Skip to main content
Erschienen in:
Buchtitelbild

2021 | OriginalPaper | Buchkapitel

Recent Development in Kinetic Theory of Granular Materials: Analysis and Numerical Methods

verfasst von : José Antonio Carrillo, Jingwei Hu, Zheng Ma, Thomas Rey

Erschienen in: Trails in Kinetic Theory

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Over the past decades, kinetic description of granular materials has received a lot of attention in mathematical community and applied fields such as physics and engineering. This article aims to review recent mathematical results in kinetic granular materials, especially for those which arose since the last review Villani (J Stat Phys 124(2):781–822, 2006) by Villani on the same subject. We will discuss both theoretical and numerical developments. We will finally showcase some important open problems and conjectures by means of numerical experiments based on spectral methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Because of that, the elastic collision operator is simply equal to 0 for a one-dimensional velocity space, the Boltzmann equation reducing only to the free transport equation.
 
2
Note that using a BBGKY approach [50] to derive (11) is not expected to succeed, because among other problems the macroscopic size of the particles composing a granular gas is incompatible with the Boltzmann-Grad scaling assumption.
 
3
Physically more realistic, in part because of the spontaneous loss of space homogeneity that has been observed in [58].
 
4
Namely, the initial condition is chosen with a lot of exponential moments in velocity, and close to a space homogeneous profile.
 
5
One can see the velocity scaling function ω as the inverse of the variance of the distribution f. This scaling is then a continuous “zoom” on the blowup, and can be used to develop numerical methods for solving the full granular gases equation, see [49].
 
Literatur
2.
Zurück zum Zitat Almazán, L., Carrillo, J.A., Salueña, C., Garzó, V., Pöschel, T.: A numerical study of the Navier–Stokes transport coefficients for two-dimensional granular hydrodynamics. New J. Phys. 15(4), 043044 (2013)CrossRef Almazán, L., Carrillo, J.A., Salueña, C., Garzó, V., Pöschel, T.: A numerical study of the Navier–Stokes transport coefficients for two-dimensional granular hydrodynamics. New J. Phys. 15(4), 043044 (2013)CrossRef
3.
Zurück zum Zitat Alonso, R., Cañizo, J.A., Gamba, I., Mouhot, C.: A new approach to the creation and propagation of exponential moments in the Boltzmann equation. Commun. Partial. Differ. Equ. 38(1), 155–169 (2013)MathSciNetMATHCrossRef Alonso, R., Cañizo, J.A., Gamba, I., Mouhot, C.: A new approach to the creation and propagation of exponential moments in the Boltzmann equation. Commun. Partial. Differ. Equ. 38(1), 155–169 (2013)MathSciNetMATHCrossRef
4.
Zurück zum Zitat Alonso, R., Lods, B.: Uniqueness and regularity of steady states of the Boltzmann equation for viscoelastic hard-spheres driven by a thermal bath. Commun. Math. Sci. 11(4), 851–906 (2013)MathSciNetMATHCrossRef Alonso, R., Lods, B.: Uniqueness and regularity of steady states of the Boltzmann equation for viscoelastic hard-spheres driven by a thermal bath. Commun. Math. Sci. 11(4), 851–906 (2013)MathSciNetMATHCrossRef
5.
Zurück zum Zitat Alonso, R., Lods, B.: Boltzmann model for viscoelastic particles: asymptotic behavior, pointwise lower bounds and regularity. Commun. Math. Phys. 331 2, 545–591 (2014)MathSciNetMATHCrossRef Alonso, R., Lods, B.: Boltzmann model for viscoelastic particles: asymptotic behavior, pointwise lower bounds and regularity. Commun. Math. Phys. 331 2, 545–591 (2014)MathSciNetMATHCrossRef
6.
Zurück zum Zitat Alonso, R.J., Lods, B.: Free cooling and high-energy tails of granular gases with variable restitution coefficient. SIAM J. Math. Anal. 42(6), 2499–2538 (2010)MathSciNetMATHCrossRef Alonso, R.J., Lods, B.: Free cooling and high-energy tails of granular gases with variable restitution coefficient. SIAM J. Math. Anal. 42(6), 2499–2538 (2010)MathSciNetMATHCrossRef
7.
Zurück zum Zitat Araki, S., Tremaine, S.: The dynamics of dense particle disks. Icarus 65(1), 83–109 (1986)CrossRef Araki, S., Tremaine, S.: The dynamics of dense particle disks. Icarus 65(1), 83–109 (1986)CrossRef
8.
Zurück zum Zitat Benedetto, D., Caglioti, E., Carrillo, J.A., Pulvirenti, M.: A non-Maxwellian steady distribution for one-dimensional granular media. J. Statist. Phys. 91(5/6), 979–990 (1998)MathSciNetMATHCrossRef Benedetto, D., Caglioti, E., Carrillo, J.A., Pulvirenti, M.: A non-Maxwellian steady distribution for one-dimensional granular media. J. Statist. Phys. 91(5/6), 979–990 (1998)MathSciNetMATHCrossRef
9.
Zurück zum Zitat Benedetto, D., Pulvirenti, M.: On the one-dimensional Boltzmann equation for granular flows. M2AN Math. Model. Numer. Anal. 35(5), 899–905 (2002) Benedetto, D., Pulvirenti, M.: On the one-dimensional Boltzmann equation for granular flows. M2AN Math. Model. Numer. Anal. 35(5), 899–905 (2002)
10.
Zurück zum Zitat Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford (1994) Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford (1994)
11.
Zurück zum Zitat Bisi, M., Cañizo, J.A., Lods, B.: Uniqueness in the weakly inelastic regime of the equilibrium state to the Boltzmann equation driven by a particle bath. SIAM J. Math. Anal. 43(6), 2640–2674 (2011)MathSciNetMATHCrossRef Bisi, M., Cañizo, J.A., Lods, B.: Uniqueness in the weakly inelastic regime of the equilibrium state to the Boltzmann equation driven by a particle bath. SIAM J. Math. Anal. 43(6), 2640–2674 (2011)MathSciNetMATHCrossRef
12.
Zurück zum Zitat Bisi, M., Carrillo, J.A., Toscani, G.: Contractive metrics for a Boltzmann equation for granular gases: diffusive equilibria. J. Stat. Phys. 118(1–2), 301–331 (2005)MathSciNetMATHCrossRef Bisi, M., Carrillo, J.A., Toscani, G.: Contractive metrics for a Boltzmann equation for granular gases: diffusive equilibria. J. Stat. Phys. 118(1–2), 301–331 (2005)MathSciNetMATHCrossRef
13.
Zurück zum Zitat Bisi, M., Carrillo, J.A., Toscani, G.: Decay rates in probability metrics towards homogeneous cooling states for the inelastic Maxwell model. J. Stat. Phys. 124(2–4), 625–653 (2006)MathSciNetMATHCrossRef Bisi, M., Carrillo, J.A., Toscani, G.: Decay rates in probability metrics towards homogeneous cooling states for the inelastic Maxwell model. J. Stat. Phys. 124(2–4), 625–653 (2006)MathSciNetMATHCrossRef
14.
Zurück zum Zitat Bizon, C., Shattuck, M., Swift, J.B., Swinney, H.: Transport coefficients for granular media from molecular dynamics simulations. Phys. Rev. E 60, 4340 (1999)CrossRef Bizon, C., Shattuck, M., Swift, J.B., Swinney, H.: Transport coefficients for granular media from molecular dynamics simulations. Phys. Rev. E 60, 4340 (1999)CrossRef
15.
Zurück zum Zitat Bobylev, A.V., Carrillo, J.A., Gamba, I.: On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Statist. Phys. 98(3), 743–773 (2000)MathSciNetMATHCrossRef Bobylev, A.V., Carrillo, J.A., Gamba, I.: On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Statist. Phys. 98(3), 743–773 (2000)MathSciNetMATHCrossRef
16.
Zurück zum Zitat Bobylev, A.V., Carrillo, J.A., Gamba, I.: Erratum on: “On some properties of kinetic and hydrodynamic equations for inelastic interactions”. J. Statist. Phys. 103(5–6), 1137–1138 (2001)MathSciNetMATHCrossRef Bobylev, A.V., Carrillo, J.A., Gamba, I.: Erratum on: “On some properties of kinetic and hydrodynamic equations for inelastic interactions”. J. Statist. Phys. 103(5–6), 1137–1138 (2001)MathSciNetMATHCrossRef
17.
Zurück zum Zitat Bobylev, A.V., Cercignani, C.: Moment equations for a granular material in a thermal bath. J. Statist. Phys. 1063–4, 547–567 (2002)MathSciNetMATHCrossRef Bobylev, A.V., Cercignani, C.: Moment equations for a granular material in a thermal bath. J. Statist. Phys. 1063–4, 547–567 (2002)MathSciNetMATHCrossRef
18.
Zurück zum Zitat Bobylev, A.V., Cercignani, C., Gamba, I.: Generalized kinetic Maxwell type models of granular gases. In: Mathematical Models of Granular Matter. Lecture Notes in Math., vol. 1937, pp. 23–57. Springer, Berlin (2008) Bobylev, A.V., Cercignani, C., Gamba, I.: Generalized kinetic Maxwell type models of granular gases. In: Mathematical Models of Granular Matter. Lecture Notes in Math., vol. 1937, pp. 23–57. Springer, Berlin (2008)
19.
Zurück zum Zitat Bobylev, A.V., Cercignani, C., Toscani, G.: Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials. J. Statist. Phys. 111(1–2), 403–417 (2003)MathSciNetMATHCrossRef Bobylev, A.V., Cercignani, C., Toscani, G.: Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials. J. Statist. Phys. 111(1–2), 403–417 (2003)MathSciNetMATHCrossRef
20.
Zurück zum Zitat Bobylev, A.V., Gamba, I., Panferov, V.: Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions. J. Stat. Phys. 116(5), 1651–1682 (2004)MathSciNetMATHCrossRef Bobylev, A.V., Gamba, I., Panferov, V.: Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions. J. Stat. Phys. 116(5), 1651–1682 (2004)MathSciNetMATHCrossRef
21.
22.
Zurück zum Zitat Bolley, F., Gentil, I., Guillin, A.: Uniform convergence to equilibrium for granular media. Arch. Ration. Mech. Anal. 208(2), 429–445 (2013)MathSciNetMATHCrossRef Bolley, F., Gentil, I., Guillin, A.: Uniform convergence to equilibrium for granular media. Arch. Ration. Mech. Anal. 208(2), 429–445 (2013)MathSciNetMATHCrossRef
23.
Zurück zum Zitat Bony, J.-M.: Solutions globales bornées pour les modèles discrets de l’équation de Boltzmann, en dimension 1 d’espace. In: Journées “Équations aux derivées partielles” (Saint Jean de Monts, 1987). École Polytechnique, Palaiseau, 1987. Exp. No. XVI, 10 pp Bony, J.-M.: Solutions globales bornées pour les modèles discrets de l’équation de Boltzmann, en dimension 1 d’espace. In: Journées “Équations aux derivées partielles” (Saint Jean de Monts, 1987). École Polytechnique, Palaiseau, 1987. Exp. No. XVI, 10 pp
24.
Zurück zum Zitat Bouchut, F., Desvillettes, L.: A proof of the smoothing properties of the positive part of Boltzmann’s kernel. Rev. Mat. Iberoam. 14(1), 47–61 (1998)MathSciNetMATHCrossRef Bouchut, F., Desvillettes, L.: A proof of the smoothing properties of the positive part of Boltzmann’s kernel. Rev. Mat. Iberoam. 14(1), 47–61 (1998)MathSciNetMATHCrossRef
25.
Zurück zum Zitat Bouchut, F., James, F.: Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness. Commun. Partial Differ. Equ. 24(11–12), 2173–2189 (1999)MathSciNetMATH Bouchut, F., James, F.: Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness. Commun. Partial Differ. Equ. 24(11–12), 2173–2189 (1999)MathSciNetMATH
26.
Zurück zum Zitat Boudin, L.: A solution with bounded expansion rate to the model of viscous pressureless gases. SIAM J. Math. Anal. 32(1), 172–193 (2000)MathSciNetMATHCrossRef Boudin, L.: A solution with bounded expansion rate to the model of viscous pressureless gases. SIAM J. Math. Anal. 32(1), 172–193 (2000)MathSciNetMATHCrossRef
27.
Zurück zum Zitat Bougie, J., Kreft, J., Swift, J.B., Swinney, H.: Onset of patterns in an oscillated granular layer: continuum and molecular dynamics simulations. Phys. Rev. E 71, 021301 (2005)CrossRef Bougie, J., Kreft, J., Swift, J.B., Swinney, H.: Onset of patterns in an oscillated granular layer: continuum and molecular dynamics simulations. Phys. Rev. E 71, 021301 (2005)CrossRef
28.
Zurück zum Zitat Bougie, J., Moon, S.J., Swift, J., Swinney, H.: Shocks in vertically oscillated granular layers. Phys. Rev. E 66, 051301 (2002)CrossRef Bougie, J., Moon, S.J., Swift, J., Swinney, H.: Shocks in vertically oscillated granular layers. Phys. Rev. E 66, 051301 (2002)CrossRef
29.
Zurück zum Zitat Brenier, Y., Grenier, E.: Sticky particles and scalar conservation laws. SIAM J. Numer. Anal. 35(6), 2317–2328 (1998) (electronic) Brenier, Y., Grenier, E.: Sticky particles and scalar conservation laws. SIAM J. Numer. Anal. 35(6), 2317–2328 (1998) (electronic)
31.
Zurück zum Zitat Brilliantov, N.V., Pöschel, T.: Kinetic Theory of Granular Gases. Oxford University Press, Oxford (2004)MATHCrossRef Brilliantov, N.V., Pöschel, T.: Kinetic Theory of Granular Gases. Oxford University Press, Oxford (2004)MATHCrossRef
32.
Zurück zum Zitat Brilliantov, N.V., Salueña, C., Schwager, T., Pöschel, T.: Transient structures in a granular gas. Phys. Rev. Lett. 93, 134301 (2004)CrossRef Brilliantov, N.V., Salueña, C., Schwager, T., Pöschel, T.: Transient structures in a granular gas. Phys. Rev. Lett. 93, 134301 (2004)CrossRef
33.
Zurück zum Zitat Carlen, E., Chow, S.-N., Grigo, A.: Dynamics and hydrodynamic limits of the inelastic Boltzmann equation. Nonlinearity 23(8), 1807–1849 (2010)MathSciNetMATHCrossRef Carlen, E., Chow, S.-N., Grigo, A.: Dynamics and hydrodynamic limits of the inelastic Boltzmann equation. Nonlinearity 23(8), 1807–1849 (2010)MathSciNetMATHCrossRef
34.
Zurück zum Zitat Carlen, E.A., Carrillo, J.A., Carvalho, M.C.: Strong convergence towards homogeneous cooling states for dissipative Maxwell models. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(5), 1675–1700 (2009)MathSciNetMATHCrossRef Carlen, E.A., Carrillo, J.A., Carvalho, M.C.: Strong convergence towards homogeneous cooling states for dissipative Maxwell models. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(5), 1675–1700 (2009)MathSciNetMATHCrossRef
35.
Zurück zum Zitat Carrillo, J.A., McCann, R.J., Villani, C.: Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoam. 19(3), 971–1018 (2004)MathSciNetMATH Carrillo, J.A., McCann, R.J., Villani, C.: Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoam. 19(3), 971–1018 (2004)MathSciNetMATH
36.
Zurück zum Zitat Carrillo, J.A., Poëschel, T., Salueña, C.: Granular hydrodynamics and pattern formation in vertically oscillated granular disk layers. J. Fluid Mech. 597, 119–144 (2008)MathSciNetMATHCrossRef Carrillo, J.A., Poëschel, T., Salueña, C.: Granular hydrodynamics and pattern formation in vertically oscillated granular disk layers. J. Fluid Mech. 597, 119–144 (2008)MathSciNetMATHCrossRef
37.
Zurück zum Zitat Carrillo, J.A., Salueña, C.: Modelling of shock waves and clustering in hydrodynamic simulations of granular gases. In: Modelling and Numerics of Kinetic Dissipative Systems, pp. 163–176. Nova Sci. Publ., Hauppauge (2006) Carrillo, J.A., Salueña, C.: Modelling of shock waves and clustering in hydrodynamic simulations of granular gases. In: Modelling and Numerics of Kinetic Dissipative Systems, pp. 163–176. Nova Sci. Publ., Hauppauge (2006)
38.
Zurück zum Zitat Carrillo, J.A., Toscani, G.: Contractive probability metrics and asymptotic behavior of dissipative kinetic equations. Riv. Mat. Univ. Parma (7) 6, 75–198 (2007) Carrillo, J.A., Toscani, G.: Contractive probability metrics and asymptotic behavior of dissipative kinetic equations. Riv. Mat. Univ. Parma (7) 6, 75–198 (2007)
39.
Zurück zum Zitat Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences, vol. 106. Springer, New York (1994) Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences, vol. 106. Springer, New York (1994)
40.
Zurück zum Zitat Daerr, A.: Dynamique des Avalanches. PhD thesis, Université Denis Diderot Paris §7, 2000 Daerr, A.: Dynamique des Avalanches. PhD thesis, Université Denis Diderot Paris §7, 2000
41.
Zurück zum Zitat Dufty, J.W.: Nonequilibrium Statistical Mechanics and Hydrodynamics for a Granular Fluid. In: Cichocki, E., Napiorkowski, M., Piasekcki, J. (eds.) Second Warsaw School on Statistical Physics, no. June 2007, p. 64. Warsaw University Press, Warsaw (2008) Dufty, J.W.: Nonequilibrium Statistical Mechanics and Hydrodynamics for a Granular Fluid. In: Cichocki, E., Napiorkowski, M., Piasekcki, J. (eds.) Second Warsaw School on Statistical Physics, no. June 2007, p. 64. Warsaw University Press, Warsaw (2008)
42.
Zurück zum Zitat Weinan, E., Rykov, Y.G., Sinai, Y.G.: Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Commun. Math. Phys. 177(2), 349–380 (1996)MathSciNetMATHCrossRef Weinan, E., Rykov, Y.G., Sinai, Y.G.: Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Commun. Math. Phys. 177(2), 349–380 (1996)MathSciNetMATHCrossRef
43.
Zurück zum Zitat Ellis, R.S., Pinsky, M.A.: The first and second fluid approximations to the linearized Boltzmann equation. J. Math. Pures Appl. 54(9), 125–156 (1975)MathSciNetMATH Ellis, R.S., Pinsky, M.A.: The first and second fluid approximations to the linearized Boltzmann equation. J. Math. Pures Appl. 54(9), 125–156 (1975)MathSciNetMATH
44.
Zurück zum Zitat Ernst, M.H., Brito, R.: Driven inelastic Maxwell models with high energy tails. Phys. Rev. E 65, 040301 (2002)CrossRef Ernst, M.H., Brito, R.: Driven inelastic Maxwell models with high energy tails. Phys. Rev. E 65, 040301 (2002)CrossRef
45.
Zurück zum Zitat Esteban, M., Perthame, B.: On the modified Enskog equation for elastic and inelastic collisions. Models with spin. Ann. Inst. H. Poincaré Anal. Non Linéaire 8(3–4), 289–308 (1991)MathSciNetMATH Esteban, M., Perthame, B.: On the modified Enskog equation for elastic and inelastic collisions. Models with spin. Ann. Inst. H. Poincaré Anal. Non Linéaire 8(3–4), 289–308 (1991)MathSciNetMATH
46.
Zurück zum Zitat Faraday, M.: On a peculiar class of acoustical figure and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Philos. Trans. R. Soc. Lond. 121, 299 (1831) Faraday, M.: On a peculiar class of acoustical figure and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Philos. Trans. R. Soc. Lond. 121, 299 (1831)
47.
Zurück zum Zitat Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31(1), 53–98 (1979)MathSciNetMATHCrossRef Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31(1), 53–98 (1979)MathSciNetMATHCrossRef
48.
Zurück zum Zitat Filbet, F., Pareschi, L., Toscani, G.: Accurate numerical methods for the collisional motion of (heated) granular flows. J. Comput. Phys. 202(1), 216–235 (2005)MathSciNetMATHCrossRef Filbet, F., Pareschi, L., Toscani, G.: Accurate numerical methods for the collisional motion of (heated) granular flows. J. Comput. Phys. 202(1), 216–235 (2005)MathSciNetMATHCrossRef
49.
Zurück zum Zitat Filbet, F., Rey, T.: A rescaling velocity method for dissipative kinetic equations. Applications to granular media. J. Comput. Phys. 248, 177–199 (2013)MATH Filbet, F., Rey, T.: A rescaling velocity method for dissipative kinetic equations. Applications to granular media. J. Comput. Phys. 248, 177–199 (2013)MATH
50.
Zurück zum Zitat Gallagher, I., Saint-Raymond, L., Texier, B.: From Newton to Boltzmann: Hard Spheres and Short-Range Potentials. European Mathematical Society, Zürich (2014) Gallagher, I., Saint-Raymond, L., Texier, B.: From Newton to Boltzmann: Hard Spheres and Short-Range Potentials. European Mathematical Society, Zürich (2014)
51.
Zurück zum Zitat Gamba, I., Panferov, V., Villani, C.: On the Boltzmann equation for diffusively excited granular media. Commun. Math. Phys. 246(3), 503–541 (2004)MathSciNetMATHCrossRef Gamba, I., Panferov, V., Villani, C.: On the Boltzmann equation for diffusively excited granular media. Commun. Math. Phys. 246(3), 503–541 (2004)MathSciNetMATHCrossRef
52.
Zurück zum Zitat Gamba, I.M., Tharkabhushanam, S.H.: Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states. J. Comput. Phys. 228, 2012–2036 (2009)MathSciNetMATHCrossRef Gamba, I.M., Tharkabhushanam, S.H.: Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states. J. Comput. Phys. 228, 2012–2036 (2009)MathSciNetMATHCrossRef
53.
Zurück zum Zitat García de Soria, M.I., Maynar, P., Mischler, S., Mouhot, C., Rey, T., Trizac, E.: Towards an H-theorem for granular gases. J. Stat. Mech: Theory Exp. 2015(11), P11009 (2015) García de Soria, M.I., Maynar, P., Mischler, S., Mouhot, C., Rey, T., Trizac, E.: Towards an H-theorem for granular gases. J. Stat. Mech: Theory Exp. 2015(11), P11009 (2015)
54.
Zurück zum Zitat Garzó, V.: Granular Gaseous Flows: A Kinetic Theory Approach to Granular Gaseous Flows. Springer, Berlin (2019)MATHCrossRef Garzó, V.: Granular Gaseous Flows: A Kinetic Theory Approach to Granular Gaseous Flows. Springer, Berlin (2019)MATHCrossRef
55.
56.
Zurück zum Zitat Goldhirsch, I.: Probing the boundaries of hydrodynamics. In: Pöschel, T., Luding, S. (eds.) Granular Gases. Lecture Notes in Physics, vol. 564, pp. 79–99. Springer, Berlin (2001)CrossRef Goldhirsch, I.: Probing the boundaries of hydrodynamics. In: Pöschel, T., Luding, S. (eds.) Granular Gases. Lecture Notes in Physics, vol. 564, pp. 79–99. Springer, Berlin (2001)CrossRef
58.
Zurück zum Zitat Goldhirsch, I., Zanetti, G.: Clustering instability in dissipative gases. Phys. Rev. Lett. 70(11), 1619–1622 (1993)CrossRef Goldhirsch, I., Zanetti, G.: Clustering instability in dissipative gases. Phys. Rev. Lett. 70(11), 1619–1622 (1993)CrossRef
59.
Zurück zum Zitat Goldshtein, A., Shapiro, M.: Mechanics of collisional motion of granular materials. Part 1: general hydrodynamic equations. J. Fluid Mech. 282, 75 (1995) Goldshtein, A., Shapiro, M.: Mechanics of collisional motion of granular materials. Part 1: general hydrodynamic equations. J. Fluid Mech. 282, 75 (1995)
60.
Zurück zum Zitat Haff, P.: Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134, 401–30 (1983)MATHCrossRef Haff, P.: Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134, 401–30 (1983)MATHCrossRef
61.
Zurück zum Zitat Hill, S.A., Mazenko, G.F.: Granular clustering in a hydrodynamic simulation. Phys. Rev. E 67, 061302 (2003)CrossRef Hill, S.A., Mazenko, G.F.: Granular clustering in a hydrodynamic simulation. Phys. Rev. E 67, 061302 (2003)CrossRef
62.
Zurück zum Zitat Hu, J., Ma, Z.: A fast spectral method for the inelastic Boltzmann collision operator and application to heated granular gases. J. Comput. Phys. 385, 119–134 (2019)MathSciNetMATHCrossRef Hu, J., Ma, Z.: A fast spectral method for the inelastic Boltzmann collision operator and application to heated granular gases. J. Comput. Phys. 385, 119–134 (2019)MathSciNetMATHCrossRef
64.
Zurück zum Zitat Jabin, P.-E., Rey, T.: Hydrodynamic limit of granular gases to pressureless Euler in dimension 1. Q. Appl. Math. 75, 155–179 (2017)MathSciNetMATHCrossRef Jabin, P.-E., Rey, T.: Hydrodynamic limit of granular gases to pressureless Euler in dimension 1. Q. Appl. Math. 75, 155–179 (2017)MathSciNetMATHCrossRef
65.
Zurück zum Zitat Jenkins, J., Richman, M.W.: Grad’s 13-moment system for a dense gas of inelastic spheres. Arch. Ration. Mech. Anal. 87, 355 (1985)MathSciNetMATHCrossRef Jenkins, J., Richman, M.W.: Grad’s 13-moment system for a dense gas of inelastic spheres. Arch. Ration. Mech. Anal. 87, 355 (1985)MathSciNetMATHCrossRef
66.
Zurück zum Zitat Jenkins, J., Richman, M.W.: Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys. Fluids 28, 3485 (1985)MATHCrossRef Jenkins, J., Richman, M.W.: Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys. Fluids 28, 3485 (1985)MATHCrossRef
67.
68.
Zurück zum Zitat Kang, M.-J., Kim, J.: Propagation of the mono-kinetic solution in the Cucker–Smale-type kinetic equations (2019). arXiv preprint 1909.07525 Kang, M.-J., Kim, J.: Propagation of the mono-kinetic solution in the Cucker–Smale-type kinetic equations (2019). arXiv preprint 1909.07525
69.
Zurück zum Zitat Kang, M.-J., Vasseur, A.F.: Asymptotic analysis of Vlasov-type equations under strong local alignment regime. Math. Models Methods Appl. Sci. 25(11), 2153–2173 (2015)MathSciNetMATHCrossRef Kang, M.-J., Vasseur, A.F.: Asymptotic analysis of Vlasov-type equations under strong local alignment regime. Math. Models Methods Appl. Sci. 25(11), 2153–2173 (2015)MathSciNetMATHCrossRef
70.
Zurück zum Zitat Kawai, T., Shida, K.: An inelastic collision model for the evolution of “planetary rings”. J. Phys. Soc. Jpn 59(1), 381–388 (1990)MathSciNetCrossRef Kawai, T., Shida, K.: An inelastic collision model for the evolution of “planetary rings”. J. Phys. Soc. Jpn 59(1), 381–388 (1990)MathSciNetCrossRef
71.
Zurück zum Zitat Li, H., Toscani, G.: Long-time asymptotics of kinetic models of granular flows. Arch. Ration. Mech. Anal. 172(3), 407–428 (2004)MathSciNetMATHCrossRef Li, H., Toscani, G.: Long-time asymptotics of kinetic models of granular flows. Arch. Ration. Mech. Anal. 172(3), 407–428 (2004)MathSciNetMATHCrossRef
72.
Zurück zum Zitat McNamara, S., Young, W.R.: Inelastic collapse in two dimensions. Phys. Rev. E 50, R28–R31 (1993)CrossRef McNamara, S., Young, W.R.: Inelastic collapse in two dimensions. Phys. Rev. E 50, R28–R31 (1993)CrossRef
73.
Zurück zum Zitat Melo, F., Umbanhowar, P., Swinney, H.L.: Hexagons, kinks, and disorder in oscillated granular layers. Phys. Rev. Lett. 75, 3838–3841 (1995)CrossRef Melo, F., Umbanhowar, P., Swinney, H.L.: Hexagons, kinks, and disorder in oscillated granular layers. Phys. Rev. Lett. 75, 3838–3841 (1995)CrossRef
74.
Zurück zum Zitat Mischler, S., Mouhot, C.: Cooling process for inelastic Boltzmann equations for hard spheres, Part II: Self-similar solutions and tail behavior. J. Statist. Phys. 124(2), 703–746 (2006)MathSciNetMATH Mischler, S., Mouhot, C.: Cooling process for inelastic Boltzmann equations for hard spheres, Part II: Self-similar solutions and tail behavior. J. Statist. Phys. 124(2), 703–746 (2006)MathSciNetMATH
75.
Zurück zum Zitat Mischler, S., Mouhot, C.: Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres. Commun. Math. Phys. 288(2), 431–502 (2009)MathSciNetMATHCrossRef Mischler, S., Mouhot, C.: Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres. Commun. Math. Phys. 288(2), 431–502 (2009)MathSciNetMATHCrossRef
76.
Zurück zum Zitat Mischler, S., Mouhot, C.: Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media. Discrete Contin. Dyn. Syst. 24(1), 159–185 (2009)MathSciNetMATHCrossRef Mischler, S., Mouhot, C.: Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media. Discrete Contin. Dyn. Syst. 24(1), 159–185 (2009)MathSciNetMATHCrossRef
77.
Zurück zum Zitat Mischler, S., Mouhot, C., Ricard, M.: Cooling process for inelastic Boltzmann equations for hard spheres, Part I: the Cauchy problem. J. Statist. Phys. 124(2), 655–702 (2006)MathSciNetMATH Mischler, S., Mouhot, C., Ricard, M.: Cooling process for inelastic Boltzmann equations for hard spheres, Part I: the Cauchy problem. J. Statist. Phys. 124(2), 655–702 (2006)MathSciNetMATH
78.
Zurück zum Zitat Mischler, S., Mouhot, C., Wennberg, B.: A new approach to quantitative propagation of chaos for drift, diffusion and jump processes. Probab. Theory Relat. Fields 161(1–2), 1–59 (2015)MathSciNetMATHCrossRef Mischler, S., Mouhot, C., Wennberg, B.: A new approach to quantitative propagation of chaos for drift, diffusion and jump processes. Probab. Theory Relat. Fields 161(1–2), 1–59 (2015)MathSciNetMATHCrossRef
79.
Zurück zum Zitat Naldi, G., Pareschi, L., Toscani, G.: Spectral methods for one-dimensional kinetic models of granular flows and numerical quasi elastic limit. ESAIM: Math. Model. Numer. Anal. 37, 73–90 (2003)MathSciNetMATHCrossRef Naldi, G., Pareschi, L., Toscani, G.: Spectral methods for one-dimensional kinetic models of granular flows and numerical quasi elastic limit. ESAIM: Math. Model. Numer. Anal. 37, 73–90 (2003)MathSciNetMATHCrossRef
80.
Zurück zum Zitat Oleinik, O.: On Cauchy’s problem for nonlinear equations in a class of discontinuous functions. Doklady Akad. Nauk SSSR (N.S.) 95, 451–454 (1954) Oleinik, O.: On Cauchy’s problem for nonlinear equations in a class of discontinuous functions. Doklady Akad. Nauk SSSR (N.S.) 95, 451–454 (1954)
81.
Zurück zum Zitat Pöschel, T., Brilliantov, N., Schwager, T.: Transient clusters in granular gases. J. Phys. Condens. Matter 17, 2705–2713 (2005)MATHCrossRef Pöschel, T., Brilliantov, N., Schwager, T.: Transient clusters in granular gases. J. Phys. Condens. Matter 17, 2705–2713 (2005)MATHCrossRef
82.
Zurück zum Zitat Rericha, E., Bizon, C., Shattuck, M., Swinney, H.: Shocks in supersonic sand. Phys. Rev. Lett. 88, 1 (2002) Rericha, E., Bizon, C., Shattuck, M., Swinney, H.: Shocks in supersonic sand. Phys. Rev. Lett. 88, 1 (2002)
84.
Zurück zum Zitat Rey, T.: A spectral study of the linearized Boltzmann equation for diffusively excited granular media (2013). Preprint arXiv 1310.7234 Rey, T.: A spectral study of the linearized Boltzmann equation for diffusively excited granular media (2013). Preprint arXiv 1310.7234
85.
Zurück zum Zitat Toscani, G.: One-dimensional kinetic models of granular flows. M2AN Math. Model. Numer. Anal. 34(6), 1277–1291 (2000) Toscani, G.: One-dimensional kinetic models of granular flows. M2AN Math. Model. Numer. Anal. 34(6), 1277–1291 (2000)
86.
87.
Zurück zum Zitat Tristani, I.: Boltzmann equation for granular media with thermal forces in a weakly inhomogeneous setting. J. Funct. Anal. 270(5), 1922–1970 (2016)MathSciNetMATHCrossRef Tristani, I.: Boltzmann equation for granular media with thermal forces in a weakly inhomogeneous setting. J. Funct. Anal. 270(5), 1922–1970 (2016)MathSciNetMATHCrossRef
88.
Zurück zum Zitat Tsimring, L.S., Aranson, I.S.: Localized and cellular patterns in a vibrated granular layer. Phys. Rev. Lett. 79, 213–216 (1997)CrossRef Tsimring, L.S., Aranson, I.S.: Localized and cellular patterns in a vibrated granular layer. Phys. Rev. Lett. 79, 213–216 (1997)CrossRef
89.
Zurück zum Zitat Umbanhowar, P.B., Melo, F., Swinney, H.L.: Localized excitations in a vertically vibrated granular layer. Nature 382, 793–796 (1996)CrossRef Umbanhowar, P.B., Melo, F., Swinney, H.L.: Localized excitations in a vertically vibrated granular layer. Nature 382, 793–796 (1996)CrossRef
90.
Zurück zum Zitat Umbanhowar, P.B., Melo, F., Swinney, H.L.: Periodic, aperiodic, and transient patterns in vibrated granular layers. Phys. A 249, 1–9 (1998)CrossRef Umbanhowar, P.B., Melo, F., Swinney, H.L.: Periodic, aperiodic, and transient patterns in vibrated granular layers. Phys. A 249, 1–9 (1998)CrossRef
92.
Zurück zum Zitat Villani, C.: Hypocoercivity. Mem. Am. Math. Soc. 202, 184 (2009) Villani, C.: Hypocoercivity. Mem. Am. Math. Soc. 202, 184 (2009)
93.
Zurück zum Zitat Womersley, R.S.: Efficient spherical designs with good geometric properties. In: Contemporary Computational Mathematics—a Celebration of the 80th Birthday of Ian Sloan, pp. 1243–1285. Springer, Cham (2018) Womersley, R.S.: Efficient spherical designs with good geometric properties. In: Contemporary Computational Mathematics—a Celebration of the 80th Birthday of Ian Sloan, pp. 1243–1285. Springer, Cham (2018)
94.
Zurück zum Zitat Wu, Z.: L 1 and BV-type stability of the inelastic Boltzmann equation near vacuum. Continuum Mech. Thermodyn. 22(3), 239–249 (2009)MathSciNetMATHCrossRef Wu, Z.: L 1 and BV-type stability of the inelastic Boltzmann equation near vacuum. Continuum Mech. Thermodyn. 22(3), 239–249 (2009)MathSciNetMATHCrossRef
Metadaten
Titel
Recent Development in Kinetic Theory of Granular Materials: Analysis and Numerical Methods
verfasst von
José Antonio Carrillo
Jingwei Hu
Zheng Ma
Thomas Rey
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-67104-4_1