEE, 2008), pp. 427–430
33.
Zurück zum Zitat Z. Spitalsky, G. Tsoukleri, D. Tasis et al., High volume fraction carbon nanotube–epoxy composites. Nanotechnology 20(40), 405702 (2009)CrossRef Z. Spitalsky, G. Tsoukleri, D. Tasis et al., High volume fraction carbon nanotube–epoxy composites. Nanotechnology 20(40), 405702 (2009)CrossRef
34.
Zurück zum Zitat N. Domun, H. Hadavinia, T. Zhang et al., Improving the fracture toughness and the strength of epoxy using nanomaterials—a review of the current status. Nanoscale 7(23), 10294–10329 (2015)CrossRef N. Domun, H. Hadavinia, T. Zhang et al., Improving the fracture toughness and the strength of epoxy using nanomaterials—a review of the current status. Nanoscale 7(23), 10294–10329 (2015)CrossRef
35.
Zurück zum Zitat F. Inam, D.W.Y. Wong, M. Kuwata et al., Multiscale hybrid micro-nanocomposites based on carbon nanotubes and carbon fibers. J. Nanomater. 2010, 9 (2010)CrossRef F. Inam, D.W.Y. Wong, M. Kuwata et al., Multiscale hybrid micro-nanocomposites based on carbon nanotubes and carbon fibers. J. Nanomater. 2010, 9 (2010)CrossRef
36.
Zurück zum Zitat T. Falat, J. Felba, P. Matkowski et al., Electrical, thermal and mechanical properties of epoxy composites with hybrid micro-and nano-sized fillers for electronic packaging. Nanotechnology (IEEE-NANO), 2011 11th IEEE Conference on (IEEE, 2011), pp. 97–101 T. Falat, J. Felba, P. Matkowski et al., Electrical, thermal and mechanical properties of epoxy composites with hybrid micro-and nano-sized fillers for electronic packaging. Nanotechnology (IEEE-NANO), 2011 11th IEEE Conference on (IEEE, 2011), pp. 97–101
37.
Zurück zum Zitat G. Yamamoto, M. Omori, T. Hashida et al., A novel structure for carbon nanotube reinforced alumina composites with improved mechanical properties. Nanotechnology 19(31), 315708 (2008)CrossRef G. Yamamoto, M. Omori, T. Hashida et al., A novel structure for carbon nanotube reinforced alumina composites with improved mechanical properties. Nanotechnology 19(31), 315708 (2008)CrossRef
38.
Zurück zum Zitat F. Fondjo, D.S. Lee, C. Howe et al., Synthesis of a soft nanocomposite for flexible, wearable bioelectronics. 2017 IEEE 67th Electronic Components and Technology Conference (ECTC) (IEEE, 2017), pp. 780–785 F. Fondjo, D.S. Lee, C. Howe et al., Synthesis of a soft nanocomposite for flexible, wearable bioelectronics. 2017 IEEE 67th Electronic Components and Technology Conference (ECTC) (IEEE, 2017), pp. 780–785
39.
Zurück zum Zitat J. Buchheim, H.G. Park, Failure mechanism of the polymer infiltration of carbon nanotube forests. Nanotechnology 27(46), 464002 (2016)CrossRef J. Buchheim, H.G. Park, Failure mechanism of the polymer infiltration of carbon nanotube forests. Nanotechnology 27(46), 464002 (2016)CrossRef
40.
Zurück zum Zitat Y. Chai, P.C.H. Chan, Y. Fu et al., Copper/carbon nanotube composite interconnect for enhanced electromigration resistance. Electronic Components and Technology Conference, 2008. ECTC 2008. 58th (IEEE, 2008), pp. 412–420 Y. Chai, P.C.H. Chan, Y. Fu et al., Copper/carbon nanotube composite interconnect for enhanced electromigration resistance. Electronic Components and Technology Conference, 2008. ECTC 2008. 58th (IEEE, 2008), pp. 412–420
41.
Zurück zum Zitat N. Ferrer-Anglada, V. Gomis, Z. El-Hachemi et al., Carbon nanotube based composites for electronic applications: CNT–conducting polymers, CNT–Cu. Phys. Status Solidi A 203(6), 1082–1087 (2006)CrossRef N. Ferrer-Anglada, V. Gomis, Z. El-Hachemi et al., Carbon nanotube based composites for electronic applications: CNT–conducting polymers, CNT–Cu. Phys. Status Solidi A 203(6), 1082–1087 (2006)CrossRef
42.
Zurück zum Zitat Y. Zhang, Z. Kang, T. Bessho, Two-component spin-coated Ag/CNT composite films based on a silver heterogeneous nucleation mechanism adhesion-enhanced by mechanical interlocking and chemical grafting. Nanotechnology 28(10), 105607 (2017)CrossRef Y. Zhang, Z. Kang, T. Bessho, Two-component spin-coated Ag/CNT composite films based on a silver heterogeneous nucleation mechanism adhesion-enhanced by mechanical interlocking and chemical grafting. Nanotechnology 28(10), 105607 (2017)CrossRef
43.
Zurück zum Zitat Y. Jo, J.Y. Kim, S. Jung et al., 3D polymer objects with electronic components interconnected via conformally printed electrodes. Nanoscale 9(39), 14798–14803 (2017)CrossRef Y. Jo, J.Y. Kim, S. Jung et al., 3D polymer objects with electronic components interconnected via conformally printed electrodes. Nanoscale 9(39), 14798–14803 (2017)CrossRef
44.
Zurück zum Zitat S. Sun, W. Mu, M. Edwards et al., Vertically aligned CNT-Cu nano-composite material for stacked through-silicon-via interconnects. Nanotechnology 27(33), 335705 (2016)CrossRef S. Sun, W. Mu, M. Edwards et al., Vertically aligned CNT-Cu nano-composite material for stacked through-silicon-via interconnects. Nanotechnology 27(33), 335705 (2016)CrossRef
45.
Zurück zum Zitat H. Jiang, K. Moon, F. Hua et al., Synthesis and thermal and wetting properties of tin/silver alloy nanoparticles for low melting point lead-free solders. Chem. Mater. 19(18), 4482–4485 (2007)CrossRef H. Jiang, K. Moon, F. Hua et al., Synthesis and thermal and wetting properties of tin/silver alloy nanoparticles for low melting point lead-free solders. Chem. Mater. 19(18), 4482–4485 (2007)CrossRef
46.
Zurück zum Zitat D.Z. Chang, L.G. Yu, B. Yang et al., Nanoparticles of the lead-free solder alloy Sn-3.0Ag-0.5Cu with large melting temperature depression. J. Electron. Mater. 38(2), 351–355 (2009)CrossRef D.Z. Chang, L.G. Yu, B. Yang et al., Nanoparticles of the lead-free solder alloy Sn-3.0Ag-0.5Cu with large melting temperature depression. J. Electron. Mater. 38(2), 351–355 (2009)CrossRef
47.
Zurück zum Zitat R.M. Shalaby, Effect of rapid solidification on mechanical properties of a lead free Sn–3.5Ag solder. J Alloys Compd 505(1), 113–117 (2010)CrossRef R.M. Shalaby, Effect of rapid solidification on mechanical properties of a lead free Sn–3.5Ag solder. J Alloys Compd 505(1), 113–117 (2010)CrossRef
48.
Zurück zum Zitat C. Zou, Y. Gao, B. Yang et al., Melting and solidification properties of the nanoparticles of Sn3.0Ag0.5Cu lead-free solder alloy. Mater. Charact. 61(4), 474–480 (2010)CrossRef C. Zou, Y. Gao, B. Yang et al., Melting and solidification properties of the nanoparticles of Sn3.0Ag0.5Cu lead-free solder alloy. Mater. Charact. 61(4), 474–480 (2010)CrossRef
49.
Zurück zum Zitat H.W. Sheng, K. Lu et al., Melting and freezing behavior of embedded nanoparticles in ball-milled Al-10 wt% M (M = In, Sn, Bi, Cd, Pb) mixtures. Acta Mater. 46(14), 5195–5205 (1998)CrossRef H.W. Sheng, K. Lu et al., Melting and freezing behavior of embedded nanoparticles in ball-milled Al-10 wt% M (M = In, Sn, Bi, Cd, Pb) mixtures. Acta Mater. 46(14), 5195–5205 (1998)CrossRef
50.
Zurück zum Zitat C. Zou, Y. Gao, B. Yang, Q. Zhai, Nanoparticles of Sn3.0Ag0.5Cu alloy synthesized at room temperature with large melting temperature depression. J. Mater. Sci.: Mater. Electron. 23, 2–7 (2012) C. Zou, Y. Gao, B. Yang, Q. Zhai, Nanoparticles of Sn3.0Ag0.5Cu alloy synthesized at room temperature with large melting temperature depression. J. Mater. Sci.: Mater. Electron. 23, 2–7 (2012)
51.
Zurück zum Zitat C. Nayral, T. Ould‐Ely, A. Maisonnat et al., A novel mechanism for the synthesis of tin/tin oxide nanoparticles of low size dispersion and of nanostructured SnO2 for the sensitive layers of gas sensors. Cheminform 30(11), no-no (2010) C. Nayral, T. Ould‐Ely, A. Maisonnat et al., A novel mechanism for the synthesis of tin/tin oxide nanoparticles of low size dispersion and of nanostructured SnO2 for the sensitive layers of gas sensors. Cheminform 30(11), no-no (2010)
52.
Zurück zum Zitat H. Jiang, K.S. Moon, H. Dong et al., Size-dependent melting properties of tin nanoparticles. Chem. Phys. Lett. 429(4–6), 492–496 (2006)CrossRef H. Jiang, K.S. Moon, H. Dong et al., Size-dependent melting properties of tin nanoparticles. Chem. Phys. Lett. 429(4–6), 492–496 (2006)CrossRef
53.
Zurück zum Zitat L. Rodríguez-Sánchez, M.C. Blanco, M.A. López-Quintela, Electrochemical synthesis of silver nanoparticles. J. Phys. Chem. B 104(41), 9683–9688 (2000)CrossRef L. Rodríguez-Sánchez, M.C. Blanco, M.A. López-Quintela, Electrochemical synthesis of silver nanoparticles. J. Phys. Chem. B 104(41), 9683–9688 (2000)CrossRef
54.
Zurück zum Zitat J.P. Koppes, K.A. Grossklaus, A.R. Muza et al., Utilizing the thermodynamic nanoparticle size effects for low temperature Pb-free solder. Mater. Sci. Eng. B 177(2), 197–204 (2012)CrossRef J.P. Koppes, K.A. Grossklaus, A.R. Muza et al., Utilizing the thermodynamic nanoparticle size effects for low temperature Pb-free solder. Mater. Sci. Eng. B 177(2), 197–204 (2012)CrossRef
55.
Zurück zum Zitat D. Zhang, J.J.Q. Lu, 3D Integration Technologies: An Overview. Materials for Advanced Packaging (Springer, Cham, 2017), pp. 1–26CrossRef D. Zhang, J.J.Q. Lu, 3D Integration Technologies: An Overview. Materials for Advanced Packaging (Springer, Cham, 2017), pp. 1–26CrossRef
56.
Zurück zum Zitat J.G. Bai, K.D. Creehan, H.A. Kuhn, Inkjet printable nanosilver suspensions for enhanced sintering quality in rapid manufacturing. Nanotechnology 18(18), 185701 (2007)CrossRef J.G. Bai, K.D. Creehan, H.A. Kuhn, Inkjet printable nanosilver suspensions for enhanced sintering quality in rapid manufacturing. Nanotechnology 18(18), 185701 (2007)CrossRef
57.
Zurück zum Zitat I. Reinhold, C.E. Hendriks, R. Eckardt et al., Argon plasma sintering of inkjet printed silver tracks on polymer substrates. J. Mater. Chem. 19(21), 3384–3388 (2009)CrossRef I. Reinhold, C.E. Hendriks, R. Eckardt et al., Argon plasma sintering of inkjet printed silver tracks on polymer substrates. J. Mater. Chem. 19(21), 3384–3388 (2009)CrossRef
58.
Zurück zum Zitat J. Perelaer, C.E. Hendriks, A.W.M.D. Laat et al., One-step inkjet printing of conductive silver tracks on polymer substrates. Nanotechnology 20(16), 165303 (2009)CrossRef J. Perelaer, C.E. Hendriks, A.W.M.D. Laat et al., One-step inkjet printing of conductive silver tracks on polymer substrates. Nanotechnology 20(16), 165303 (2009)CrossRef
59.
Zurück zum Zitat H. Yu, X. Li, Z. Hao et al., Fabrication of metal/semiconductor nanocomposites by selective laser nano-welding. Nanoscale 9(21), 7012–7015 (2017)CrossRef H. Yu, X. Li, Z. Hao et al., Fabrication of metal/semiconductor nanocomposites by selective laser nano-welding. Nanoscale 9(21), 7012–7015 (2017)CrossRef
60.
Zurück zum Zitat J. Perelaer, B.J. De Gans, U. Schubert, Ink-jet printing and microwave sintering of conductive silver tracks. Adv. Mater. 18(16), 2101–2104 (2010)CrossRef J. Perelaer, B.J. De Gans, U. Schubert, Ink-jet printing and microwave sintering of conductive silver tracks. Adv. Mater. 18(16), 2101–2104 (2010)CrossRef
61.
Zurück zum Zitat E.C. Garnett, W. Cai, J.J. Cha et al., Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11(3), 241 (2012)CrossRef E.C. Garnett, W. Cai, J.J. Cha et al., Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11(3), 241 (2012)CrossRef
62.
Zurück zum Zitat S. Magdassi, M. Grouchko, O. Berezin et al., Triggering the sintering of silver nanoparticles at room temperature. ACS Nano 4(4), 1943–1948 (2010)CrossRef S. Magdassi, M. Grouchko, O. Berezin et al., Triggering the sintering of silver nanoparticles at room temperature. ACS Nano 4(4), 1943–1948 (2010)CrossRef
63.
Zurück zum Zitat Y.J. Moon, H. Kang, K. Kang et al., Effect of thickness on surface morphology of silver nanoparticle layer during furnace sintering. J. Electron. Mater. 44(4), 1192–1199 (2015)CrossRef Y.J. Moon, H. Kang, K. Kang et al., Effect of thickness on surface morphology of silver nanoparticle layer during furnace sintering. J. Electron. Mater. 44(4), 1192–1199 (2015)CrossRef
64.
Zurück zum Zitat S. Wünscher, R. Abbel, J. Perelaer et al., Progress of alternative sintering approaches of inkjet-printed metal inks and their application for manufacturing of flexible electronic devices. J. Mater. Chem. C 2(48), 10232–10261 (2014)CrossRef S. Wünscher, R. Abbel, J. Perelaer et al., Progress of alternative sintering approaches of inkjet-printed metal inks and their application for manufacturing of flexible electronic devices. J. Mater. Chem. C 2(48), 10232–10261 (2014)CrossRef
65.
Zurück zum Zitat S. Wünscher, T. Rasp, M. Grouchko et al., Simulation and prediction of the thermal sintering behavior for a silver nanoparticle ink based on experimental input. J. Mater. Chem. C 2(31), 186–195 (2014)CrossRef S. Wünscher, T. Rasp, M. Grouchko et al., Simulation and prediction of the thermal sintering behavior for a silver nanoparticle ink based on experimental input. J. Mater. Chem. C 2(31), 186–195 (2014)CrossRef
66.
Zurück zum Zitat M. Grouchko, A. Kamyshny, C.F. Mihailescu et al., Conductive inks with a “built-in” mechanism that enables sintering at room temperature. China Print Packag Study 5(4), 3354 (2011) M. Grouchko, A. Kamyshny, C.F. Mihailescu et al., Conductive inks with a “built-in” mechanism that enables sintering at room temperature. China Print Packag Study 5(4), 3354 (2011)
67.
Zurück zum Zitat M. Layani, M. Grouchko, S. Shemesh et al., Conductive patterns on plastic substrates by sequential inkjet printing of silver nanoparticles and electrolyte sintering solutions. J. Mater. Chem. 22(29), 14349 (2012)CrossRef M. Layani, M. Grouchko, S. Shemesh et al., Conductive patterns on plastic substrates by sequential inkjet printing of silver nanoparticles and electrolyte sintering solutions. J. Mater. Chem. 22(29), 14349 (2012)CrossRef
68.
Zurück zum Zitat J. Perelaer, R. Abbel, S. Wünscher et al., Roll-to-roll compatible sintering of inkjet printed features by photonic and microwave exposure: from non-conductive ink to 40% bulk silver conductivity in less than 15 seconds. Adv. Mater. 24(19), 2620–2625 (2012)CrossRef J. Perelaer, R. Abbel, S. Wünscher et al., Roll-to-roll compatible sintering of inkjet printed features by photonic and microwave exposure: from non-conductive ink to 40% bulk silver conductivity in less than 15 seconds. Adv. Mater. 24(19), 2620–2625 (2012)CrossRef
69.
Zurück zum Zitat J. Perelaer, M. Klokkenburg, C.E. Hendriks et al., Microwave flash sintering of inkjet-printed silver tracks on polymer substrates. Adv. Mater. 21(47), 4830–4834 (2010)CrossRef J. Perelaer, M. Klokkenburg, C.E. Hendriks et al., Microwave flash sintering of inkjet-printed silver tracks on polymer substrates. Adv. Mater. 21(47), 4830–4834 (2010)CrossRef
70.
Zurück zum Zitat E. Sowade, H. Kang, K.Y. Mitra et al., Correction: roll-to-roll infrared (IR) drying and sintering of an inkjet-printed silver nanoparticle ink within 1 second. J. Mater. Chem. C 3(45), 11974 (2015)CrossRef E. Sowade, H. Kang, K.Y. Mitra et al., Correction: roll-to-roll infrared (IR) drying and sintering of an inkjet-printed silver nanoparticle ink within 1 second. J. Mater. Chem. C 3(45), 11974 (2015)CrossRef
71.
Zurück zum Zitat J. Park, H.J. Kang, K.H. Shin et al., Fast sintering of silver nanoparticle and flake layers by infrared module assistance in large area roll-to-roll gravure printing system. Sci. Rep. 6, 34470 (2016)CrossRef J. Park, H.J. Kang, K.H. Shin et al., Fast sintering of silver nanoparticle and flake layers by infrared module assistance in large area roll-to-roll gravure printing system. Sci. Rep. 6, 34470 (2016)CrossRef
72.
Zurück zum Zitat Z. Dongbin, W. Minqiang, Highly conductive nano-silver circuits by inkjet printing. J. Electron. Mater. 47(9), 5133–5147 (2018)CrossRef Z. Dongbin, W. Minqiang, Highly conductive nano-silver circuits by inkjet printing. J. Electron. Mater. 47(9), 5133–5147 (2018)CrossRef
73.
Zurück zum Zitat B.L. Silva, A. Garcia, J.E. Spinelli, Cooling thermal parameters and microstructure features of directionally solidified ternary Sn–Bi–(Cu, Ag) solder alloys. Mater. Charact. 114, 30–42 (2016)CrossRef B.L. Silva, A. Garcia, J.E. Spinelli, Cooling thermal parameters and microstructure features of directionally solidified ternary Sn–Bi–(Cu, Ag) solder alloys. Mater. Charact. 114, 30–42 (2016)CrossRef
74.
Zurück zum Zitat P. Dixit, J. Miao, Fabrication of high aspect ratio 35 micron pitch interconnects for next generation 3-D wafer level packaging by through-wafer copper electroplating. Electronic Components & Technology Conference (2006) P. Dixit, J. Miao, Fabrication of high aspect ratio 35 micron pitch interconnects for next generation 3-D wafer level packaging by through-wafer copper electroplating. Electronic Components & Technology Conference (2006)
75.
Zurück zum Zitat The International Technology Roadmap for Semiconductors 2.0: Interconnect (2015) The International Technology Roadmap for Semiconductors 2.0: Interconnect (2015)
76.
Zurück zum Zitat K.N. Tu, T. Tian, Metallurgical challenges in microelectronic 3D IC packaging technology for future consumer electronic products. Sci. China Technol. Sci. 56(7), 1740–1748 (2013)CrossRef K.N. Tu, T. Tian, Metallurgical challenges in microelectronic 3D IC packaging technology for future consumer electronic products. Sci. China Technol. Sci. 56(7), 1740–1748 (2013)CrossRef
77.
Zurück zum Zitat A.O. Aggarwal, P.M. Raj, V. Sundaram et al., 50 Micron Pitch Wafer Level Packaging Testbed with Reworkable IC-Package Nano Interconnects. Electronic Components and Technology Conference, 2005. Proceedings. 55th. (IEEE, 2005), pp. 1139–1146 A.O. Aggarwal, P.M. Raj, V. Sundaram et al., 50 Micron Pitch Wafer Level Packaging Testbed with Reworkable IC-Package Nano Interconnects. Electronic Components and Technology Conference, 2005. Proceedings. 55th. (IEEE, 2005), pp. 1139–1146
78.
Zurück zum Zitat S. Simões, R. Calinas, M.T. Vieira et al., In situ TEM study of grain growth in nanocrystalline copper thin films. Nanotechnology 21(14), 145701 (2010)CrossRef S. Simões, R. Calinas, M.T. Vieira et al., In situ TEM study of grain growth in nanocrystalline copper thin films. Nanotechnology 21(14), 145701 (2010)CrossRef
79.
Zurück zum Zitat S. Spiesshoefer, Z. Rahman, G. Vangara et al., Process integration for through-silicon vias. J. Vac. Sci. Technol. A 23(4), 824–829 (2005)CrossRef S. Spiesshoefer, Z. Rahman, G. Vangara et al., Process integration for through-silicon vias. J. Vac. Sci. Technol. A 23(4), 824–829 (2005)CrossRef
80.
Zurück zum Zitat S. Zhang et al., A study on the solder ball size and content effects of solder ACFs for flex-on-board assembly applications using ultrasonic bonding. IEEE Trans. Compon. Packag. Manuf. Technol. 5(1), 9–14 (2015)CrossRef S. Zhang et al., A study on the solder ball size and content effects of solder ACFs for flex-on-board assembly applications using ultrasonic bonding. IEEE Trans. Compon. Packag. Manuf. Technol. 5(1), 9–14 (2015)CrossRef
81.
Zurück zum Zitat S. Zhang, J.H. Park, K.W. Paik, Joint morphologies and failure mechanisms of anisotropic conductive films (ACFs) during a power handling capability test for flex-on-board applications. IEEE Trans. Compon. Packag. Manuf. Technol. 6(12), 1820–1826 (2016)CrossRef S. Zhang, J.H. Park, K.W. Paik, Joint morphologies and failure mechanisms of anisotropic conductive films (ACFs) during a power handling capability test for flex-on-board applications. IEEE Trans. Compon. Packag. Manuf. Technol. 6(12), 1820–1826 (2016)CrossRef
82.
Zurück zum Zitat S. Zhang, M. Yang, Y. Wu et al., A study on the optimization of anisotropic conductive films for Sn-3Ag-0.5 Cu-based flex-on-board application at a 250 C bonding temperature. IEEE Trans. Compon. Packag. Manuf. Technol. 8(3), 383–391 (2018)CrossRef S. Zhang, M. Yang, Y. Wu et al., A study on the optimization of anisotropic conductive films for Sn-3Ag-0.5 Cu-based flex-on-board application at a 250 C bonding temperature. IEEE Trans. Compon. Packag. Manuf. Technol. 8(3), 383–391 (2018)CrossRef
83.
Zurück zum Zitat A.O. Aggarwal, P.M. Raj, R.R. Tummala, Metal–polymer composite interconnections for ultra fine-pitch wafer level packaging. IEEE Trans. Adv. Packag. 30(3), 384–392 (2007)CrossRef A.O. Aggarwal, P.M. Raj, R.R. Tummala, Metal–polymer composite interconnections for ultra fine-pitch wafer level packaging. IEEE Trans. Adv. Packag. 30(3), 384–392 (2007)CrossRef
84.
Zurück zum Zitat A.J. Haes, R.P.V. Duyne, A unified view of propagating and localized surface plasmon resonance biosensors. Anal. Bioanal. Chem. 379(7–8), 920–930 (2004)CrossRef A.J. Haes, R.P.V. Duyne, A unified view of propagating and localized surface plasmon resonance biosensors. Anal. Bioanal. Chem. 379(7–8), 920–930 (2004)CrossRef
85.
Zurück zum Zitat W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)CrossRef W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)CrossRef
86.
Zurück zum Zitat M.L. Brongersma, V.M. Shalaev, The case for plasmonics. Science 328(5977), 440–441 (2010)CrossRef M.L. Brongersma, V.M. Shalaev, The case for plasmonics. Science 328(5977), 440–441 (2010)CrossRef
87.
Zurück zum Zitat E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758), 189–193 (2006)CrossRef E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758), 189–193 (2006)CrossRef
88.
Zurück zum Zitat H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9(3), 205 (2010)CrossRef H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9(3), 205 (2010)CrossRef
89.
Zurück zum Zitat P. Christopher, H. Xin, S. Linic, Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3(6), 467 (2011)CrossRef P. Christopher, H. Xin, S. Linic, Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3(6), 467 (2011)CrossRef
90.
Zurück zum Zitat J.H. Park, G.T. Hwang, S. Kim et al., Flash-induced self-limited plasmonic welding of silver nanowire network for transparent flexible energy harvester. Adv. Mater. 29(5), 1603473 (2017)CrossRef J.H. Park, G.T. Hwang, S. Kim et al., Flash-induced self-limited plasmonic welding of silver nanowire network for transparent flexible energy harvester. Adv. Mater. 29(5), 1603473 (2017)CrossRef
91.
Zurück zum Zitat H. Hu, Z. Wang, Q. Ye et al., Substrateless welding of self-assembled silver nanowires at air/water interface. ACS Appl. Mater. Interfaces 8(31), 20483–20490 (2016)CrossRef H. Hu, Z. Wang, Q. Ye et al., Substrateless welding of self-assembled silver nanowires at air/water interface. ACS Appl. Mater. Interfaces 8(31), 20483–20490 (2016)CrossRef
92.
Zurück zum Zitat L.O. Herrmann, V.K. Valev, C. Tserkezis et al., Threading plasmonic nanoparticle strings with light. Nat. Commun. 5, 4568 (2014)CrossRef L.O. Herrmann, V.K. Valev, C. Tserkezis et al., Threading plasmonic nanoparticle strings with light. Nat. Commun. 5, 4568 (2014)CrossRef
93.
Zurück zum Zitat G. González-Rubio, A. Guerrero-Martínez, L.M. Liz-Marzán, Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers. Acc. Chem. Res. 49(4), 678–686 (2016)CrossRef G. González-Rubio, A. Guerrero-Martínez, L.M. Liz-Marzán, Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers. Acc. Chem. Res. 49(4), 678–686 (2016)CrossRef
94.
Zurück zum Zitat G. González-Rubio, J. González-Izquierdo, L. Bañares et al., Femtosecond laser-controlled tip-to-tip assembly and welding of gold nanorods. Nano Lett. 15(12), 8282–8288 (2015)CrossRef G. González-Rubio, J. González-Izquierdo, L. Bañares et al., Femtosecond laser-controlled tip-to-tip assembly and welding of gold nanorods. Nano Lett. 15(12), 8282–8288 (2015)CrossRef
Metadaten
Titel
Recent advances in nano-materials for packaging of electronic devices
verfasst von
Shuye Zhang
Xiangyu Xu
Tiesong Lin
Peng He
Publikationsdatum
18.07.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 15/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01790-3

Weitere Artikel der Ausgabe 15/2019

Journal of Materials Science: Materials in Electronics 15/2019 Zur Ausgabe

Neuer Inhalt