Skip to main content

2020 | OriginalPaper | Buchkapitel

Recent Advances in Solar Cells

verfasst von : Marcio A. P. Almeida

Erschienen in: Solar Cells

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The last years the growth of the global population has resulted in high demand for electricity consumption. Photovoltaic devices have shown a big potential to obtain energy power from solar irradiation when compared with other sources. Currently, photovoltaic silicon-based technologies are the most used around the world, but its high cost is still a big problem for global consumption. A short approach to fundamental concepts to inorganic and organic solar cells will be described in this chapter. Moreover, it will be showing new models of solar cells as well as advances and challenges in the development of inorganic and organic solar cells with high efficiency and stability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Fritts CE (1883) On a new form of selenium photocell. Am J Sci 26:465CrossRef Fritts CE (1883) On a new form of selenium photocell. Am J Sci 26:465CrossRef
3.
Zurück zum Zitat Chapin DM, Fuller CS, Pearson GL (1954) A new silicon pn junction photocell for converting solar radiation into electrical power. J Appl Phys 25(5):676–677CrossRef Chapin DM, Fuller CS, Pearson GL (1954) A new silicon pn junction photocell for converting solar radiation into electrical power. J Appl Phys 25(5):676–677CrossRef
4.
Zurück zum Zitat Reynolds DC, Leies G, Antes LL, Marburger RE (1954) Photovoltaic effect in cadmium sulfide. Phys Rev 96(2):533–534CrossRef Reynolds DC, Leies G, Antes LL, Marburger RE (1954) Photovoltaic effect in cadmium sulfide. Phys Rev 96(2):533–534CrossRef
5.
Zurück zum Zitat Hegedus S, Luque A (2011) Achievements and challenges of solar electricity from photovoltaics. In: Luque A (ed) Handbook of photovoltaic science and engineering, 2nd edn. Wiley, United Kingdom Hegedus S, Luque A (2011) Achievements and challenges of solar electricity from photovoltaics. In: Luque A (ed) Handbook of photovoltaic science and engineering, 2nd edn. Wiley, United Kingdom
6.
Zurück zum Zitat Kong L, Wang J, Luo T, Meng F, Chen X, Li M, Liu J (2010) Novel pyrenehexafluoroisopropanol derivative-decorated single-walled carbon nanotubes for detection of nerve agents by strong hydrogen-bonding interaction. Analyst 135(2):368–374CrossRef Kong L, Wang J, Luo T, Meng F, Chen X, Li M, Liu J (2010) Novel pyrenehexafluoroisopropanol derivative-decorated single-walled carbon nanotubes for detection of nerve agents by strong hydrogen-bonding interaction. Analyst 135(2):368–374CrossRef
7.
Zurück zum Zitat Nayak PK, Mahesh S, Snaith HJ, Cahen D, (2019) Photovoltaic solar cell technologies: analysing the state of the art. Nat Rev Mater 4(4):269–285CrossRef Nayak PK, Mahesh S, Snaith HJ, Cahen D, (2019) Photovoltaic solar cell technologies: analysing the state of the art. Nat Rev Mater 4(4):269–285CrossRef
8.
Zurück zum Zitat (a) Pandey AK, Tyagi VV, Selvaraj JAL, Rahim NA, Tyagi SK (2016) Recent advances in solar photovoltaic systems for emerging trends and advanced applications. Renew Sust Energ Rev 53:859–884; (b) Dubey A, Adhikari N, Mabrouk S, Wu F, Chen K, Yang S, Qiao Q (2018) A strategic review on processing routes towards highly efficient perovskite solar cells. J Mater Chem A6(6):2406–2431; (c) Xu L, Ho C-L, Liu L, Wong W-Y (2018) Molecular/polymeric metallaynes and related molecules: solar cell materials and devices. Coord Chem Rev 373:233–257 (a) Pandey AK, Tyagi VV, Selvaraj JAL, Rahim NA, Tyagi SK (2016) Recent advances in solar photovoltaic systems for emerging trends and advanced applications. Renew Sust Energ Rev 53:859–884; (b) Dubey A, Adhikari N, Mabrouk S, Wu F, Chen K, Yang S, Qiao Q (2018) A strategic review on processing routes towards highly efficient perovskite solar cells. J Mater Chem A6(6):2406–2431; (c) Xu L, Ho C-L, Liu L, Wong W-Y (2018) Molecular/polymeric metallaynes and related molecules: solar cell materials and devices. Coord Chem Rev 373:233–257
9.
Zurück zum Zitat Sampaio PGV, González MOA (2017) Photovoltaic solar energy: conceptual framework. Renew Sust Energ Rev 74:590–601CrossRef Sampaio PGV, González MOA (2017) Photovoltaic solar energy: conceptual framework. Renew Sust Energ Rev 74:590–601CrossRef
10.
Zurück zum Zitat (a) Easton RL, Votaw MJ (1959) Vanguard I, Satellite IGY (1958 Beta) Rev Sci Instrum 30:(2) 70–75; (b) Hegedus S, Luque A (2011) Achievements and challenges of solar electricity from photovoltaics. In: Luque A (ed) Handbook of photovoltaic science and engineering, 2nd. Wiley, Chennai (a) Easton RL, Votaw MJ (1959) Vanguard I, Satellite IGY (1958 Beta) Rev Sci Instrum 30:(2) 70–75; (b) Hegedus S, Luque A (2011) Achievements and challenges of solar electricity from photovoltaics. In: Luque A (ed) Handbook of photovoltaic science and engineering, 2nd. Wiley, Chennai
11.
Zurück zum Zitat Jenny DA, Loferski JJ, Rappaport P (1956) Photovoltaic effect in GaAs p-n junctions and solar energy conversion. Phys Rev 101(3):1208–1209CrossRef Jenny DA, Loferski JJ, Rappaport P (1956) Photovoltaic effect in GaAs p-n junctions and solar energy conversion. Phys Rev 101(3):1208–1209CrossRef
12.
Zurück zum Zitat Cusano DA (1963) CdTe solar cells and photovoltaic heterojunctions in II–VI compounds. Solid State Electron 6:(3) 217–232CrossRef Cusano DA (1963) CdTe solar cells and photovoltaic heterojunctions in II–VI compounds. Solid State Electron 6:(3) 217–232CrossRef
13.
Zurück zum Zitat (a) Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2015) Solar cell efficiency tables (version 46). Prog Photovolt Res Appl 23(7):805–812; (b) Green MA, Hishikawa Y, Dunlop ED, Levi DH, Hohl-Ebinger J, Yoshita M, Ho-Baillie AWY (2019) Solar cell efficiency tables (Version 53). Prog Photovolt Res Appl 27(1):3–12 (a) Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2015) Solar cell efficiency tables (version 46). Prog Photovolt Res Appl 23(7):805–812; (b) Green MA, Hishikawa Y, Dunlop ED, Levi DH, Hohl-Ebinger J, Yoshita M, Ho-Baillie AWY (2019) Solar cell efficiency tables (Version 53). Prog Photovolt Res Appl 27(1):3–12
15.
Zurück zum Zitat (a) Yamaguchi M, Lee KH, Araki K, Kojima N (2018) A review of recent progress in heterogeneous silicon tandem solar cells. J Phys D-Appl Phys 51(133002):13; (b) Miles RW, Zoppi G, Forbes I (2007) Inorganic photovoltaic cells. Mater Today10(11):20–27 (a) Yamaguchi M, Lee KH, Araki K, Kojima N (2018) A review of recent progress in heterogeneous silicon tandem solar cells. J Phys D-Appl Phys 51(133002):13; (b) Miles RW, Zoppi G, Forbes I (2007) Inorganic photovoltaic cells. Mater Today10(11):20–27
16.
Zurück zum Zitat Moon S, Kim K, Kim Y, Heo J, Lee J (2016) Highly efficient single-junction GaAs thin-film solar cell on flexible substrate. Sci Rep 6:30107CrossRef Moon S, Kim K, Kim Y, Heo J, Lee J (2016) Highly efficient single-junction GaAs thin-film solar cell on flexible substrate. Sci Rep 6:30107CrossRef
17.
Zurück zum Zitat Bauhuis GJ, Mulder P, Schermer JJ, Haverkamp EJ, Deelen JV, Larsen PK (2005) High efficiency thin film GaAs solar cells with improved radiation hardness. In: 20th European photovoltaic solar energy conference, Barcelona, Spain, pp 468–471 Bauhuis GJ, Mulder P, Schermer JJ, Haverkamp EJ, Deelen JV, Larsen PK (2005) High efficiency thin film GaAs solar cells with improved radiation hardness. In: 20th European photovoltaic solar energy conference, Barcelona, Spain, pp 468–471
18.
Zurück zum Zitat Kayes BM, Nie H, Twist R, Spruytte SG, Reinhardt F, Kizilyalli I C, Higashi GS (2011) 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. In: Proceedings of the 37th IEEE photovoltaic specialists conference, California, USA Kayes BM, Nie H, Twist R, Spruytte SG, Reinhardt F, Kizilyalli I C, Higashi GS (2011) 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. In: Proceedings of the 37th IEEE photovoltaic specialists conference, California, USA
19.
Zurück zum Zitat (a) Aghazada S, Nazeeruddin MK (2018) Ruthenium complexes as sensitizers in dye-sensitized solar cells. Inorganics 6(2):52; (b) Qin Y, Peng Q (2012) Ruthenium sensitizers and their applications in dye-sensitized solar cells. Int J Photoenergy (ID 291579); (c) Huang Y, Chen W-C, Zhang X-X, Ghadari R, Fang X-Q, Yu T, Kong F-T (2018) Ruthenium complexes as sensitizers with phenyl-based bipyridine anchoring ligands for efficient dye-sensitized solar cells. J Mater Chem C6(35):9445–9452; (d) Medved’ko AV, Ivanov VK, Kiskin MA et al (2017) The design and synthesis of thiophene-based ruthenium(II) complexes as promising sensitizers for dye-sensitized solar cells. Dyes Pigm 140:169–178; (e) Li C, Liu M, Pschirer NG, Baumgarten M, Müllen K (2010) Polyphenylene-based materials for organic photovoltaics. Chem Rev 110(11):6817–6855 (a) Aghazada S, Nazeeruddin MK (2018) Ruthenium complexes as sensitizers in dye-sensitized solar cells. Inorganics 6(2):52; (b) Qin Y, Peng Q (2012) Ruthenium sensitizers and their applications in dye-sensitized solar cells. Int J Photoenergy (ID 291579); (c) Huang Y, Chen W-C, Zhang X-X, Ghadari R, Fang X-Q, Yu T, Kong F-T (2018) Ruthenium complexes as sensitizers with phenyl-based bipyridine anchoring ligands for efficient dye-sensitized solar cells. J Mater Chem C6(35):9445–9452; (d) Medved’ko AV, Ivanov VK, Kiskin MA et al (2017) The design and synthesis of thiophene-based ruthenium(II) complexes as promising sensitizers for dye-sensitized solar cells. Dyes Pigm 140:169–178; (e) Li C, Liu M, Pschirer NG, Baumgarten M, Müllen K (2010) Polyphenylene-based materials for organic photovoltaics. Chem Rev 110(11):6817–6855
20.
Zurück zum Zitat Seok SI, Grätzel M, Park N-G (2018) Methodologies toward highly efficient perovskite solar cells. Small 14(20):1704177CrossRef Seok SI, Grätzel M, Park N-G (2018) Methodologies toward highly efficient perovskite solar cells. Small 14(20):1704177CrossRef
21.
Zurück zum Zitat Robson KCD, Koivisto BD, Yella A et al (2011) Design and development of functionalized cyclometalated ruthenium chromophores for light-harvesting applications. Inorg Chem 50(12):5494–5508CrossRef Robson KCD, Koivisto BD, Yella A et al (2011) Design and development of functionalized cyclometalated ruthenium chromophores for light-harvesting applications. Inorg Chem 50(12):5494–5508CrossRef
22.
Zurück zum Zitat Paek S, Baik C, Kang M-S, Kang H, Ko J (2010) New type of ruthenium sensitizers with a triazole moiety as a bridging group. J Organomet Chem 695(6):821–826CrossRef Paek S, Baik C, Kang M-S, Kang H, Ko J (2010) New type of ruthenium sensitizers with a triazole moiety as a bridging group. J Organomet Chem 695(6):821–826CrossRef
23.
Zurück zum Zitat (a) You P, Tang G, Yan F (2019) Two-dimensional materials in perovskite solar cells. Mater Today Energy 11:128–158; (b) Nakazaki J, Segawa H (2018) Evolution of organometal halide solar cells. J Photoch Photobio C35:74–107; (c) Konstantakou M, Stergiopoulos T (2017) A critical review on tin halide perovskite solar cells. J Mater Chem A5(23):11518–11549; (d) Giustino F, Snaith H J (2016) Toward lead-free perovskite solar cells. ACS Energy Lett 1(6):1233–1240; (e) Editorial (2019) A decade of perovskite photovoltaics. Nat Energy 4(1):1–1; (f) Meng L, Wei Q, Yang Z et al (2020) Improved perovskite solar cell efficiency by tuning the colloidal size and free ion concentration in precursor solution using formic acid additive. J. Energy Chem 41:43–51 (a) You P, Tang G, Yan F (2019) Two-dimensional materials in perovskite solar cells. Mater Today Energy 11:128–158; (b) Nakazaki J, Segawa H (2018) Evolution of organometal halide solar cells. J Photoch Photobio C35:74–107; (c) Konstantakou M, Stergiopoulos T (2017) A critical review on tin halide perovskite solar cells. J Mater Chem A5(23):11518–11549; (d) Giustino F, Snaith H J (2016) Toward lead-free perovskite solar cells. ACS Energy Lett 1(6):1233–1240; (e) Editorial (2019) A decade of perovskite photovoltaics. Nat Energy 4(1):1–1; (f) Meng L, Wei Q, Yang Z et al (2020) Improved perovskite solar cell efficiency by tuning the colloidal size and free ion concentration in precursor solution using formic acid additive. J. Energy Chem 41:43–51
24.
Zurück zum Zitat Green MA, Ho-Baillie A (2017) Perovskite solar cells: the birth of a new era in photovoltaics. ACS Energy Lett 2(4):822–830CrossRef Green MA, Ho-Baillie A (2017) Perovskite solar cells: the birth of a new era in photovoltaics. ACS Energy Lett 2(4):822–830CrossRef
25.
Zurück zum Zitat Li D, Meng Q (2019) Interfacial engineering to improve the stability of perovskite solar cells. In: International conference on perovskite photonics and optoelectronics, Israel Li D, Meng Q (2019) Interfacial engineering to improve the stability of perovskite solar cells. In: International conference on perovskite photonics and optoelectronics, Israel
26.
Zurück zum Zitat (a) Li Y, Ji L, Liu R et al (2018) A review on morphology engineering for highly efficient and stable hybrid perovskite solar cells. J. Mater. Chem. A6:(27) 12842–12875; (b) Jamal MS, Bashar MS, Hasan AKM et al (2018) Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: a review. Renew Sustain Energy Rev 98:469–488 (a) Li Y, Ji L, Liu R et al (2018) A review on morphology engineering for highly efficient and stable hybrid perovskite solar cells. J. Mater. Chem. A6:(27) 12842–12875; (b) Jamal MS, Bashar MS, Hasan AKM et al (2018) Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: a review. Renew Sustain Energy Rev 98:469–488
27.
Zurück zum Zitat Deepa M, Salado M, Calio L, Kazim S, Shivaprasad SM, Ahmad S (2017) Cesium power: low Cs+ levels impart stability to perovskite solar cells. Phys Chem Chem Phys 19(5):4069–4077CrossRef Deepa M, Salado M, Calio L, Kazim S, Shivaprasad SM, Ahmad S (2017) Cesium power: low Cs+ levels impart stability to perovskite solar cells. Phys Chem Chem Phys 19(5):4069–4077CrossRef
28.
Zurück zum Zitat Cho KT, Paek S, Grancini G, Roldán-Carmona C, Gao P, Lee Y, Nazeeruddin MK (2017) Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy Environ Sci 10(2):621–627CrossRef Cho KT, Paek S, Grancini G, Roldán-Carmona C, Gao P, Lee Y, Nazeeruddin MK (2017) Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy Environ Sci 10(2):621–627CrossRef
29.
Zurück zum Zitat Wang Z, McMeekin DP, Sakai N et al (2017) Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers. Adv Mater 29(5):1604186CrossRef Wang Z, McMeekin DP, Sakai N et al (2017) Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers. Adv Mater 29(5):1604186CrossRef
30.
Zurück zum Zitat Wang JT-W, Wang Z, Pathak S et al (2016) Efficient perovskite solar cells by metal ion doping. Energy Environ Sci 9(9):2892–2901CrossRef Wang JT-W, Wang Z, Pathak S et al (2016) Efficient perovskite solar cells by metal ion doping. Energy Environ Sci 9(9):2892–2901CrossRef
31.
Zurück zum Zitat Yang S, Fu W, Zhang Z, Chen H, Li C-Z (2017) Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. J Mater Chem A5(23):11462–11482CrossRef Yang S, Fu W, Zhang Z, Chen H, Li C-Z (2017) Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. J Mater Chem A5(23):11462–11482CrossRef
32.
Zurück zum Zitat Zhang Y, Grancini G, Feng Y, Asiri AM, Nazeeruddin MK (2017) Optimization of stable quasi-cubic FAxMA1−xPbI3 perovskite structure for solar cells with efficiency beyond 20%. ACS Energy Lett. 2(4):802–806CrossRef Zhang Y, Grancini G, Feng Y, Asiri AM, Nazeeruddin MK (2017) Optimization of stable quasi-cubic FAxMA1−xPbI3 perovskite structure for solar cells with efficiency beyond 20%. ACS Energy Lett. 2(4):802–806CrossRef
33.
Zurück zum Zitat Jodlowski AD, Roldán-Carmona C, Grancini G et al (2017) Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells. Nature Energy 2(12):972–979 Jodlowski AD, Roldán-Carmona C, Grancini G et al (2017) Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells. Nature Energy 2(12):972–979
34.
Zurück zum Zitat (a) Chu Z, Yang M, Schulz P et al (2017) Impact of grain boundaries on efficiency and stability of organic-inorganic trihalide perovskites. Nat Commun 8(1):2230; (b) Yun JS, Ho-Baillie A, Huang S et al (2015) Benefit of grain boundaries in organic–inorganic halide planar perovskite solar cells. J Phys Chem Lett 6(5):875–880 (a) Chu Z, Yang M, Schulz P et al (2017) Impact of grain boundaries on efficiency and stability of organic-inorganic trihalide perovskites. Nat Commun 8(1):2230; (b) Yun JS, Ho-Baillie A, Huang S et al (2015) Benefit of grain boundaries in organic–inorganic halide planar perovskite solar cells. J Phys Chem Lett 6(5):875–880
35.
Zurück zum Zitat Wang L-Y, Deng L-L, Wang X et al (2017) Di-isopropyl ether assisted crystallization of organic–inorganic perovskites for efficient and reproducible perovskite solar cells. Nanoscale 9(45):17893–17901CrossRef Wang L-Y, Deng L-L, Wang X et al (2017) Di-isopropyl ether assisted crystallization of organic–inorganic perovskites for efficient and reproducible perovskite solar cells. Nanoscale 9(45):17893–17901CrossRef
36.
Zurück zum Zitat (a) Chen P, Wang Y, Wang M, Zhang X, Wang L, Liu Y (2015) TiO2 nanoparticle-based electron transport layer with improved wettability for efficient planar-heterojunction perovskite solar cell. J Energy Chem 24(6):717–721; (b) Mori S, Yanagida S (2007) TiO2-based dye-sensitized solar cell. In: Soga T (ed) Nanostructured materials for solar energy conversion. Elsevier Science; (c) Mohamad Noh MF, Teh CH, Daik R et al (2018) The architecture of the electron transport layer for a perovskite solar cell. J Mater Chem C6(4):682–712 (a) Chen P, Wang Y, Wang M, Zhang X, Wang L, Liu Y (2015) TiO2 nanoparticle-based electron transport layer with improved wettability for efficient planar-heterojunction perovskite solar cell. J Energy Chem 24(6):717–721; (b) Mori S, Yanagida S (2007) TiO2-based dye-sensitized solar cell. In: Soga T (ed) Nanostructured materials for solar energy conversion. Elsevier Science; (c) Mohamad Noh MF, Teh CH, Daik R et al (2018) The architecture of the electron transport layer for a perovskite solar cell. J Mater Chem C6(4):682–712
37.
Zurück zum Zitat Urieta-Mora J, García-Benito I, Molina-Ontoria A, Martín N (2018) Hole transporting materials for perovskite solar cells: a chemical approach. Chem Soc Rev 47(23):8541–8571CrossRef Urieta-Mora J, García-Benito I, Molina-Ontoria A, Martín N (2018) Hole transporting materials for perovskite solar cells: a chemical approach. Chem Soc Rev 47(23):8541–8571CrossRef
38.
Zurück zum Zitat Sulaeman U, Zuhairi Abdullah A (2017) The way forward for the modification of dye-sensitized solar cell towards better power conversion efficiency. Renew Sust Energ Rev 74:438–452CrossRef Sulaeman U, Zuhairi Abdullah A (2017) The way forward for the modification of dye-sensitized solar cell towards better power conversion efficiency. Renew Sust Energ Rev 74:438–452CrossRef
39.
Zurück zum Zitat (a) Li Y, Zhu J, Huang Y et al (2015) Mesoporous SnO2 nanoparticle films as electron-transporting material in perovskite solar cells. RSC Adv 5(36):28424–28429; (b) Chen Y, Meng Q, Zhang L, Han C, Gao H, Zhang Y,Yan H, (2019) SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress. J Energy Chem 35:144–167; (c) Xiong L, Guo Y, Wen J, Liu H, Yang G, Qin P, Fang G (2018) Review on the application of SnO2 in perovskite solar cells. Adv Funct Mater 28(35):1802757 (a) Li Y, Zhu J, Huang Y et al (2015) Mesoporous SnO2 nanoparticle films as electron-transporting material in perovskite solar cells. RSC Adv 5(36):28424–28429; (b) Chen Y, Meng Q, Zhang L, Han C, Gao H, Zhang Y,Yan H, (2019) SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress. J Energy Chem 35:144–167; (c) Xiong L, Guo Y, Wen J, Liu H, Yang G, Qin P, Fang G (2018) Review on the application of SnO2 in perovskite solar cells. Adv Funct Mater 28(35):1802757
40.
Zurück zum Zitat Mahmood K, Swain BS, Kirmani AR, Amassian A (2015) Highly efficient perovskite solar cells based on a nanostructured WO3–TiO2 core–shell electron transporting material. J Mater Chem A3(17):9051–9057CrossRef Mahmood K, Swain BS, Kirmani AR, Amassian A (2015) Highly efficient perovskite solar cells based on a nanostructured WO3–TiO2 core–shell electron transporting material. J Mater Chem A3(17):9051–9057CrossRef
41.
Zurück zum Zitat (a) Anwar F, Mahbub R, Satter SS, Ullah S M (2017) Effect of different HTM layers and electrical parameters on ZnO nanorod-based lead-free perovskite solar cell for high-efficiency performance. Int J Photoenergy (ID 9846310) 9; (b) Zhang P, Wu J, Zhang T et al (2018) Perovskite solar cells with ZnO electron-transporting materials. Adv Mater 30(3):1703737; (c) Rong P, Ren S, Yu Q (2019) Fabrications and applications of ZnO nanomaterials in flexible functional devices-a review. Crit Rev Anal Chem 49(4):336–349; (d) Luo J, Wang Y, Zhang Q (2018) Progress in perovskite solar cells based on ZnO nanostructures. Sol Energy 163:289–306 (a) Anwar F, Mahbub R, Satter SS, Ullah S M (2017) Effect of different HTM layers and electrical parameters on ZnO nanorod-based lead-free perovskite solar cell for high-efficiency performance. Int J Photoenergy (ID 9846310) 9; (b) Zhang P, Wu J, Zhang T et al (2018) Perovskite solar cells with ZnO electron-transporting materials. Adv Mater 30(3):1703737; (c) Rong P, Ren S, Yu Q (2019) Fabrications and applications of ZnO nanomaterials in flexible functional devices-a review. Crit Rev Anal Chem 49(4):336–349; (d) Luo J, Wang Y, Zhang Q (2018) Progress in perovskite solar cells based on ZnO nanostructures. Sol Energy 163:289–306
42.
Zurück zum Zitat Son D-Y, Im J-H, Kim H-S, Park N-G (2014) 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system. J Phys Chem C 118(30):16567–16573CrossRef Son D-Y, Im J-H, Kim H-S, Park N-G (2014) 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system. J Phys Chem C 118(30):16567–16573CrossRef
43.
Zurück zum Zitat Xu X, Zhang H, Shi J, Dong J, Luo Y, Li D, Meng Q (2015) Highly efficient planar perovskite solar cells with a TiO2/ZnO electron transport bilayer. J Mater Chem A3(38):19288–19293CrossRef Xu X, Zhang H, Shi J, Dong J, Luo Y, Li D, Meng Q (2015) Highly efficient planar perovskite solar cells with a TiO2/ZnO electron transport bilayer. J Mater Chem A3(38):19288–19293CrossRef
44.
Zurück zum Zitat Li S, Zhang P, Chen H et al (2017) Mesoporous PbI2 assisted growth of large perovskite grains for efficient perovskite solar cells based on ZnO nanorods. J Power Sources 342:990–997CrossRef Li S, Zhang P, Chen H et al (2017) Mesoporous PbI2 assisted growth of large perovskite grains for efficient perovskite solar cells based on ZnO nanorods. J Power Sources 342:990–997CrossRef
45.
Zurück zum Zitat Chang C-Y, Lee K-T, Huang W-K, Siao H-Y, Chang Y-C (2015) High-performance, air-stable, low-temperature processed semitransparent perovskite solar cells enabled by atomic layer deposition. Chem Mater 27(14):5122–5130CrossRef Chang C-Y, Lee K-T, Huang W-K, Siao H-Y, Chang Y-C (2015) High-performance, air-stable, low-temperature processed semitransparent perovskite solar cells enabled by atomic layer deposition. Chem Mater 27(14):5122–5130CrossRef
46.
Zurück zum Zitat Correa Baena JP, Steier L, Tress W et al (2015) Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ Sci 8(10):2928–2934CrossRef Correa Baena JP, Steier L, Tress W et al (2015) Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ Sci 8(10):2928–2934CrossRef
47.
Zurück zum Zitat Song S, Kang G, Pyeon L, Lim C, Lee G-Y, Park T,Choi J, (2017) Systematically optimized bilayered electron transport layer for highly efficient planar perovskite solar cells (η = 21.1%). ACS Energy Lett 2(12):2667–2673 Song S, Kang G, Pyeon L, Lim C, Lee G-Y, Park T,Choi J, (2017) Systematically optimized bilayered electron transport layer for highly efficient planar perovskite solar cells (η = 21.1%). ACS Energy Lett 2(12):2667–2673
48.
Zurück zum Zitat Jiang Q, Chu Z, Wang P et al (2017) Planar-structure perovskite solar cells with efficiency beyond 21%. Adv Mater 29(46):1703852CrossRef Jiang Q, Chu Z, Wang P et al (2017) Planar-structure perovskite solar cells with efficiency beyond 21%. Adv Mater 29(46):1703852CrossRef
49.
Zurück zum Zitat Xie J, Huang K, Yu X et al, (2017) Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells. ACS Nano 11(9):9176–9182CrossRef Xie J, Huang K, Yu X et al, (2017) Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells. ACS Nano 11(9):9176–9182CrossRef
50.
Zurück zum Zitat Anaraki EH, Kermanpur A, Steier L et al (2016) Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ Sci 9(10):3128–3134CrossRef Anaraki EH, Kermanpur A, Steier L et al (2016) Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ Sci 9(10):3128–3134CrossRef
51.
Zurück zum Zitat Bach U, Lupo D, Comte P et al (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395(6702):583–585CrossRef Bach U, Lupo D, Comte P et al (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395(6702):583–585CrossRef
52.
Zurück zum Zitat Calió L, Kazim S, Grätzel M, Ahmad S (2016) Hole-transport materials for perovskite solar cells. Angew Chem Int Ed 55(47):14522–14545CrossRef Calió L, Kazim S, Grätzel M, Ahmad S (2016) Hole-transport materials for perovskite solar cells. Angew Chem Int Ed 55(47):14522–14545CrossRef
53.
Zurück zum Zitat (a) Nguyen WH, Bailie CD, Unger EL, McGehee MD (2014) Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)2 in perovskite and dye-sensitized solar cells. J Am Chem Soc 136(31):10996–11001; (b) Li M-H, Yum J-H, Moon S-J, Chen P (2016) Inorganic p-type semiconductors: their applications and progress in dye-sensitized solar cells and perovskite solar cells. Energies 9(5):331 (a) Nguyen WH, Bailie CD, Unger EL, McGehee MD (2014) Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)2 in perovskite and dye-sensitized solar cells. J Am Chem Soc 136(31):10996–11001; (b) Li M-H, Yum J-H, Moon S-J, Chen P (2016) Inorganic p-type semiconductors: their applications and progress in dye-sensitized solar cells and perovskite solar cells. Energies 9(5):331
54.
Zurück zum Zitat (a) Chen Y, Yang Z, Wang S et al (2018) Design of an inorganic mesoporous hole-transporting layer for highly efficient and stable inverted perovskite solar cells. Adv Mater 30(52):1805660; (b) Kung P-K, Li M-H, Lin P-Y, Chiang Y-H, Chan C-R, Guo T-F, Chen P (2018) A review of inorganic hole transport materials for perovskite solar cells. Adv Mater Interfaces 5(22):1800882; (c) Singh R, Singh PK, Bhattacharya B, Rhee H-W (2019) Review of current progress in inorganic hole-transport materials for perovskite solar cells. Appl Mater Today 14:175–200 (a) Chen Y, Yang Z, Wang S et al (2018) Design of an inorganic mesoporous hole-transporting layer for highly efficient and stable inverted perovskite solar cells. Adv Mater 30(52):1805660; (b) Kung P-K, Li M-H, Lin P-Y, Chiang Y-H, Chan C-R, Guo T-F, Chen P (2018) A review of inorganic hole transport materials for perovskite solar cells. Adv Mater Interfaces 5(22):1800882; (c) Singh R, Singh PK, Bhattacharya B, Rhee H-W (2019) Review of current progress in inorganic hole-transport materials for perovskite solar cells. Appl Mater Today 14:175–200
55.
Zurück zum Zitat Chen J, Park N-G (2018) Inorganic hole transporting materials for stable and high efficiency perovskite solar cells. J Phys Chem C 122(25):14039–14063CrossRef Chen J, Park N-G (2018) Inorganic hole transporting materials for stable and high efficiency perovskite solar cells. J Phys Chem C 122(25):14039–14063CrossRef
56.
Zurück zum Zitat Saliba M, Orlandi S, Matsui T et al (2016) A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nature Energy 1:15017CrossRef Saliba M, Orlandi S, Matsui T et al (2016) A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nature Energy 1:15017CrossRef
57.
Zurück zum Zitat Xu B, Zhang J, Hua Y et al (2017) Tailor-making low-cost spiro[fluorene-9,9′-xanthene]-based 3D oligomers for perovskite solar cells. Chem 2(5):676–687CrossRef Xu B, Zhang J, Hua Y et al (2017) Tailor-making low-cost spiro[fluorene-9,9′-xanthene]-based 3D oligomers for perovskite solar cells. Chem 2(5):676–687CrossRef
58.
Zurück zum Zitat Wang L, Zhang J, Liu P et al (2018) Design and synthesis of dopant-free organic hole-transport materials for perovskite solar cells. Chem Commun 54(69):9571–9574CrossRef Wang L, Zhang J, Liu P et al (2018) Design and synthesis of dopant-free organic hole-transport materials for perovskite solar cells. Chem Commun 54(69):9571–9574CrossRef
59.
Zurück zum Zitat Bi D, Xu B, Gao P, Sun L, Grätzel M, Hagfeldt A (2016) Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%. Nano Energy 23:138–144CrossRef Bi D, Xu B, Gao P, Sun L, Grätzel M, Hagfeldt A (2016) Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%. Nano Energy 23:138–144CrossRef
60.
Zurück zum Zitat (a) Yu Z, Sun L (2018) Inorganic hole-transporting materials for perovskite solar cells. Small Methods 2(2):1700280; (b) Rajeswari R, Mrinalini M, Prasanthkumar S, Giribabu L (2017) Emerging of inorganic hole transporting materials for perovskite solar cells. Chem Rec 17(7):681–699; (c) Wang Q, Li H, Zhuang J et al (2019) Hole transport materials doped to absorber film for improving the performance of the perovskite solar cells. Mater Sci Semicond Proc 98:113–120 (a) Yu Z, Sun L (2018) Inorganic hole-transporting materials for perovskite solar cells. Small Methods 2(2):1700280; (b) Rajeswari R, Mrinalini M, Prasanthkumar S, Giribabu L (2017) Emerging of inorganic hole transporting materials for perovskite solar cells. Chem Rec 17(7):681–699; (c) Wang Q, Li H, Zhuang J et al (2019) Hole transport materials doped to absorber film for improving the performance of the perovskite solar cells. Mater Sci Semicond Proc 98:113–120
61.
Zurück zum Zitat Rao H, Ye S, Sun W et al (2016) A 19.0% efficiency achieved in CuOx-based inverted CH3NH3PbI3−xClx solar cells by an effective Cl doping method. Nano Energy 27:51–57CrossRef Rao H, Ye S, Sun W et al (2016) A 19.0% efficiency achieved in CuOx-based inverted CH3NH3PbI3−xClx solar cells by an effective Cl doping method. Nano Energy 27:51–57CrossRef
62.
Zurück zum Zitat Zhang H, Wang H, Chen W, Jen AK-Y (2017) CuGaO2: a promising inorganic hole-transporting material for highly efficient and stable perovskite solar cells. Adv Mater 29(8):1604984CrossRef Zhang H, Wang H, Chen W, Jen AK-Y (2017) CuGaO2: a promising inorganic hole-transporting material for highly efficient and stable perovskite solar cells. Adv Mater 29(8):1604984CrossRef
63.
Zurück zum Zitat Liu C, Zhou X, Chen S, Zhao X, Dai S, Xu B (2019) Hydrophobic Cu2O quantum dots enabled by surfactant modification as top hole-transport materials for efficient perovskite solar cells. Adv Sci 6(7):1801169CrossRef Liu C, Zhou X, Chen S, Zhao X, Dai S, Xu B (2019) Hydrophobic Cu2O quantum dots enabled by surfactant modification as top hole-transport materials for efficient perovskite solar cells. Adv Sci 6(7):1801169CrossRef
64.
Zurück zum Zitat Chen Y, Yang Z, Jia X et al (2019) Thermally stable methylammonium-free inverted perovskite solar cells with Zn2+ doped CuGaO2 as efficient mesoporous hole-transporting layer. Nano Energy 61:148–157CrossRef Chen Y, Yang Z, Jia X et al (2019) Thermally stable methylammonium-free inverted perovskite solar cells with Zn2+ doped CuGaO2 as efficient mesoporous hole-transporting layer. Nano Energy 61:148–157CrossRef
65.
Zurück zum Zitat Joselevich E (2004) Electronic structure and chemical reactivity of carbon nanotubes: a chemist’s view. ChemPhysChem 5(5):619–624CrossRef Joselevich E (2004) Electronic structure and chemical reactivity of carbon nanotubes: a chemist’s view. ChemPhysChem 5(5):619–624CrossRef
66.
Zurück zum Zitat Wang H, Yuan Y, Wei L, Goh K, Yu D, Chen Y (2015) Catalysts for chirality selective synthesis of single-walled carbon nanotubes. Carbon 81:1–19CrossRef Wang H, Yuan Y, Wei L, Goh K, Yu D, Chen Y (2015) Catalysts for chirality selective synthesis of single-walled carbon nanotubes. Carbon 81:1–19CrossRef
67.
Zurück zum Zitat Wu H-C, Chang X, Liu L, Zhao F, Zhao Y (2010) Chemistry of carbon nanotubes in biomedical applications. J Mater Chem 20(6):1036–1052CrossRef Wu H-C, Chang X, Liu L, Zhao F, Zhao Y (2010) Chemistry of carbon nanotubes in biomedical applications. J Mater Chem 20(6):1036–1052CrossRef
68.
Zurück zum Zitat Jain RM, Howden R, Tvrdy K et al (2012) Polymer-free near-infrared photovoltaics with single chirality (6,5) semiconducting carbon nanotube active layers. Adv Mater 24(32):4436–4439CrossRef Jain RM, Howden R, Tvrdy K et al (2012) Polymer-free near-infrared photovoltaics with single chirality (6,5) semiconducting carbon nanotube active layers. Adv Mater 24(32):4436–4439CrossRef
69.
Zurück zum Zitat (a) Vavro J, Llaguno MC, Fischer JE et al (2003) Thermoelectric power of p-doped single-wall carbon nanotubes and the role of phonon drag. Phys Rev Lett 90(6):065503; (b) Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459):1801–1804; (c) Nonoguchi Y, Ohashi K, Kanazawa R et al (2013) Systematic conversion of single walled carbon nanotubes into n-type thermoelectric materials by molecular dopants. Sci Rep 3:3344 (a) Vavro J, Llaguno MC, Fischer JE et al (2003) Thermoelectric power of p-doped single-wall carbon nanotubes and the role of phonon drag. Phys Rev Lett 90(6):065503; (b) Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459):1801–1804; (c) Nonoguchi Y, Ohashi K, Kanazawa R et al (2013) Systematic conversion of single walled carbon nanotubes into n-type thermoelectric materials by molecular dopants. Sci Rep 3:3344
70.
Zurück zum Zitat Kim SM, Jang JH, Kim KK et al (2009) Reduction-controlled viologen in bisolvent as an environmentally stable n-type dopant for carbon nanotubes. J Am Chem Soc 131(1):327–331CrossRef Kim SM, Jang JH, Kim KK et al (2009) Reduction-controlled viologen in bisolvent as an environmentally stable n-type dopant for carbon nanotubes. J Am Chem Soc 131(1):327–331CrossRef
71.
Zurück zum Zitat (a) Chatterjee S, Pal AJ (2018) Influence of metal substitution on hybrid halide perovskites: towards lead-free perovskite solar cells. J Mater Chem A6(9):3793–3823; (b) Wang H, Kim DH (2017) Perovskite-based photodetectors: materials and devices. Chem Soc Rev 46(17):5204–5236; (c) Hong K, Le QV, Kim SY, Jang HW (2018) Low-dimensional halide perovskites: review and issues. J Mater Chem C6(9):2189–2209 (a) Chatterjee S, Pal AJ (2018) Influence of metal substitution on hybrid halide perovskites: towards lead-free perovskite solar cells. J Mater Chem A6(9):3793–3823; (b) Wang H, Kim DH (2017) Perovskite-based photodetectors: materials and devices. Chem Soc Rev 46(17):5204–5236; (c) Hong K, Le QV, Kim SY, Jang HW (2018) Low-dimensional halide perovskites: review and issues. J Mater Chem C6(9):2189–2209
72.
Zurück zum Zitat (a) Green MA, Bein T (2015) Perovskite cells charge forward. Nat Mater 14:559–561; (b) Fu Q, Tang X, Huang B, Hu T, Tan L, Chen L, Chen Y, (2018) Recent progress on the long-term stability of perovskite solar cells. Adv Sci 5(5):1700387 (a) Green MA, Bein T (2015) Perovskite cells charge forward. Nat Mater 14:559–561; (b) Fu Q, Tang X, Huang B, Hu T, Tan L, Chen L, Chen Y, (2018) Recent progress on the long-term stability of perovskite solar cells. Adv Sci 5(5):1700387
73.
Zurück zum Zitat Wang D, Wright M, Elumalai NK, Uddin A (2016) Stability of perovskite solar cells. Sol Energy Mat Sol Cells 147:255–275CrossRef Wang D, Wright M, Elumalai NK, Uddin A (2016) Stability of perovskite solar cells. Sol Energy Mat Sol Cells 147:255–275CrossRef
74.
Zurück zum Zitat Tsai C-M, Shiu H-S, Wu H-P, Diau EW-G (2017) Control of film morphology for high-performance perovskite solar cells. In: DiauandP EW-G, Chen C-Y (eds) Perovskite solar cells principle, materials and devices. World Scientific Publishing Co., New Jersey Tsai C-M, Shiu H-S, Wu H-P, Diau EW-G (2017) Control of film morphology for high-performance perovskite solar cells. In: DiauandP EW-G, Chen C-Y (eds) Perovskite solar cells principle, materials and devices. World Scientific Publishing Co., New Jersey
75.
Zurück zum Zitat (a) Snaith HJ, Abate A, Ball JM et al (2014) Anomalous hysteresis in perovskite solar cells. J Phys Chem Lett 5:(9) 1511–1515; (b) Bergmann V W, Weber S A L, Javier Ramos F et al (2014) Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nat Commun 5:5001; (c) Chen B, Yang M, Priya S, Zhu K (2016) Origin of J–V hysteresis in perovskite solar cells. J Phys Chem Lett 7(5):905–917 (a) Snaith HJ, Abate A, Ball JM et al (2014) Anomalous hysteresis in perovskite solar cells. J Phys Chem Lett 5:(9) 1511–1515; (b) Bergmann V W, Weber S A L, Javier Ramos F et al (2014) Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nat Commun 5:5001; (c) Chen B, Yang M, Priya S, Zhu K (2016) Origin of J–V hysteresis in perovskite solar cells. J Phys Chem Lett 7(5):905–917
76.
Zurück zum Zitat (a) Ihly R, Dowgiallo A-M, Yang M et al (2016) Efficient charge extraction and slow recombination in organic–inorganic perovskites capped with semiconducting single-walled carbon nanotubes. Energy Environ Sci 9(4):1439–1449; (b) Blackburn JL (2017) Semiconducting single-walled carbon nanotubes in solar energy harvesting. ACS Energy Lett 2(7):1598–1613 (a) Ihly R, Dowgiallo A-M, Yang M et al (2016) Efficient charge extraction and slow recombination in organic–inorganic perovskites capped with semiconducting single-walled carbon nanotubes. Energy Environ Sci 9(4):1439–1449; (b) Blackburn JL (2017) Semiconducting single-walled carbon nanotubes in solar energy harvesting. ACS Energy Lett 2(7):1598–1613
77.
Zurück zum Zitat (a) Tiong VT, Pham ND, Wang T et al (2018) Octadecylamine-functionalized single-walled carbon nanotubes for facilitating the formation of a monolithic perovskite layer and stable solar cells. Adv Funct Mater 28(10):1705545; (b) Ryu J, Lee K, Yun J, Yu H, Lee J, Jang J (2017) Paintable carbon-based perovskite solar cells with engineered perovskite/carbon interface using carbon nanotubes dripping method. Small 13(38):1701225; (c) Aitola K, Domanski K, Correa-Baena J-P et al (2017) High temperature-stable perovskite solar cell based on low-cost carbon nanotube hole contact. Adv Mater 29(17):1606398; (d) Ahn N, Jeon I, Yoon J, Kauppinen EI, Matsuo Y, Maruyama S, Choi M (2018) Carbon-sandwiched perovskite solar cell. J Mater Chem A6(4):1382–1389 (a) Tiong VT, Pham ND, Wang T et al (2018) Octadecylamine-functionalized single-walled carbon nanotubes for facilitating the formation of a monolithic perovskite layer and stable solar cells. Adv Funct Mater 28(10):1705545; (b) Ryu J, Lee K, Yun J, Yu H, Lee J, Jang J (2017) Paintable carbon-based perovskite solar cells with engineered perovskite/carbon interface using carbon nanotubes dripping method. Small 13(38):1701225; (c) Aitola K, Domanski K, Correa-Baena J-P et al (2017) High temperature-stable perovskite solar cell based on low-cost carbon nanotube hole contact. Adv Mater 29(17):1606398; (d) Ahn N, Jeon I, Yoon J, Kauppinen EI, Matsuo Y, Maruyama S, Choi M (2018) Carbon-sandwiched perovskite solar cell. J Mater Chem A6(4):1382–1389
78.
Zurück zum Zitat Zhang Y, Tan L, Fu Q, Chen L, Ji T, Hu X, Chen Y (2016) Enhancing the grain size of organic halide perovskites by sulfonate-carbon nanotube incorporation in high performance perovskite solar cells. Chem Commun 52(33):5674–5677CrossRef Zhang Y, Tan L, Fu Q, Chen L, Ji T, Hu X, Chen Y (2016) Enhancing the grain size of organic halide perovskites by sulfonate-carbon nanotube incorporation in high performance perovskite solar cells. Chem Commun 52(33):5674–5677CrossRef
79.
Zurück zum Zitat (a) Park C, Ko H, Sin DH, Song KC, Cho K (2017) Organometal halide perovskite solar cells with improved thermal stability via grain boundary passivation using a molecular additive. Adv Funct Mater 27(42):1703546; (b) Lee J-W, Bae S-H, De Marco N, Hsieh Y-T, Dai Z, Yang Y (2018) The role of grain boundaries in perovskite solar cells. Materials Today Energy 7:149–160 (a) Park C, Ko H, Sin DH, Song KC, Cho K (2017) Organometal halide perovskite solar cells with improved thermal stability via grain boundary passivation using a molecular additive. Adv Funct Mater 27(42):1703546; (b) Lee J-W, Bae S-H, De Marco N, Hsieh Y-T, Dai Z, Yang Y (2018) The role of grain boundaries in perovskite solar cells. Materials Today Energy 7:149–160
80.
Zurück zum Zitat (a) Ham S, Choi Y J, Lee J-W, Park N-G, Kim D (2017) Impact of excess CH3NH3I on free carrier dynamics in high-performance nonstoichiometric perovskites. J Phys Chem C121(5):3143–3148; (b) Yang M, Zeng Y, Li Z, Kim DH, Jiang C-S, van de Lagemaat J, Zhu K (2017) Do grain boundaries dominate non-radiative recombination in CH3NH3PbI3 perovskite thin films? Phys Chem Chem Phys 19(7):5043–5050 (a) Ham S, Choi Y J, Lee J-W, Park N-G, Kim D (2017) Impact of excess CH3NH3I on free carrier dynamics in high-performance nonstoichiometric perovskites. J Phys Chem C121(5):3143–3148; (b) Yang M, Zeng Y, Li Z, Kim DH, Jiang C-S, van de Lagemaat J, Zhu K (2017) Do grain boundaries dominate non-radiative recombination in CH3NH3PbI3 perovskite thin films? Phys Chem Chem Phys 19(7):5043–5050
81.
Zurück zum Zitat Gu Z, Huang Z, Li C, Li M, Song Y (2018) A general printing approach for scalable growth of perovskite single-crystal films. Sci Adv 4(6):eaat2390CrossRef Gu Z, Huang Z, Li C, Li M, Song Y (2018) A general printing approach for scalable growth of perovskite single-crystal films. Sci Adv 4(6):eaat2390CrossRef
82.
Zurück zum Zitat Wang Y, Zhao H, Mei Y, Liu H, Wang S, Li X (2019) Carbon nanotube bridging method for hole transport layer-free paintable carbon-based perovskite solar cells. ACS Appl Mater Interfaces 11(1):916–923CrossRef Wang Y, Zhao H, Mei Y, Liu H, Wang S, Li X (2019) Carbon nanotube bridging method for hole transport layer-free paintable carbon-based perovskite solar cells. ACS Appl Mater Interfaces 11(1):916–923CrossRef
83.
Zurück zum Zitat Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051CrossRef Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051CrossRef
84.
Zurück zum Zitat (a) Qin K, Dong B, Wang S (2019) Improving the stability of metal halide perovskite solar cells from material to structure. J Energy Chem 33:90–99; (b) Byranvand MM, Kharat AN, Taghavinia N (2019) Moisture stability in nanostructured perovskite solar cells. Mater Lett 237:356–360 (a) Qin K, Dong B, Wang S (2019) Improving the stability of metal halide perovskite solar cells from material to structure. J Energy Chem 33:90–99; (b) Byranvand MM, Kharat AN, Taghavinia N (2019) Moisture stability in nanostructured perovskite solar cells. Mater Lett 237:356–360
85.
Zurück zum Zitat Frost JM, Butler KT, Brivio F, Hendon CH, van Schilfgaarde M, Walsh A (2014) Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett 14(5):2584–2590CrossRef Frost JM, Butler KT, Brivio F, Hendon CH, van Schilfgaarde M, Walsh A (2014) Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett 14(5):2584–2590CrossRef
86.
Zurück zum Zitat You J, Meng L, Song T-B et al (2015) Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotechnol 11:75CrossRef You J, Meng L, Song T-B et al (2015) Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotechnol 11:75CrossRef
87.
Zurück zum Zitat (a) Guo Y, Kang L, Zhu M, Zhang Y, Li X, Xu P (2018) A strategy toward air-stable and high-performance ZnO-based perovskite solar cells fabricated under ambient conditions. Chem Eng J 336:732–740; (b) Song J, Liu L, Wang X-F, Chen G, Tian W, Miyasaka T (2017) Highly efficient and stable low-temperature processed ZnO solar cells with triple cation perovskite absorber. J Mater Chem A5(26):13439–13447 (a) Guo Y, Kang L, Zhu M, Zhang Y, Li X, Xu P (2018) A strategy toward air-stable and high-performance ZnO-based perovskite solar cells fabricated under ambient conditions. Chem Eng J 336:732–740; (b) Song J, Liu L, Wang X-F, Chen G, Tian W, Miyasaka T (2017) Highly efficient and stable low-temperature processed ZnO solar cells with triple cation perovskite absorber. J Mater Chem A5(26):13439–13447
88.
Zurück zum Zitat Zhang W, Ren Z, Guo Y, He X, Li X (2018) Improved the long-term air stability of ZnO-based perovskite solar cells prepared under ambient conditions via surface modification of the electron transport layer using an ionic liquid. Electrochim Acta 268:539–545CrossRef Zhang W, Ren Z, Guo Y, He X, Li X (2018) Improved the long-term air stability of ZnO-based perovskite solar cells prepared under ambient conditions via surface modification of the electron transport layer using an ionic liquid. Electrochim Acta 268:539–545CrossRef
89.
Zurück zum Zitat Choi EY, Kim J, Lim S, Han E, Ho-Baillie AWY, Park N (2018) Enhancing stability for organic-inorganic perovskite solar cells by atomic layer deposited Al2O3 encapsulation. Sol Energy Mat Sol Cells 188:37–45CrossRef Choi EY, Kim J, Lim S, Han E, Ho-Baillie AWY, Park N (2018) Enhancing stability for organic-inorganic perovskite solar cells by atomic layer deposited Al2O3 encapsulation. Sol Energy Mat Sol Cells 188:37–45CrossRef
90.
Zurück zum Zitat Wu S, Chen R, Zhang S et al (2019) A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nat Commun 10(1):1161 Wu S, Chen R, Zhang S et al (2019) A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nat Commun 10(1):1161
91.
Zurück zum Zitat (a) Siegler TD, Houck DW, Cho SH, Milliron DJ, Korgel BA (2019) Bismuth Enhances the Stability of CH3NH3PbI3 (MAPI) perovskite under high humidity. J Phys Chem C123(1):963–970; (b) Chan S-H, Wu M-C, Lee K-M, Chen W-C, Lin T-H, Su W-F (2017) Enhancing perovskite solar cell performance and stability by doping barium in methylammonium lead halide. J Mater Chem A5(34):18044–18052; (c) Niu G, Li W, Li J, Liang X, Wang L (2017) Enhancement of thermal stability for perovskite solar cells through cesium doping. RSC Adv 7(28):17473–17479; (d) Zhang X, Ren X, Liu B et al (2017) Stable high efficiency two-dimensional perovskite solar cells via cesium doping. Energy Environ Sci 10(10):2095–2102 (a) Siegler TD, Houck DW, Cho SH, Milliron DJ, Korgel BA (2019) Bismuth Enhances the Stability of CH3NH3PbI3 (MAPI) perovskite under high humidity. J Phys Chem C123(1):963–970; (b) Chan S-H, Wu M-C, Lee K-M, Chen W-C, Lin T-H, Su W-F (2017) Enhancing perovskite solar cell performance and stability by doping barium in methylammonium lead halide. J Mater Chem A5(34):18044–18052; (c) Niu G, Li W, Li J, Liang X, Wang L (2017) Enhancement of thermal stability for perovskite solar cells through cesium doping. RSC Adv 7(28):17473–17479; (d) Zhang X, Ren X, Liu B et al (2017) Stable high efficiency two-dimensional perovskite solar cells via cesium doping. Energy Environ Sci 10(10):2095–2102
92.
Zurück zum Zitat Saliba M, Matsui T, Seo J-Y et al (2016) Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci 9(6):1989–1997CrossRef Saliba M, Matsui T, Seo J-Y et al (2016) Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci 9(6):1989–1997CrossRef
93.
Zurück zum Zitat Yang S, Wang Y, Liu P, Cheng Y-B, Zhao HJ, Yang HG (2016) Functionalization of perovskite thin films with moisture-tolerant molecules. Nat Energy 1:15016CrossRef Yang S, Wang Y, Liu P, Cheng Y-B, Zhao HJ, Yang HG (2016) Functionalization of perovskite thin films with moisture-tolerant molecules. Nat Energy 1:15016CrossRef
94.
Zurück zum Zitat Meng L, Zhang F, Ma W et al (2019) Improving photovoltaic stability and performance of perovskite solar cells by molecular interface engineering. J Phys Chem B 123(2):1219–1225 Meng L, Zhang F, Ma W et al (2019) Improving photovoltaic stability and performance of perovskite solar cells by molecular interface engineering. J Phys Chem B 123(2):1219–1225
95.
Zurück zum Zitat (a) Wei D, Huang H, Cui P et al (2019) Moisture-tolerant supermolecule for the stability enhancement of organic–inorganic perovskite solar cells in ambient air. Nanoscale 11(3):1228–1235; (b) Quan LN, Yuan M, Comin R et al (2016) Ligand-stabilized reduced-dimensionality perovskites. J Am Chem Soc 138(8):2649–2655 (a) Wei D, Huang H, Cui P et al (2019) Moisture-tolerant supermolecule for the stability enhancement of organic–inorganic perovskite solar cells in ambient air. Nanoscale 11(3):1228–1235; (b) Quan LN, Yuan M, Comin R et al (2016) Ligand-stabilized reduced-dimensionality perovskites. J Am Chem Soc 138(8):2649–2655
96.
Zurück zum Zitat Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48(2):183–185CrossRef Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48(2):183–185CrossRef
97.
Zurück zum Zitat (a) Zhang S, Qin Y, Zhu J, Hou J (2018) Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv Mater 30(20):1800868; (b) Xue R, Zhang J, Li Y, Li Y (2018) Organic solar cell materials toward commercialization. Small 14(41):1801793; (c) Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L (2015) Recent advances in bulk heterojunction polymer solar cells. Chem Rev 115(23):12666–12731 (a) Zhang S, Qin Y, Zhu J, Hou J (2018) Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv Mater 30(20):1800868; (b) Xue R, Zhang J, Li Y, Li Y (2018) Organic solar cell materials toward commercialization. Small 14(41):1801793; (c) Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L (2015) Recent advances in bulk heterojunction polymer solar cells. Chem Rev 115(23):12666–12731
98.
Zurück zum Zitat Speller EM (2017) The significance of fullerene electron acceptors in organic solar cell photo-oxidation. Mater Sci Tech 33(8):924–933CrossRef Speller EM (2017) The significance of fullerene electron acceptors in organic solar cell photo-oxidation. Mater Sci Tech 33(8):924–933CrossRef
99.
Zurück zum Zitat Glatthaar M, Niggemann M, Zimmermann B, Lewer P, Riede M, Hinsch A, Luther J (2005) Organic solar cells using inverted layer sequence. Thin Solid Films 491(1):298–300CrossRef Glatthaar M, Niggemann M, Zimmermann B, Lewer P, Riede M, Hinsch A, Luther J (2005) Organic solar cells using inverted layer sequence. Thin Solid Films 491(1):298–300CrossRef
100.
Zurück zum Zitat Rafique S, Abdullah SM, Sulaiman K, Iwamoto M (2018) Fundamentals of bulk heterojunction organic solar cells: an overview of stability/degradation issues and strategies for improvement. Renew Sust Energy Rev 84:43–53CrossRef Rafique S, Abdullah SM, Sulaiman K, Iwamoto M (2018) Fundamentals of bulk heterojunction organic solar cells: an overview of stability/degradation issues and strategies for improvement. Renew Sust Energy Rev 84:43–53CrossRef
101.
Zurück zum Zitat Gaspar H, Figueira F, Pereira L, Mendes A, Viana J C,Bernardo G (2018) Recent developments in the optimization of the bulk heterojunction morphology of polymer: fullerene solar cells. Materials 11(12):2560CrossRef Gaspar H, Figueira F, Pereira L, Mendes A, Viana J C,Bernardo G (2018) Recent developments in the optimization of the bulk heterojunction morphology of polymer: fullerene solar cells. Materials 11(12):2560CrossRef
102.
Zurück zum Zitat Nelson J (2011) Polymer: fullerene bulk heterojunction solar cells. Mater Today 14(10):462–470CrossRef Nelson J (2011) Polymer: fullerene bulk heterojunction solar cells. Mater Today 14(10):462–470CrossRef
103.
Zurück zum Zitat (a) Liao H-C, Ho C-C, Chang C-Y, Jao M-H, Darling SB, Su W-F (2013) Additives for morphology control in high-efficiency organic solar cells. Mater. Today 16(9):326–336; (b) Berger PR, Kim M (2018) Polymer solar cells: P3HT:PCBM and beyond. J Renew Sustain Enerey 10(1):013508; (c) Laird DW, Vaidya S, Li S et al (2007) Advances in plexcore active layer technology systems for organic photovoltaics: roof-top and accelerated lifetime analysis of high performance organic photovoltaic cells. In: Organic Photovoltaics VIII, vol 6656. SPIE, p. 66560X (a) Liao H-C, Ho C-C, Chang C-Y, Jao M-H, Darling SB, Su W-F (2013) Additives for morphology control in high-efficiency organic solar cells. Mater. Today 16(9):326–336; (b) Berger PR, Kim M (2018) Polymer solar cells: P3HT:PCBM and beyond. J Renew Sustain Enerey 10(1):013508; (c) Laird DW, Vaidya S, Li S et al (2007) Advances in plexcore active layer technology systems for organic photovoltaics: roof-top and accelerated lifetime analysis of high performance organic photovoltaic cells. In: Organic Photovoltaics VIII, vol 6656. SPIE, p. 66560X
104.
Zurück zum Zitat Tamilavan V, Song M, Jin S-H, Hyun MH (2013) Synthesis of new broad absorption low band gap random copolymers for bulk heterojunction solar cell applications. Macromol Res 21(4):406–413CrossRef Tamilavan V, Song M, Jin S-H, Hyun MH (2013) Synthesis of new broad absorption low band gap random copolymers for bulk heterojunction solar cell applications. Macromol Res 21(4):406–413CrossRef
105.
Zurück zum Zitat Mikroyannidis JA, Tsagkournos DV, Sharma SS, Vijay YK, Sharma GD (2010) Conjugated small molecules with broad absorption containing pyridine and pyran units: synthesis and application for bulk heterojunction solar cells. Org Electron 11(12):2045–2054CrossRef Mikroyannidis JA, Tsagkournos DV, Sharma SS, Vijay YK, Sharma GD (2010) Conjugated small molecules with broad absorption containing pyridine and pyran units: synthesis and application for bulk heterojunction solar cells. Org Electron 11(12):2045–2054CrossRef
106.
Zurück zum Zitat (a) Pratyusha T, Sivakumar G, Yella A, Gupta D, (2017) Novel ternary blend of PCDTBT, PCPDTBT and PC70BM for the fabrication of bulk heterojunction organic solar cells. Mater Today Proc 4(4, Part B):5067–5073; (b) Boland P, Lee K, Namkoong G (2010) Device optimization in PCPDTBT:PCBM plastic solar cells. Sol Energy Mat Sol C 94(5):915–920 (a) Pratyusha T, Sivakumar G, Yella A, Gupta D, (2017) Novel ternary blend of PCDTBT, PCPDTBT and PC70BM for the fabrication of bulk heterojunction organic solar cells. Mater Today Proc 4(4, Part B):5067–5073; (b) Boland P, Lee K, Namkoong G (2010) Device optimization in PCPDTBT:PCBM plastic solar cells. Sol Energy Mat Sol C 94(5):915–920
107.
Zurück zum Zitat Alem S, Chu T-Y, Tse SC et al (2011) Effect of mixed solvents on PCDTBT:PC70BM based solar cells. Org Electron 12(11):1788–1793CrossRef Alem S, Chu T-Y, Tse SC et al (2011) Effect of mixed solvents on PCDTBT:PC70BM based solar cells. Org Electron 12(11):1788–1793CrossRef
108.
Zurück zum Zitat Nagarjuna P, Bagui A, Gupta V, Singh SP (2017) A highly efficient PTB7-Th polymer donor bulk hetero-junction solar cell with increased open circuit voltage using fullerene acceptor CN-PC70BM. Org Electron 43:262–267CrossRef Nagarjuna P, Bagui A, Gupta V, Singh SP (2017) A highly efficient PTB7-Th polymer donor bulk hetero-junction solar cell with increased open circuit voltage using fullerene acceptor CN-PC70BM. Org Electron 43:262–267CrossRef
109.
Zurück zum Zitat Collado-Fregoso E, Deledalle F, Utzat H et al (2017) Photophysical study of DPPTT-T/PC70BM blends and solar devices as a function of fullerene loading: an Insight into EQE limitations of DPP-based polymers. Adv Func Mater 27(6):1604426CrossRef Collado-Fregoso E, Deledalle F, Utzat H et al (2017) Photophysical study of DPPTT-T/PC70BM blends and solar devices as a function of fullerene loading: an Insight into EQE limitations of DPP-based polymers. Adv Func Mater 27(6):1604426CrossRef
110.
Zurück zum Zitat (a) Bin H, Zhang Z-G, Gao L et al (2016) Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5% efficiency. J Am Chem Soc 138(13):4657–4664; (b) Bin H, Gao L, Zhang Z-G et al (2016) 11.4% efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat Commun 7:13651 (a) Bin H, Zhang Z-G, Gao L et al (2016) Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5% efficiency. J Am Chem Soc 138(13):4657–4664; (b) Bin H, Gao L, Zhang Z-G et al (2016) 11.4% efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat Commun 7:13651
111.
Zurück zum Zitat Xu X, Bi Z, Ma W et al (2017) Highly efficient ternary-blend polymer solar cells enabled by a nonfullerene acceptor and two polymer donors with a broad composition tolerance. Adv Mater 29(46):1704271CrossRef Xu X, Bi Z, Ma W et al (2017) Highly efficient ternary-blend polymer solar cells enabled by a nonfullerene acceptor and two polymer donors with a broad composition tolerance. Adv Mater 29(46):1704271CrossRef
112.
Zurück zum Zitat Fei Z, Eisner FD, Jiao X et al (2018) An alkylated Indacenodithieno[3,2-b]thiophene-based nonfullerene acceptor with high crystallinity exhibiting single junction solar cell efficiencies greater than 13% with low voltage losses. Adv Mater 30(8):1705209CrossRef Fei Z, Eisner FD, Jiao X et al (2018) An alkylated Indacenodithieno[3,2-b]thiophene-based nonfullerene acceptor with high crystallinity exhibiting single junction solar cell efficiencies greater than 13% with low voltage losses. Adv Mater 30(8):1705209CrossRef
113.
Zurück zum Zitat (a) Zhang Z, Yuan J, Wei Q, Zou Y (2018) Small-molecule electron acceptors for efficient non-fullerene organic solar cells. Front Chem 6:414–414; (b) Liang N, Sun K, Feng J et al (2018) Near-infrared electron acceptors based on terrylene diimides for organic solar cells. J Mater Chem A6(39):18808–18812; (c) Wang J, Zhan X (2019) Rylene diimide electron acceptors for organic solar cells. Trends Chem. https://doi.org/10.1016/j.trechm.2019.1005.1002; (d) Li S, Zhang Z, Shi M, Li C-Z, Chen H (2017) Molecular electron acceptors for efficient fullerene-free organic solar cells. Phys Chem Chem Phys 19(5):3440–3458 (a) Zhang Z, Yuan J, Wei Q, Zou Y (2018) Small-molecule electron acceptors for efficient non-fullerene organic solar cells. Front Chem 6:414–414; (b) Liang N, Sun K, Feng J et al (2018) Near-infrared electron acceptors based on terrylene diimides for organic solar cells. J Mater Chem A6(39):18808–18812; (c) Wang J, Zhan X (2019) Rylene diimide electron acceptors for organic solar cells. Trends Chem. https://​doi.​org/​10.​1016/​j.​trechm.​2019.​1005.​1002; (d) Li S, Zhang Z, Shi M, Li C-Z, Chen H (2017) Molecular electron acceptors for efficient fullerene-free organic solar cells. Phys Chem Chem Phys 19(5):3440–3458
114.
Zurück zum Zitat (a) Sauvé G, Fernando R (2015) Beyond fullerenes: designing alternative molecular electron acceptors for solution-processable bulk Heterojunction organic photovoltaics. J Phys Chem Lett 6(18):3770–3780; (b) Zhan C, Yao J, (2016) More than conformational “twisting” or “coplanarity”: molecular strategies for designing high-efficiency nonfullerene organic solar cells. Chem Mater 28(7):1948–1964; (c) Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J (2016) Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv Mater 28(42):9423–9429 (a) Sauvé G, Fernando R (2015) Beyond fullerenes: designing alternative molecular electron acceptors for solution-processable bulk Heterojunction organic photovoltaics. J Phys Chem Lett 6(18):3770–3780; (b) Zhan C, Yao J, (2016) More than conformational “twisting” or “coplanarity”: molecular strategies for designing high-efficiency nonfullerene organic solar cells. Chem Mater 28(7):1948–1964; (c) Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J (2016) Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv Mater 28(42):9423–9429
115.
Zurück zum Zitat (a) Gao L, Zhang Z-G, Xue L, Min J, Zhang J, Wei Z, Li Y (2016) All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv Mater 28(9):1884–1890; (b) Zhao R, Dou C, Xie Z, Liu J, Wang L (2016) Polymer acceptor based on B ← N units with enhanced electron mobility for efficient all-polymer solar cells. Angew Chem Int Ed 55(17):5313–5317 (a) Gao L, Zhang Z-G, Xue L, Min J, Zhang J, Wei Z, Li Y (2016) All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv Mater 28(9):1884–1890; (b) Zhao R, Dou C, Xie Z, Liu J, Wang L (2016) Polymer acceptor based on B ← N units with enhanced electron mobility for efficient all-polymer solar cells. Angew Chem Int Ed 55(17):5313–5317
116.
Zurück zum Zitat (a) Ganesamoorthy R, Sathiyan G, Sakthivel P (2017) Review: fullerene based acceptors for efficient bulk heterojunction organic solar cell applications. Sol Energ Mat Sol C 161:102–148; (b) Cui Y, Yao H, Zhang J et al (2019) Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat Commun 10(1):2515 (a) Ganesamoorthy R, Sathiyan G, Sakthivel P (2017) Review: fullerene based acceptors for efficient bulk heterojunction organic solar cell applications. Sol Energ Mat Sol C 161:102–148; (b) Cui Y, Yao H, Zhang J et al (2019) Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat Commun 10(1):2515
117.
Zurück zum Zitat Kim M, Lee J, Sin D H, Lee H, Woo H Y,Cho K, (2018) Nonfullerene/fullerene acceptor blend with a tunable energy state for high-performance ternary organic solar cells. ACS Appl. Mater. Interfaces 10(30):25570–25579CrossRef Kim M, Lee J, Sin D H, Lee H, Woo H Y,Cho K, (2018) Nonfullerene/fullerene acceptor blend with a tunable energy state for high-performance ternary organic solar cells. ACS Appl. Mater. Interfaces 10(30):25570–25579CrossRef
118.
Zurück zum Zitat Zhao J, Li Y, Yang G et al (2016) Efficient organic solar cells processed from hydrocarbon solvents. Nature Energy 1:15027CrossRef Zhao J, Li Y, Yang G et al (2016) Efficient organic solar cells processed from hydrocarbon solvents. Nature Energy 1:15027CrossRef
119.
Zurück zum Zitat (a) Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J (2016) Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv Mater 28(23):4734–4739; (b) Li S, Ye L, Zhao W et al (2018) A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells. J Am Chem Soc 140(23):7159–7167 (a) Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J (2016) Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv Mater 28(23):4734–4739; (b) Li S, Ye L, Zhao W et al (2018) A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells. J Am Chem Soc 140(23):7159–7167
120.
Zurück zum Zitat (a) Wadsworth A, Moser M, Marks A et al (2019) Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem Soc Rev 48(6):1596–1625; (b) Pan Q-Q, Li S-B, Wu Y, Geng Y, Zhang M, Su Z-M (2018) Exploring more effective polymer donors for the famous non-fullerene acceptor ITIC in organic solar cells by increasing electron-withdrawing ability. Org Electron 53:308–314; (c) Cui C (2018) Recent progress in fused-ring based nonfullerene acceptors for polymer solar cells. Front Chem 6:404 (a) Wadsworth A, Moser M, Marks A et al (2019) Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem Soc Rev 48(6):1596–1625; (b) Pan Q-Q, Li S-B, Wu Y, Geng Y, Zhang M, Su Z-M (2018) Exploring more effective polymer donors for the famous non-fullerene acceptor ITIC in organic solar cells by increasing electron-withdrawing ability. Org Electron 53:308–314; (c) Cui C (2018) Recent progress in fused-ring based nonfullerene acceptors for polymer solar cells. Front Chem 6:404
121.
Zurück zum Zitat Yang K, Liao Q, Koh CW et al (2019) Improved photovoltaic performance of a nonfullerene acceptor based on a benzo[b]thiophene fused end group with extended π-conjugation. J Mater Chem A7(16):9822–9830CrossRef Yang K, Liao Q, Koh CW et al (2019) Improved photovoltaic performance of a nonfullerene acceptor based on a benzo[b]thiophene fused end group with extended π-conjugation. J Mater Chem A7(16):9822–9830CrossRef
122.
Zurück zum Zitat Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J (2017) Molecular optimization enables over 13% efficiency in organic solar cells. J Am Chem Soc 139(21):7148–7151CrossRef Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J (2017) Molecular optimization enables over 13% efficiency in organic solar cells. J Am Chem Soc 139(21):7148–7151CrossRef
123.
Zurück zum Zitat Ameri T, Dennler G, Lungenschmied C, Brabec CJ (2009) Organic tandem solar cells: a review. Energy Environ Sci 2(4):347–363CrossRef Ameri T, Dennler G, Lungenschmied C, Brabec CJ (2009) Organic tandem solar cells: a review. Energy Environ Sci 2(4):347–363CrossRef
124.
Zurück zum Zitat Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32(3):510–519CrossRef Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32(3):510–519CrossRef
125.
Zurück zum Zitat Vos AD (1980) Detailed balance limit of the efficiency of tandem solar cells. J Phys D Appl Phys 13(5):839–846CrossRef Vos AD (1980) Detailed balance limit of the efficiency of tandem solar cells. J Phys D Appl Phys 13(5):839–846CrossRef
127.
Zurück zum Zitat Xue J, Uchida S, Rand BP, Forrest SR (2004) Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions. Appl Phys Lett 85(23):5757–5759CrossRef Xue J, Uchida S, Rand BP, Forrest SR (2004) Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions. Appl Phys Lett 85(23):5757–5759CrossRef
128.
Zurück zum Zitat Gilot J, Janssen RAJ (2014) Tandem and multijunction organic solar cells. In: Randand BP, Richter H (eds) Organic solar cells: fundamentals, devices, and upscaling, Pan Stanford, FloridaCrossRef Gilot J, Janssen RAJ (2014) Tandem and multijunction organic solar cells. In: Randand BP, Richter H (eds) Organic solar cells: fundamentals, devices, and upscaling, Pan Stanford, FloridaCrossRef
129.
Zurück zum Zitat Jošt M, Köhnen E, Morales-Vilches AB et al (2018) Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield. Energy Environ Sci 11(12):3511–3523CrossRef Jošt M, Köhnen E, Morales-Vilches AB et al (2018) Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield. Energy Environ Sci 11(12):3511–3523CrossRef
130.
Zurück zum Zitat Jeon NJ, Na H, Jung EH et al (2018) A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy 3(8):682–689CrossRef Jeon NJ, Na H, Jung EH et al (2018) A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy 3(8):682–689CrossRef
131.
Zurück zum Zitat Werner J, Weng C-H, Walter A et al (2016) Efficient monolithic perovskite/silicon tandem solar cell with cell area > 1 cm2. J Phys Chem Lett 7(1):161–166CrossRef Werner J, Weng C-H, Walter A et al (2016) Efficient monolithic perovskite/silicon tandem solar cell with cell area > 1 cm2. J Phys Chem Lett 7(1):161–166CrossRef
132.
Zurück zum Zitat Bush KA, Palmstrom AF, Yu ZJ et al (2017) 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy 2:17009 Bush KA, Palmstrom AF, Yu ZJ et al (2017) 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy 2:17009
133.
Zurück zum Zitat Meng L, Zhang Y, Wan X et al (2018) Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361(6407):1094–1098 Meng L, Zhang Y, Wan X et al (2018) Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361(6407):1094–1098
134.
Zurück zum Zitat Cariou R, Benick J, Beutel P et al (2017) Monolithic two-terminal III–V//Si triple-junction solar cells with 30.2% efficiency under 1-sun AM1.5g. IEEE J Photovolt 7(1):367–373 Cariou R, Benick J, Beutel P et al (2017) Monolithic two-terminal III–V//Si triple-junction solar cells with 30.2% efficiency under 1-sun AM1.5g. IEEE J Photovolt 7(1):367–373
135.
Zurück zum Zitat Essig S, Allebé C, Remo T et al (2017) Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nat Energy 2:17144 Essig S, Allebé C, Remo T et al (2017) Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nat Energy 2:17144
Metadaten
Titel
Recent Advances in Solar Cells
verfasst von
Marcio A. P. Almeida
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-36354-3_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.