Skip to main content

2025 | OriginalPaper | Buchkapitel

Recent Advances in the Use of Artificial Intelligence for Rigid Airfield Pavement Analysis and Design

verfasst von : Halil Ceylan, Orhan Kaya, Sunghwan Kim

Erschienen in: Recent Advances and Innovative Developments in Transportation Geotechnics

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Historically, analysis and design methodologies for rigid airfield pavement systems have primarily relied on empirical equations derived mostly based the field performance. However, the FAA has implemented mechanistic-based approaches, including three-dimensional finite-element (3D-FE) procedures, for the design and analysis of rigid airfield pavements. This decision was made in response to the emergence of new wide-body aircraft and other design complexities, such as heavier aircraft and intricate gear configurations. On the other hand, the time-consuming nature of 3D-FE computation for analyzing multiple slabs subjected to aircraft and environmental loads has rendered routine design and analysis impractical. To address this issue, AI-based alternatives offer significant potential for producing accurate and rapid rigid pavement-response estimations compared to traditional FE-based design programs. Using AI-based modeling is a convenient option instead of conducting lengthy 3D-FE computations. In this paper, we introduce a recent FAA-sponsored research study conducted at Iowa State University (ISU) that utilizes AI-based alternatives to performing full 3D-FE computation for analyzing and designing rigid airfield pavement systems. The paper contains two case studies: (1) creating strong AI models to predict critical rigid airfield pavement responses and analyze top-down cracking behavior and (2) developing fast AI-based models to predict pavement foundation response and moduli for designing new and rehabilitated rigid airfield pavement structures. The capability of AI-based surrogate-response models for analyzing and designing rigid airfield pavement systems is successfully demonstrated and discussed in this paper.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kaya O, Ceylan H, Kim S, Rezaei-Tarahomi A (2022) Evaluation of the Federal Aviation Administration’s rigid airfield pavement cracking failure models. J Transp Eng Part B Pavements 148(1):04021071CrossRef Kaya O, Ceylan H, Kim S, Rezaei-Tarahomi A (2022) Evaluation of the Federal Aviation Administration’s rigid airfield pavement cracking failure models. J Transp Eng Part B Pavements 148(1):04021071CrossRef
2.
Zurück zum Zitat Kaya O (2019) Use of soft computing and numerical analysis in design, analysis and management of pavement systems. Doctoral dissertation, Iowa State University Kaya O (2019) Use of soft computing and numerical analysis in design, analysis and management of pavement systems. Doctoral dissertation, Iowa State University
3.
Zurück zum Zitat Ceylan H, Tutumluer E, Barenberg EJ (1999) Artificial neural networks for analyzing concrete airfield pavements serving the Boeing B-777 aircraft. Transp Res Rec 1684(1):110–117CrossRef Ceylan H, Tutumluer E, Barenberg EJ (1999) Artificial neural networks for analyzing concrete airfield pavements serving the Boeing B-777 aircraft. Transp Res Rec 1684(1):110–117CrossRef
4.
Zurück zum Zitat Kaya O, Ceylan H, Kim S, Waid D, Moore BP (2020) Statistics and artificial intelligence-based pavement performance and remaining service life prediction models for flexible and composite pavement systems. Transp Res Rec 2674(10):448–460CrossRef Kaya O, Ceylan H, Kim S, Waid D, Moore BP (2020) Statistics and artificial intelligence-based pavement performance and remaining service life prediction models for flexible and composite pavement systems. Transp Res Rec 2674(10):448–460CrossRef
5.
Zurück zum Zitat Kaya O (2015) Investigation of AASHTOWare Pavement ME design/Darwin-ME TM performance prediction models for Iowa pavement analysis and design. Master’s thesis, Iowa State University Kaya O (2015) Investigation of AASHTOWare Pavement ME design/Darwin-ME TM performance prediction models for Iowa pavement analysis and design. Master’s thesis, Iowa State University
6.
Zurück zum Zitat Rezaei-Tarahomi A, Kaya O, Ceylan H, Gopalakrishnan K, Kim S, Brill DR (2022) ANNFAA: artificial neural network-based tool for the analysis of Federal Aviation Administration’s rigid pavement systems. Int J Pavement Eng 23(2):400–413CrossRef Rezaei-Tarahomi A, Kaya O, Ceylan H, Gopalakrishnan K, Kim S, Brill DR (2022) ANNFAA: artificial neural network-based tool for the analysis of Federal Aviation Administration’s rigid pavement systems. Int J Pavement Eng 23(2):400–413CrossRef
7.
Zurück zum Zitat Rezaei-Tarahomi A, Ceylan H, Gopalakrishnan K, Kim S, Kaya O (2019) Artificial neural network models for airport rigid pavement top-down critical stress predictions: sensitivity evaluation. In: Airfield and highway pavements 2019: innovation and sustainability in highway and airfield pavement technology, 2019. American Society of Civil Engineers, Reston, Virginia, USA Rezaei-Tarahomi A, Ceylan H, Gopalakrishnan K, Kim S, Kaya O (2019) Artificial neural network models for airport rigid pavement top-down critical stress predictions: sensitivity evaluation. In: Airfield and highway pavements 2019: innovation and sustainability in highway and airfield pavement technology, 2019. American Society of Civil Engineers, Reston, Virginia, USA
8.
Zurück zum Zitat Rezaei-Tarahomi A, Kaya O, Ceylan H, Gopalakrishnan K, Kim S, Brill DR (2017) Neural networks based prediction of critical responses related to top-down and bottom-up cracking in airfield concrete pavements. In: Tenth international conference on the bearing capacity of roads, railways and airfields Rezaei-Tarahomi A, Kaya O, Ceylan H, Gopalakrishnan K, Kim S, Brill DR (2017) Neural networks based prediction of critical responses related to top-down and bottom-up cracking in airfield concrete pavements. In: Tenth international conference on the bearing capacity of roads, railways and airfields
9.
Zurück zum Zitat Rezaei-Tarahomi A (2019) Development of rigid airfield pavement foundation response and moduli prediction models. Iowa State University Rezaei-Tarahomi A (2019) Development of rigid airfield pavement foundation response and moduli prediction models. Iowa State University
10.
Zurück zum Zitat Rezaei-Tarahomi A, Kaya O, Ceylan H, Kim S, Gopalakrishnan K, Brill DR (2017) Development of rapid three-dimensional finite-element based rigid airfield pavement foundation response and moduli prediction models. Transp Geotech 13:81–91CrossRef Rezaei-Tarahomi A, Kaya O, Ceylan H, Kim S, Gopalakrishnan K, Brill DR (2017) Development of rapid three-dimensional finite-element based rigid airfield pavement foundation response and moduli prediction models. Transp Geotech 13:81–91CrossRef
Metadaten
Titel
Recent Advances in the Use of Artificial Intelligence for Rigid Airfield Pavement Analysis and Design
verfasst von
Halil Ceylan
Orhan Kaya
Sunghwan Kim
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-8245-1_6