Skip to main content

2015 | OriginalPaper | Buchkapitel

13. Recent Development in Water Oxidation Catalysts Based on Manganese and Cobalt Complexes

verfasst von : Lawrence Yoon Suk Lee, Kwok-Yin Wong

Erschienen in: Organometallics and Related Molecules for Energy Conversion

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Energy directly harvested from sunlight offers an ultimate method of meeting the needs for clean energy with minimal impact on our environment. Intensive research efforts are currently being put on the development of efficient conversion system that can transform solar energy into fuel via light-driven water splitting to generate H2 and O2, learning from Nature’s photosynthesis to collect and store solar energy in chemical bonds. Especially, the development of efficient water oxidation catalysts is one of the key issues for achieving artificial photosynthetic devices. From a practical point of view, it is highly desirable to replace noble metal catalysts, which have been quite successful so far, by earth-abundant metal catalysts. In recent years, there has been noticeable progress in the development of water oxidation catalysts (WOCs) based on earth-abundant metals. This review chapter covers the most significant achievements in WOCs based on manganese and cobalt complexes, with emphasis on recent developments in the last three years.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Kim H-S, Lee J-W, Yantara N et al (2013) High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett 13(6):2412–2417 Kim H-S, Lee J-W, Yantara N et al (2013) High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett 13(6):2412–2417
4.
Zurück zum Zitat Mathew S, Yella A, Gao P et al (2014) Dye-sensitized solar cells with 13 % efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6(3):242–247 Mathew S, Yella A, Gao P et al (2014) Dye-sensitized solar cells with 13 % efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6(3):242–247
5.
Zurück zum Zitat Haid S, Marszalek M, Mishra A et al (2012) Significant improvement of dye-sensitized solar cell performance by small structural modification in π-conjugated donor–acceptor dyes. Adv Funct Mater 22(6):1291–1302 Haid S, Marszalek M, Mishra A et al (2012) Significant improvement of dye-sensitized solar cell performance by small structural modification in π-conjugated donor–acceptor dyes. Adv Funct Mater 22(6):1291–1302
6.
Zurück zum Zitat Chirilă A, Reinhard P, Pianezzi F et al (2013) Potassium-induced surface modification of Cu(In, Ga)Se2 thin films for high-efficiency solar cells. Nat Mater 12(12):1107–1111 Chirilă A, Reinhard P, Pianezzi F et al (2013) Potassium-induced surface modification of Cu(In, Ga)Se2 thin films for high-efficiency solar cells. Nat Mater 12(12):1107–1111
7.
Zurück zum Zitat Yang W, Duan H-S, Bob B et al (2012) Novel solution processing of high-efficiency earth-abundant Cu2ZnSn(S, Se)4 solar cells. Adv Mater 24(47):6323–6329 Yang W, Duan H-S, Bob B et al (2012) Novel solution processing of high-efficiency earth-abundant Cu2ZnSn(S, Se)4 solar cells. Adv Mater 24(47):6323–6329
8.
Zurück zum Zitat Karunadasa HI, Montalvo E, Sun Y et al (2012) A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335(6069):698–702 Karunadasa HI, Montalvo E, Sun Y et al (2012) A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335(6069):698–702
9.
Zurück zum Zitat Voiry D, Yamaguchi H, Li J et al (2013) Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater 12(9):850–855 Voiry D, Yamaguchi H, Li J et al (2013) Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater 12(9):850–855
10.
Zurück zum Zitat Du P, Eisenberg R (2012) Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energy Environ Sci 5(3):6012–6021 Du P, Eisenberg R (2012) Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energy Environ Sci 5(3):6012–6021
11.
Zurück zum Zitat Yang S, Gong Y, Zhang J et al (2013) Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv Mater 25(17):2452–2456 Yang S, Gong Y, Zhang J et al (2013) Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv Mater 25(17):2452–2456
12.
Zurück zum Zitat Hull JF, Himeda Y, Wang W-H et al (2012) Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nat Chem 4(5):383–388 Hull JF, Himeda Y, Wang W-H et al (2012) Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nat Chem 4(5):383–388
13.
Zurück zum Zitat Chun J, Kang S, Kang N et al (2013) Microporous organic networks bearing metal-salen species for mild CO2 fixation to cyclic carbonates. J Mater Chem A 1(18):5517–5523 Chun J, Kang S, Kang N et al (2013) Microporous organic networks bearing metal-salen species for mild CO2 fixation to cyclic carbonates. J Mater Chem A 1(18):5517–5523
14.
Zurück zum Zitat Wong W-L, Lee LYS, Ho K-P et al (2014) A green catalysis of CO2 fixation to aliphatic cyclic carbonates by a new ionic liquid system. Appl Catal A 472:160–166 Wong W-L, Lee LYS, Ho K-P et al (2014) A green catalysis of CO2 fixation to aliphatic cyclic carbonates by a new ionic liquid system. Appl Catal A 472:160–166
15.
Zurück zum Zitat Umena Y, Kawakami K, Shen J-R et al (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473(7345):55–60 Umena Y, Kawakami K, Shen J-R et al (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473(7345):55–60
16.
Zurück zum Zitat Ferreira KN, Iverson TM, Maghlaoui K et al (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303(5665):1831–1838 Ferreira KN, Iverson TM, Maghlaoui K et al (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303(5665):1831–1838
17.
Zurück zum Zitat Rutherford AW, Faller P (2003) Photosystem II: evolutionary perspectives. Philos Trans R Soc Lond B Biol Sci 358(1429):245–253 Rutherford AW, Faller P (2003) Photosystem II: evolutionary perspectives. Philos Trans R Soc Lond B Biol Sci 358(1429):245–253
18.
Zurück zum Zitat Loll B, Kern J, Saenger W et al (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438(7070):1040–1044 Loll B, Kern J, Saenger W et al (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438(7070):1040–1044
19.
Zurück zum Zitat Sproviero EM, Gascón JA, McEvoy JP et al (2008) Computational studies of the O2-evolving complex of photosystem II and biomimetic oxomanganese complexes. Coord Chem Rev 252(3–4):395–415 Sproviero EM, Gascón JA, McEvoy JP et al (2008) Computational studies of the O2-evolving complex of photosystem II and biomimetic oxomanganese complexes. Coord Chem Rev 252(3–4):395–415
20.
Zurück zum Zitat Guskov A, Kern J, Gabdulkhakov A et al (2009) Cyanobacterial photosystem II at 2.9 Å resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16(3):334–342 Guskov A, Kern J, Gabdulkhakov A et al (2009) Cyanobacterial photosystem II at 2.9 Å resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16(3):334–342
21.
Zurück zum Zitat Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution–I. A linear four step mechanism. Photochem Photobiol 11(6):457–475 Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution–I. A linear four step mechanism. Photochem Photobiol 11(6):457–475
22.
Zurück zum Zitat Yagi M, Kaneko M (2001) Molecular catalysts for water oxidation. Chem Rev 101(1):21–36 Yagi M, Kaneko M (2001) Molecular catalysts for water oxidation. Chem Rev 101(1):21–36
23.
Zurück zum Zitat Mayer JM (2004) Proton-coupled electron transfer: a reaction chemist's view. Annu Rev Phys Chem 55:363–390 Mayer JM (2004) Proton-coupled electron transfer: a reaction chemist's view. Annu Rev Phys Chem 55:363–390
24.
Zurück zum Zitat Jablonsky J, Lazar D (2008) Evidence for intermediate S-states as initial phase in the process of oxygen-evolving complex oxidation. Biophys J 94(7):2725–2736 Jablonsky J, Lazar D (2008) Evidence for intermediate S-states as initial phase in the process of oxygen-evolving complex oxidation. Biophys J 94(7):2725–2736
25.
Zurück zum Zitat Rutherford AW, Boussac A (2004) Water photolysis in biology. Science 303(5665):1782–1784 Rutherford AW, Boussac A (2004) Water photolysis in biology. Science 303(5665):1782–1784
26.
Zurück zum Zitat Yano J, Kern J, Sauer K et al (2006) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science 314(5800):821–825 Yano J, Kern J, Sauer K et al (2006) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science 314(5800):821–825
27.
Zurück zum Zitat Petrie S, Stranger R, Gatt P et al (2007) Bridge over troubled water: resolving the competing photosystem II crystal structures. Chem Eur J 13(18):5082–5089 Petrie S, Stranger R, Gatt P et al (2007) Bridge over troubled water: resolving the competing photosystem II crystal structures. Chem Eur J 13(18):5082–5089
28.
Zurück zum Zitat Meyer TJ, Huynh MHV, Thorp HH (2007) The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II. Angew Chem Int Ed 46(28):5284–5304 Meyer TJ, Huynh MHV, Thorp HH (2007) The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II. Angew Chem Int Ed 46(28):5284–5304
29.
Zurück zum Zitat Dau H, Zaharieva I (2009) Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Acc Chem Res 42(12):1861–1870 Dau H, Zaharieva I (2009) Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Acc Chem Res 42(12):1861–1870
30.
Zurück zum Zitat Sartorel A, Bonchio M, Campagna S et al (2013) Tetrametallic molecular catalysts for photochemical water oxidation. Chem Soc Rev 42(6):2262–2280 Sartorel A, Bonchio M, Campagna S et al (2013) Tetrametallic molecular catalysts for photochemical water oxidation. Chem Soc Rev 42(6):2262–2280
31.
Zurück zum Zitat Joya KS, Vallés-Pardo JL, Joya YF et al (2013) Molecular catalytic assemblies for electrodriven water splitting. ChemPlusChem 78(1):35–47 Joya KS, Vallés-Pardo JL, Joya YF et al (2013) Molecular catalytic assemblies for electrodriven water splitting. ChemPlusChem 78(1):35–47
32.
Zurück zum Zitat Artero V, Fontecave M (2013) Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis? Chem Soc Rev 42(6):2338–2356 Artero V, Fontecave M (2013) Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis? Chem Soc Rev 42(6):2338–2356
33.
Zurück zum Zitat Pecoraro VL, Baldwin MJ, Gelasco A (1994) Interaction of manganese with dioxygen and its reduced derivatives. Chem Rev 94(3):807–826 Pecoraro VL, Baldwin MJ, Gelasco A (1994) Interaction of manganese with dioxygen and its reduced derivatives. Chem Rev 94(3):807–826
34.
Zurück zum Zitat Manchanda R, Brudvig GW, Crabtree RH (1995) High-valent oxomanganese clusters: structural and mechanistic work relevant to the oxygen-evolving center in photosystem II. Coord Chem Rev 144:1–38 Manchanda R, Brudvig GW, Crabtree RH (1995) High-valent oxomanganese clusters: structural and mechanistic work relevant to the oxygen-evolving center in photosystem II. Coord Chem Rev 144:1–38
35.
Zurück zum Zitat Rüttinger W, Dismukes GC (1997) Synthetic water-oxidation catalysts for artificial photosynthetic water oxidation†. Chem Rev 97(1):1–24 Rüttinger W, Dismukes GC (1997) Synthetic water-oxidation catalysts for artificial photosynthetic water oxidation†. Chem Rev 97(1):1–24
36.
Zurück zum Zitat Mukhopadhyay S, Mandal SK, Bhaduri S et al (2004) Manganese clusters with relevance to Photosystem II. Chem Rev 104(9):3981–4026 Mukhopadhyay S, Mandal SK, Bhaduri S et al (2004) Manganese clusters with relevance to Photosystem II. Chem Rev 104(9):3981–4026
37.
Zurück zum Zitat Young KJ, Martini LA, Milot RL et al (2012) Light-driven water oxidation for solar fuels. Coord Chem Rev 256(21–22):2503–2520 Young KJ, Martini LA, Milot RL et al (2012) Light-driven water oxidation for solar fuels. Coord Chem Rev 256(21–22):2503–2520
38.
Zurück zum Zitat Matsushita T, Fujiwara M, Shono T (1981) Reactions of dichloromanganese(IV) Schiff base complexes with water as model for oxidation in photosystem II. Chem Lett 10(5):631–634 Matsushita T, Fujiwara M, Shono T (1981) Reactions of dichloromanganese(IV) Schiff base complexes with water as model for oxidation in photosystem II. Chem Lett 10(5):631–634
39.
Zurück zum Zitat Fujiwara M, Matsushita T, Shono T (1985) Reaction of dichloromanganese(IV) Schiff-base complexes with water as a model for water oxidation in photosystem II. Polyhedron 4(11):1895–1900 Fujiwara M, Matsushita T, Shono T (1985) Reaction of dichloromanganese(IV) Schiff-base complexes with water as a model for water oxidation in photosystem II. Polyhedron 4(11):1895–1900
40.
Zurück zum Zitat Matsushita T, Spencer L, Sawyer DT (1988) Synthesis and characterization of binuclear manganese complexes: redox models for the water oxidation cofactor of photosystem II. Inorg Chem 27(7):1167–1173 Matsushita T, Spencer L, Sawyer DT (1988) Synthesis and characterization of binuclear manganese complexes: redox models for the water oxidation cofactor of photosystem II. Inorg Chem 27(7):1167–1173
41.
Zurück zum Zitat Ramaraj R, Kira A, Kaneko M (1986) Oxygen evolution by water oxidation mediated by heterogeneous manganese complexes. Angew Chem Int Ed 25(9):825–827 Ramaraj R, Kira A, Kaneko M (1986) Oxygen evolution by water oxidation mediated by heterogeneous manganese complexes. Angew Chem Int Ed 25(9):825–827
42.
Zurück zum Zitat Naruta Y, M-a S, Sasaki T (1994) Oxygen evolution by oxidation of water with manganese porphyrin dimers. Angew Chem Int Ed 33(18):1839–1841 Naruta Y, M-a S, Sasaki T (1994) Oxygen evolution by oxidation of water with manganese porphyrin dimers. Angew Chem Int Ed 33(18):1839–1841
43.
Zurück zum Zitat Geselowitz D, Meyer TJ (1990) Water oxidation by μ-oxobis[bis(bipyridine)oxoruthenium(V)]4+. An oxygen-labeling study. Inorg Chem 29(19):3894–3896 Geselowitz D, Meyer TJ (1990) Water oxidation by μ-oxobis[bis(bipyridine)oxoruthenium(V)]4+. An oxygen-labeling study. Inorg Chem 29(19):3894–3896
44.
Zurück zum Zitat Limburg J, Vrettos JS, Liable-Sands LM et al (1999) A functional model for O-O bond formation by the O2-evolving complex in Photosystem II. Science 283(5407):1524–1527 Limburg J, Vrettos JS, Liable-Sands LM et al (1999) A functional model for O-O bond formation by the O2-evolving complex in Photosystem II. Science 283(5407):1524–1527
45.
Zurück zum Zitat Limburg J, Vrettos JS, Chen H et al (2001) Characterization of the O2-evolving reaction catalyzed by [(terpy)(H2O)MnIII(O)2MnIV(OH2)(terpy)](NO3)3 (terpy = 2,2′:6,2ʺ-Terpyridine). J Am Chem Soc 123(3):423–430 Limburg J, Vrettos JS, Chen H et al (2001) Characterization of the O2-evolving reaction catalyzed by [(terpy)(H2O)MnIII(O)2MnIV(OH2)(terpy)](NO3)3 (terpy = 2,2′:6,2ʺ-Terpyridine). J Am Chem Soc 123(3):423–430
46.
Zurück zum Zitat Poulsen AK, Rompel A, McKenzie CJ (2005) Water oxidation catalyzed by a dinuclear Mn complex: a functional model for the oxygen-evolving center of Photosystem II. Angew Chem Int Ed 44(42):6916–6920 Poulsen AK, Rompel A, McKenzie CJ (2005) Water oxidation catalyzed by a dinuclear Mn complex: a functional model for the oxygen-evolving center of Photosystem II. Angew Chem Int Ed 44(42):6916–6920
47.
Zurück zum Zitat Chen TR, Olack G et al (2006) Speciation of the catalytic oxygen evolution system: [MnIII/IV2(μ-O)2(terpy)2(H2O)2](NO3)3 + HSO5. Inorg Chem 46(1):34–43 Chen TR, Olack G et al (2006) Speciation of the catalytic oxygen evolution system: [MnIII/IV2(μ-O)2(terpy)2(H2O)2](NO3)3 + HSO5. Inorg Chem 46(1):34–43
48.
Zurück zum Zitat Tagore R, Crabtree RH, Brudvig GW (2008) Oxygen evolution catalysis by a dimanganese complex and its relation to photosynthetic water oxidation. Inorg Chem 47(6):1815–1823 Tagore R, Crabtree RH, Brudvig GW (2008) Oxygen evolution catalysis by a dimanganese complex and its relation to photosynthetic water oxidation. Inorg Chem 47(6):1815–1823
49.
Zurück zum Zitat Nayak S, Nayek HP, Dehnen S et al (2011) Trigonal propeller-shaped [MnIII 3MIINa] complexes (M = Mn, Ca): structural and functional models for the dioxygen evolving centre of PSII. Dalton Trans 40(12):2699–2702 Nayak S, Nayek HP, Dehnen S et al (2011) Trigonal propeller-shaped [MnIII 3MIINa] complexes (M = Mn, Ca): structural and functional models for the dioxygen evolving centre of PSII. Dalton Trans 40(12):2699–2702
50.
Zurück zum Zitat Seidler-Egdal RK, Nielsen A, Bond AD et al (2011) High turnover catalysis of water oxidation by Mn(II) complexes of monoanionic pentadentate ligands. Dalton Trans 40(15):3849–3858 Seidler-Egdal RK, Nielsen A, Bond AD et al (2011) High turnover catalysis of water oxidation by Mn(II) complexes of monoanionic pentadentate ligands. Dalton Trans 40(15):3849–3858
51.
Zurück zum Zitat Yagi M, Narita K (2004) Catalytic O2 evolution from water induced by adsorption of [(OH2)(Terpy)Mn(μ-O)2Mn(Terpy)(OH2)]3+ complex onto clay compounds. J Am Chem Soc 126(26):8084–8085 Yagi M, Narita K (2004) Catalytic O2 evolution from water induced by adsorption of [(OH2)(Terpy)Mn(μ-O)2Mn(Terpy)(OH2)]3+ complex onto clay compounds. J Am Chem Soc 126(26):8084–8085
52.
Zurück zum Zitat Baffert C, Romain S, Richardot A et al (2005) Electrochemical and chemical formation of [Mn4IVO5(terpy)4(H2O)2]6+, in relation with the Photosystem II oxygen-evolving center model [Mn2III, IVO2(terpy)2(H2O)2]3+. J Am Chem Soc 127(39):13694–13704 Baffert C, Romain S, Richardot A et al (2005) Electrochemical and chemical formation of [Mn4IVO5(terpy)4(H2O)2]6+, in relation with the Photosystem II oxygen-evolving center model [Mn2III, IVO2(terpy)2(H2O)2]3+. J Am Chem Soc 127(39):13694–13704
53.
Zurück zum Zitat Kurz P, Berggren G, Anderlund MF et al (2007) Oxygen evolving reactions catalysed by synthetic manganese complexes: a systematic screening. Dalton Trans 38:4258–4261 Kurz P, Berggren G, Anderlund MF et al (2007) Oxygen evolving reactions catalysed by synthetic manganese complexes: a systematic screening. Dalton Trans 38:4258–4261
54.
Zurück zum Zitat Kanady JS, Tsui EY, Day MW et al (2011) A synthetic model of the Mn3Ca subsite of the oxygen-evolving complex in Photosystem II. Science 333(6043):733–736 Kanady JS, Tsui EY, Day MW et al (2011) A synthetic model of the Mn3Ca subsite of the oxygen-evolving complex in Photosystem II. Science 333(6043):733–736
55.
Zurück zum Zitat Beckmann K, Uchtenhagen H, Berggren G et al (2008) Formation of stoichiometrically 18O-labelled oxygen from the oxidation of 18O-enriched water mediated by a dinuclear manganese complex-a mass spectrometry and EPR study. Energy Environ Sci 1(6):668–676 Beckmann K, Uchtenhagen H, Berggren G et al (2008) Formation of stoichiometrically 18O-labelled oxygen from the oxidation of 18O-enriched water mediated by a dinuclear manganese complex-a mass spectrometry and EPR study. Energy Environ Sci 1(6):668–676
56.
Zurück zum Zitat Shevela D, Koroidov S, Najafpour MM et al (2011) Calcium manganese oxides as oxygen evolution catalysts: O2 Formation Pathways Indicated by 18O-Labelling Studies. Chem Eur J 17(19):5415–5423 Shevela D, Koroidov S, Najafpour MM et al (2011) Calcium manganese oxides as oxygen evolution catalysts: O2 Formation Pathways Indicated by 18O-Labelling Studies. Chem Eur J 17(19):5415–5423
57.
Zurück zum Zitat Hatakeyama M, Nakata H, Wakabayashi M et al (2012) New reaction model for O–O bond formation and O2 evolution catalyzed by dinuclear manganese complex. J Phys Chem A 116(26):7089–7097 Hatakeyama M, Nakata H, Wakabayashi M et al (2012) New reaction model for O–O bond formation and O2 evolution catalyzed by dinuclear manganese complex. J Phys Chem A 116(26):7089–7097
58.
Zurück zum Zitat Ramaraj R, Kira A, Kaneko M (1987) Heterogeneous water oxidation by a dinuclear manganese complex. Chem Lett 16(2):261–264 Ramaraj R, Kira A, Kaneko M (1987) Heterogeneous water oxidation by a dinuclear manganese complex. Chem Lett 16(2):261–264
59.
Zurück zum Zitat Narita K, Kuwabara T, Sone K et al (2006) Characterization and activity analysis of catalytic water oxidation induced by hybridization of [(OH2)(terpy)Mn(μ-O)2Mn(terpy)(OH2)]3+ and clay compounds. J Phys Chem B 110(46):23107–23114 Narita K, Kuwabara T, Sone K et al (2006) Characterization and activity analysis of catalytic water oxidation induced by hybridization of [(OH2)(terpy)Mn(μ-O)2Mn(terpy)(OH2)]3+ and clay compounds. J Phys Chem B 110(46):23107–23114
60.
Zurück zum Zitat Yagi M, Narita K, Maruyama S et al (2007) Artificial model of photosynthetic oxygen evolving complex: catalytic O2 production from water by di-μ-oxo manganese dimers supported by clay compounds. Biochim Biophys Acta Bioenerg 1767(6):660–665 Yagi M, Narita K, Maruyama S et al (2007) Artificial model of photosynthetic oxygen evolving complex: catalytic O2 production from water by di-μ-oxo manganese dimers supported by clay compounds. Biochim Biophys Acta Bioenerg 1767(6):660–665
61.
Zurück zum Zitat Kurz P (2009) Oxygen evolving reactions catalysed by manganese-oxo-complexes adsorbed on clays. Dalton Trans 31:6103–6108 Kurz P (2009) Oxygen evolving reactions catalysed by manganese-oxo-complexes adsorbed on clays. Dalton Trans 31:6103–6108
62.
Zurück zum Zitat Berends H-M, Homburg T, Kunz I et al (2011) K10 montmorillonite supported manganese catalysts for the oxidation of water to dioxygen. Appl Clay Sci 53(2):174–180 Berends H-M, Homburg T, Kunz I et al (2011) K10 montmorillonite supported manganese catalysts for the oxidation of water to dioxygen. Appl Clay Sci 53(2):174–180
63.
Zurück zum Zitat Gao Y, Crabtree RH, Brudvig GW (2012) Water oxidation catalyzed by the tetranuclear Mn complex [MnIV 4O5(terpy)4(H2O)2](ClO4)6. Inorg Chem 51(7):4043–4050 Gao Y, Crabtree RH, Brudvig GW (2012) Water oxidation catalyzed by the tetranuclear Mn complex [MnIV 4O5(terpy)4(H2O)2](ClO4)6. Inorg Chem 51(7):4043–4050
64.
Zurück zum Zitat Yamazaki H, Igarashi S, Nagata T et al (2012) Substituent effects on core structures and heterogeneous catalytic activities of MnIII(μ-O)2MnIV dimers with 2,2′:6′,2″-terpyridine derivative ligands for water oxidation. Inorg Chem 51(3):1530–1539 Yamazaki H, Igarashi S, Nagata T et al (2012) Substituent effects on core structures and heterogeneous catalytic activities of MnIII(μ-O)2MnIV dimers with 2,2′:6′,2″-terpyridine derivative ligands for water oxidation. Inorg Chem 51(3):1530–1539
65.
Zurück zum Zitat Li G, Sproviero EM, Snoeberger Iii RC et al (2009) Deposition of an oxomanganese water oxidation catalyst on TiO2 nanoparticles: computational modeling, assembly and characterization. Energy Environ Sci 2(2):230–238 Li G, Sproviero EM, Snoeberger Iii RC et al (2009) Deposition of an oxomanganese water oxidation catalyst on TiO2 nanoparticles: computational modeling, assembly and characterization. Energy Environ Sci 2(2):230–238
66.
Zurück zum Zitat Chen CM-N, Duboc C et al (2005) New linear high-valent tetranuclear manganese-oxo cluster relevant to the oxygen-evolving complex of photosystem II with oxo, hydroxo, and aqua coordinated to a single Mn(IV). Inorg Chem 44(25):9567–9573 Chen CM-N, Duboc C et al (2005) New linear high-valent tetranuclear manganese-oxo cluster relevant to the oxygen-evolving complex of photosystem II with oxo, hydroxo, and aqua coordinated to a single Mn(IV). Inorg Chem 44(25):9567–9573
67.
Zurück zum Zitat Najafpour M, Boghaei D (2009) Heterogeneous water oxidation by bidentate Schiff base manganese complexes in the presence of cerium(IV) ammonium nitrate. Transit Met Chem 34(4):367–372 Najafpour M, Boghaei D (2009) Heterogeneous water oxidation by bidentate Schiff base manganese complexes in the presence of cerium(IV) ammonium nitrate. Transit Met Chem 34(4):367–372
68.
Zurück zum Zitat Najafpour MM, Isaloo MA (2014) Mechanism of water oxidation by nanolayered manganese oxide: a step forward. RSC Adv 4(13):6375–6378 Najafpour MM, Isaloo MA (2014) Mechanism of water oxidation by nanolayered manganese oxide: a step forward. RSC Adv 4(13):6375–6378
69.
Zurück zum Zitat Junge H, Marquet N, Kammer A et al (2012) Water oxidation with molecularly defined iridium complexes: insights into homogeneous versus heterogeneous catalysis. Chem Eur J 18(40):12749–12758 Junge H, Marquet N, Kammer A et al (2012) Water oxidation with molecularly defined iridium complexes: insights into homogeneous versus heterogeneous catalysis. Chem Eur J 18(40):12749–12758
70.
Zurück zum Zitat Karlsson EA, Lee B-L, Åkermark T et al (2011) Photosensitized water oxidation by use of a bioinspired manganese catalyst. Angew Chem Int Ed 50(49):11715–11718 Karlsson EA, Lee B-L, Åkermark T et al (2011) Photosensitized water oxidation by use of a bioinspired manganese catalyst. Angew Chem Int Ed 50(49):11715–11718
71.
Zurück zum Zitat Huang P, Magnuson A, Lomoth R et al (2002) Photo-induced oxidation of a dinuclear Mn2II, II complex to the Mn2III, IV state by inter- and intramolecular electron transfer to RuIIItris-bipyridine. J Inorg Biochem 91(1):159–172 Huang P, Magnuson A, Lomoth R et al (2002) Photo-induced oxidation of a dinuclear Mn2II, II complex to the Mn2III, IV state by inter- and intramolecular electron transfer to RuIIItris-bipyridine. J Inorg Biochem 91(1):159–172
72.
Zurück zum Zitat Lee B-L, Kärkäs MD, Johnston EV et al (2010) Synthesis and characterization of oligonuclear Ru, Co and Cu oxidation catalysts. Eur J Inorg Chem 2010(34):5462–5470 Lee B-L, Kärkäs MD, Johnston EV et al (2010) Synthesis and characterization of oligonuclear Ru, Co and Cu oxidation catalysts. Eur J Inorg Chem 2010(34):5462–5470
73.
Zurück zum Zitat Arafa WAA, Karkas MD, Lee B-L et al (2014) Dinuclear manganese complexes for water oxidation: evaluation of electronic effects and catalytic activity. Phys Chem Chem Phys. doi:10.1039/C3CP54800G Arafa WAA, Karkas MD, Lee B-L et al (2014) Dinuclear manganese complexes for water oxidation: evaluation of electronic effects and catalytic activity. Phys Chem Chem Phys. doi:10.​1039/​C3CP54800G
74.
Zurück zum Zitat Sun L, Berglund H, Davydov R et al (1997) Binuclear ruthenium–manganese complexes as simple artificial models for Photosystem II in green plants. J Am Chem Soc 119(30):6996–7004 Sun L, Berglund H, Davydov R et al (1997) Binuclear ruthenium–manganese complexes as simple artificial models for Photosystem II in green plants. J Am Chem Soc 119(30):6996–7004
75.
Zurück zum Zitat Sun L, Hammarstrom L, Norrby T et al. (1997) Intramolecular electron transfer from coordinated manganese(II) to photogenerated ruthenium(III). Chem Commun (6):607–608 Sun L, Hammarstrom L, Norrby T et al. (1997) Intramolecular electron transfer from coordinated manganese(II) to photogenerated ruthenium(III). Chem Commun (6):607–608
76.
Zurück zum Zitat Magnuson A, Frapart Y, Abrahamsson M et al (1998) A biomimetic model system for the water oxidizing triad in Photosystem II. J Am Chem Soc 121(1):89–96 Magnuson A, Frapart Y, Abrahamsson M et al (1998) A biomimetic model system for the water oxidizing triad in Photosystem II. J Am Chem Soc 121(1):89–96
77.
Zurück zum Zitat Sun L, Raymond MK, Magnuson A et al (2000) Towards an artificial model for Photosystem II: a manganese(II, II) dimer covalently linked to ruthenium(II) tris-bipyridine via a tyrosine derivative. J Inorg Biochem 78(1):15–22 Sun L, Raymond MK, Magnuson A et al (2000) Towards an artificial model for Photosystem II: a manganese(II, II) dimer covalently linked to ruthenium(II) tris-bipyridine via a tyrosine derivative. J Inorg Biochem 78(1):15–22
78.
Zurück zum Zitat Burdinski D, Bothe E, Wieghardt K (1999) Synthesis and characterization of tris(bipyridyl)ruthenium(II)-modified mono-, di-, and trinuclear manganese complexes as electron-transfer models for Photosystem II. Inorg Chem 39(1):105–116 Burdinski D, Bothe E, Wieghardt K (1999) Synthesis and characterization of tris(bipyridyl)ruthenium(II)-modified mono-, di-, and trinuclear manganese complexes as electron-transfer models for Photosystem II. Inorg Chem 39(1):105–116
79.
Zurück zum Zitat Burdinski D, Wieghardt K, Steenken S (1999) Intramolecular electron transfer from Mn or ligand phenolate to photochemically generated RuIII in multinuclear Ru/Mn complexes. Laser flash photolysis and EPR studies on Photosystem II models. J Am Chem Soc 121(46):10781–10787 Burdinski D, Wieghardt K, Steenken S (1999) Intramolecular electron transfer from Mn or ligand phenolate to photochemically generated RuIII in multinuclear Ru/Mn complexes. Laser flash photolysis and EPR studies on Photosystem II models. J Am Chem Soc 121(46):10781–10787
80.
Zurück zum Zitat Yagi M, Toda M, Yamada S et al (2010) An artificial model of photosynthetic photosystem II: visible-light-derived O2 production from water by a di-μ-oxo-bridged manganese dimer as an oxygen evolving center. Chem Commun 46(45):8594–8596 Yagi M, Toda M, Yamada S et al (2010) An artificial model of photosynthetic photosystem II: visible-light-derived O2 production from water by a di-μ-oxo-bridged manganese dimer as an oxygen evolving center. Chem Commun 46(45):8594–8596
81.
Zurück zum Zitat Sato S, White JM (1980) Photodecomposition of water over Pt/TiO2 catalysts. Chem Phys Lett 72(1):83–86 Sato S, White JM (1980) Photodecomposition of water over Pt/TiO2 catalysts. Chem Phys Lett 72(1):83–86
82.
Zurück zum Zitat McNamara WR, Snoeberger RC, Li G et al (2008) Acetylacetonate anchors for robust functionalization of TiO2 nanoparticles with Mn(II)–terpyridine complexes. J Am Chem Soc 130(43):14329–14338 McNamara WR, Snoeberger RC, Li G et al (2008) Acetylacetonate anchors for robust functionalization of TiO2 nanoparticles with Mn(II)–terpyridine complexes. J Am Chem Soc 130(43):14329–14338
83.
Zurück zum Zitat Li G, Sproviero EM, McNamara WR et al (2009) Reversible visible-light photooxidation of an oxomanganese water-oxidation catalyst covalently anchored to TiO2 nanoparticles. J Phys Chem B 114(45):14214–14222 Li G, Sproviero EM, McNamara WR et al (2009) Reversible visible-light photooxidation of an oxomanganese water-oxidation catalyst covalently anchored to TiO2 nanoparticles. J Phys Chem B 114(45):14214–14222
84.
Zurück zum Zitat Gao Y, Liu J, Wang M et al (2007) Synthesis and characterization of manganese and copper corrole xanthene complexes as catalysts for water oxidation. Tetrahedron 63(9):1987–1994 Gao Y, Liu J, Wang M et al (2007) Synthesis and characterization of manganese and copper corrole xanthene complexes as catalysts for water oxidation. Tetrahedron 63(9):1987–1994
85.
Zurück zum Zitat Privalov T, Sun L, Åkermark B et al (2007) A computational study of O–O bond formation catalyzed by mono- and bis-MnIV–corrole complexes. Inorg Chem 46(17):7075–7086 Privalov T, Sun L, Åkermark B et al (2007) A computational study of O–O bond formation catalyzed by mono- and bis-MnIV–corrole complexes. Inorg Chem 46(17):7075–7086
86.
Zurück zum Zitat Gao Y, Tr Å, Liu J et al (2009) Nucleophilic attack of hydroxide on a MnV oxo Complex: a model of the O–O bond formation in the oxygen evolving complex of Photosystem II. J Am Chem Soc 131(25):8726–8727 Gao Y, Tr Å, Liu J et al (2009) Nucleophilic attack of hydroxide on a MnV oxo Complex: a model of the O–O bond formation in the oxygen evolving complex of Photosystem II. J Am Chem Soc 131(25):8726–8727
87.
Zurück zum Zitat Dogutan DK, McGuire R, Nocera DG (2011) Electocatalytic water oxidation by cobalt(III) hangman β-octafluoro corroles. J Am Chem Soc 133(24):9178–9180 Dogutan DK, McGuire R, Nocera DG (2011) Electocatalytic water oxidation by cobalt(III) hangman β-octafluoro corroles. J Am Chem Soc 133(24):9178–9180
88.
Zurück zum Zitat Barnett SM, Goldberg KI, Mayer JM (2012) A soluble copper–bipyridine water-oxidation electrocatalyst. Nat Chem 4(6):498–502 Barnett SM, Goldberg KI, Mayer JM (2012) A soluble copper–bipyridine water-oxidation electrocatalyst. Nat Chem 4(6):498–502
89.
Zurück zum Zitat Mullins CS, Pecoraro VL (2008) Reflections on small molecule manganese models that seek to mimic photosynthetic water oxidation chemistry. Coord Chem Rev 252(3–4):416–443 Mullins CS, Pecoraro VL (2008) Reflections on small molecule manganese models that seek to mimic photosynthetic water oxidation chemistry. Coord Chem Rev 252(3–4):416–443
90.
Zurück zum Zitat Cady CW, Crabtree RH, Brudvig GW (2008) Functional models for the oxygen-evolving complex of photosystem II. Coord Chem Rev 252(3–4):444–455 Cady CW, Crabtree RH, Brudvig GW (2008) Functional models for the oxygen-evolving complex of photosystem II. Coord Chem Rev 252(3–4):444–455
91.
Zurück zum Zitat Ruettinger WF, Campana C, Dismukes GC (1997) Synthesis and characterization of Mn4O4L6 complexes with cubane-like core structure: a new class of models of the active site of the photosynthetic water oxidase. J Am Chem Soc 119(28):6670–6671 Ruettinger WF, Campana C, Dismukes GC (1997) Synthesis and characterization of Mn4O4L6 complexes with cubane-like core structure: a new class of models of the active site of the photosynthetic water oxidase. J Am Chem Soc 119(28):6670–6671
92.
Zurück zum Zitat Ruettinger WF, Ho DM, Dismukes GC (1999) Protonation and dehydration reactions of the Mn4O4L6 cubane and synthesis and crystal structure of the oxidized cubane [Mn4O4L6]+: a model for the photosynthetic water oxidizing complex. Inorg Chem 38(6):1036–1037 Ruettinger WF, Ho DM, Dismukes GC (1999) Protonation and dehydration reactions of the Mn4O4L6 cubane and synthesis and crystal structure of the oxidized cubane [Mn4O4L6]+: a model for the photosynthetic water oxidizing complex. Inorg Chem 38(6):1036–1037
93.
Zurück zum Zitat Ruettinger W, Yagi M, Wolf K et al (2000) O2 evolution from the manganese–oxo cubane core Mn4O46+: a molecular mimic of the photosynthetic water oxidation enzyme? J Am Chem Soc 122(42):10353–10357 Ruettinger W, Yagi M, Wolf K et al (2000) O2 evolution from the manganese–oxo cubane core Mn4O46+: a molecular mimic of the photosynthetic water oxidation enzyme? J Am Chem Soc 122(42):10353–10357
94.
Zurück zum Zitat Yagi M, Wolf KV, Baesjou PJ et al (2001) Selective photoproduction of O2 from the Mn4O4 cubane core: a structural and functional model for the photosynthetic water-oxidizing complex. Angew Chem Int Ed 40(15):2925–2928 Yagi M, Wolf KV, Baesjou PJ et al (2001) Selective photoproduction of O2 from the Mn4O4 cubane core: a structural and functional model for the photosynthetic water-oxidizing complex. Angew Chem Int Ed 40(15):2925–2928
95.
Zurück zum Zitat Wu J-Z, De Angelis F, Carrell TG et al (2005) Tuning the photoinduced O2-evolving reactivity of Mn4O4 7+, Mn4O4 6+, and Mn4O3(OH)6+ manganese–oxo cubane complexes. Inorg Chem 45(1):189–195 Wu J-Z, De Angelis F, Carrell TG et al (2005) Tuning the photoinduced O2-evolving reactivity of Mn4O4 7+, Mn4O4 6+, and Mn4O3(OH)6+ manganese–oxo cubane complexes. Inorg Chem 45(1):189–195
96.
Zurück zum Zitat Ruettinger WF, Dismukes GC (2000) Conversion of core oxos to water molecules by 4e−/4H+ reductive dehydration of the Mn4O26+ core in the manganese–oxo cubane complex Mn4O4(Ph2PO2)6: a partial model for photosynthetic water binding and activation. Inorg Chem 39(5):1021–1027 Ruettinger WF, Dismukes GC (2000) Conversion of core oxos to water molecules by 4e−/4H+ reductive dehydration of the Mn4O26+ core in the manganese–oxo cubane complex Mn4O4(Ph2PO2)6: a partial model for photosynthetic water binding and activation. Inorg Chem 39(5):1021–1027
97.
Zurück zum Zitat Brimblecombe R, Swiegers GF, Dismukes GC et al (2008) Sustained water oxidation photocatalysis by a bioinspired manganese cluster. Angew Chem Int Ed 47(38):7335–7338 Brimblecombe R, Swiegers GF, Dismukes GC et al (2008) Sustained water oxidation photocatalysis by a bioinspired manganese cluster. Angew Chem Int Ed 47(38):7335–7338
98.
Zurück zum Zitat Brimblecombe R, Koo A, Dismukes GC et al (2010) Solar driven water oxidation by a bioinspired manganese molecular catalyst. J Am Chem Soc 132(9):2892–2894 Brimblecombe R, Koo A, Dismukes GC et al (2010) Solar driven water oxidation by a bioinspired manganese molecular catalyst. J Am Chem Soc 132(9):2892–2894
99.
Zurück zum Zitat Hocking RK, Brimblecombe R, Chang L-Y et al (2011) Water-oxidation catalysis by manganese in a geochemical-like cycle. Nat Chem 3(6):461–466 Hocking RK, Brimblecombe R, Chang L-Y et al (2011) Water-oxidation catalysis by manganese in a geochemical-like cycle. Nat Chem 3(6):461–466
100.
Zurück zum Zitat Jiao F, Frei H (2010) Nanostructured manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts. Chem Commun 46(17):2920–2922 Jiao F, Frei H (2010) Nanostructured manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts. Chem Commun 46(17):2920–2922
101.
Zurück zum Zitat Singh A, Hocking RK, Chang SLY et al (2013) Water oxidation catalysis by nanoparticulate manganese oxide thin films: probing the effect of the manganese precursors. Chem Mater 25(7):1098–1108 Singh A, Hocking RK, Chang SLY et al (2013) Water oxidation catalysis by nanoparticulate manganese oxide thin films: probing the effect of the manganese precursors. Chem Mater 25(7):1098–1108
102.
Zurück zum Zitat Lassalle-Kaiser B, Hureau C, Pantazis DA et al (2010) Activation of a water molecule using a mononuclear Mn complex: from Mn-aquo, to Mn-hydroxo, to Mn-oxyl via charge compensation. Energy Environ Sci 3(7):924–938 Lassalle-Kaiser B, Hureau C, Pantazis DA et al (2010) Activation of a water molecule using a mononuclear Mn complex: from Mn-aquo, to Mn-hydroxo, to Mn-oxyl via charge compensation. Energy Environ Sci 3(7):924–938
103.
Zurück zum Zitat Hansen RE, Das S (2014) Biomimetic di-manganese catalyst cage-isolated in a MOF: robust catalyst for water oxidation with Ce(IV), a non-O-donating oxidant. Energy Environ Sci 7(1):317–322 Hansen RE, Das S (2014) Biomimetic di-manganese catalyst cage-isolated in a MOF: robust catalyst for water oxidation with Ce(IV), a non-O-donating oxidant. Energy Environ Sci 7(1):317–322
104.
Zurück zum Zitat Shafirovich VY, Khannanov NK, Strelets VV (1980) Chemical and light-induced catalytic water oxidation. Nouv J Chim 4(2):81–84 Shafirovich VY, Khannanov NK, Strelets VV (1980) Chemical and light-induced catalytic water oxidation. Nouv J Chim 4(2):81–84
105.
Zurück zum Zitat Brunschwig BS, Chou MH, Creutz C et al (1983) Mechanisms of water oxidation to oxygen: cobalt(IV) as an intermediate in the aquocobalt(II)-catalyzed reaction. J Am Chem Soc 105(14):4832–4833 Brunschwig BS, Chou MH, Creutz C et al (1983) Mechanisms of water oxidation to oxygen: cobalt(IV) as an intermediate in the aquocobalt(II)-catalyzed reaction. J Am Chem Soc 105(14):4832–4833
106.
Zurück zum Zitat Ghosh PK, Brunschwig BS, Chou M et al (1984) Thermal and light-induced reduction of the ruthenium complex cation Ru(bpy)3 3+ in aqueous solution. J Am Chem Soc 106(17):4772–4783 Ghosh PK, Brunschwig BS, Chou M et al (1984) Thermal and light-induced reduction of the ruthenium complex cation Ru(bpy)3 3+ in aqueous solution. J Am Chem Soc 106(17):4772–4783
107.
Zurück zum Zitat Kanan MW, Nocera DG (2008) In-situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321(5892):1072–1075 Kanan MW, Nocera DG (2008) In-situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321(5892):1072–1075
108.
Zurück zum Zitat Lutterman DA, Surendranath Y, Nocera DG (2009) A self-healing oxygen-evolving catalyst. J Am Chem Soc 131(11):3838–3839 Lutterman DA, Surendranath Y, Nocera DG (2009) A self-healing oxygen-evolving catalyst. J Am Chem Soc 131(11):3838–3839
109.
Zurück zum Zitat Dau H, Limberg C, Reier T et al (2010) The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2(7):724–761 Dau H, Limberg C, Reier T et al (2010) The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2(7):724–761
110.
Zurück zum Zitat McAlpin JG, Surendranath Y, Dincǎ M et al (2010) EPR evidence for Co(IV) species produced during water oxidation at neutral pH. J Am Chem Soc 132(20):6882–6883 McAlpin JG, Surendranath Y, Dincǎ M et al (2010) EPR evidence for Co(IV) species produced during water oxidation at neutral pH. J Am Chem Soc 132(20):6882–6883
111.
Zurück zum Zitat Kanan MW, Surendranath Y, Nocera DG (2009) Cobalt-phosphate oxygen-evolving compound. Chem Soc Rev 38(1):109–114 Kanan MW, Surendranath Y, Nocera DG (2009) Cobalt-phosphate oxygen-evolving compound. Chem Soc Rev 38(1):109–114
112.
Zurück zum Zitat Risch M, Khare V, Zaharieva I et al (2009) Cobalt–oxo core of a water-oxidizing catalyst film. J Am Chem Soc 131(20):6936–6937 Risch M, Khare V, Zaharieva I et al (2009) Cobalt–oxo core of a water-oxidizing catalyst film. J Am Chem Soc 131(20):6936–6937
113.
Zurück zum Zitat Kanan MW, Yano J, Surendranath Y et al (2010) Structure and valency of a cobalt–phosphate water oxidation catalyst determined by in Situ X-ray spectroscopy. J Am Chem Soc 132(39):13692–13701 Kanan MW, Yano J, Surendranath Y et al (2010) Structure and valency of a cobalt–phosphate water oxidation catalyst determined by in Situ X-ray spectroscopy. J Am Chem Soc 132(39):13692–13701
114.
Zurück zum Zitat Leung C-F, Ng S-M, Ko C-C et al (2012) A cobalt(II) quaterpyridine complex as a visible light-driven catalyst for both water oxidation and reduction. Energy Environ Sci 5(7):7903–7907 Leung C-F, Ng S-M, Ko C-C et al (2012) A cobalt(II) quaterpyridine complex as a visible light-driven catalyst for both water oxidation and reduction. Energy Environ Sci 5(7):7903–7907
115.
Zurück zum Zitat Jiao F, Frei H (2010) Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ Sci 3(8):1018–1027 Jiao F, Frei H (2010) Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ Sci 3(8):1018–1027
116.
Zurück zum Zitat Stracke JJ, Finke RG (2011) Electrocatalytic water oxidation beginning with the cobalt polyoxometalate [Co4(H2O)2(PW9O34)2]10−: identification of heterogeneous CoO x as the dominant catalyst. J Am Chem Soc 133(38):14872–14875 Stracke JJ, Finke RG (2011) Electrocatalytic water oxidation beginning with the cobalt polyoxometalate [Co4(H2O)2(PW9O34)2]10−: identification of heterogeneous CoO x as the dominant catalyst. J Am Chem Soc 133(38):14872–14875
117.
Zurück zum Zitat Yin Q, Tan JM, Besson C et al (2010) A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328(5976):342–345 Yin Q, Tan JM, Besson C et al (2010) A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328(5976):342–345
118.
Zurück zum Zitat Hong D, Jung J, Park J et al (2012) Water-soluble mononuclear cobalt complexes with organic ligands acting as precatalysts for efficient photocatalytic water oxidation. Energy Environ Sci 5(6):7606–7616 Hong D, Jung J, Park J et al (2012) Water-soluble mononuclear cobalt complexes with organic ligands acting as precatalysts for efficient photocatalytic water oxidation. Energy Environ Sci 5(6):7606–7616
119.
Zurück zum Zitat Fu S, Liu Y, Ding Y et al (2014) A mononuclear cobalt complex with an organic ligand acting as a precatalyst for efficient visible light-driven water oxidation. Chem Commun 50(17):2167–2169 Fu S, Liu Y, Ding Y et al (2014) A mononuclear cobalt complex with an organic ligand acting as a precatalyst for efficient visible light-driven water oxidation. Chem Commun 50(17):2167–2169
120.
Zurück zum Zitat Wasylenko DJ, Ganesamoorthy C, Borau-Garcia J et al (2011) Electrochemical evidence for catalytic water oxidation mediated by a high-valent cobalt complex. Chem Commun 47(14):4249–4251 Wasylenko DJ, Ganesamoorthy C, Borau-Garcia J et al (2011) Electrochemical evidence for catalytic water oxidation mediated by a high-valent cobalt complex. Chem Commun 47(14):4249–4251
121.
Zurück zum Zitat Wasylenko DJ, Palmer RD, Schott E et al (2012) Interrogation of electrocatalytic water oxidation mediated by a cobalt complex. Chem Commun 48(15):2107–2109 Wasylenko DJ, Palmer RD, Schott E et al (2012) Interrogation of electrocatalytic water oxidation mediated by a cobalt complex. Chem Commun 48(15):2107–2109
122.
Zurück zum Zitat Rigsby ML, Mandal S, Nam W et al (2012) Cobalt analogs of Ru-based water oxidation catalysts: overcoming thermodynamic instability and kinetic lability to achieve electrocatalytic O2 evolution. Chem Sci 3(10):3058–3062 Rigsby ML, Mandal S, Nam W et al (2012) Cobalt analogs of Ru-based water oxidation catalysts: overcoming thermodynamic instability and kinetic lability to achieve electrocatalytic O2 evolution. Chem Sci 3(10):3058–3062
123.
Zurück zum Zitat McGuire R Jr, Dogutan DK, Teets TS et al (2010) Oxygen reduction reactivity of cobalt(II) hangman porphyrins. Chem Sci 1(3):411–414 McGuire R Jr, Dogutan DK, Teets TS et al (2010) Oxygen reduction reactivity of cobalt(II) hangman porphyrins. Chem Sci 1(3):411–414
124.
Zurück zum Zitat Dogutan DK, Stoian SA, McGuire R et al (2010) Hangman corroles: efficient synthesis and oxygen reaction chemistry. J Am Chem Soc 133(1):131–140 Dogutan DK, Stoian SA, McGuire R et al (2010) Hangman corroles: efficient synthesis and oxygen reaction chemistry. J Am Chem Soc 133(1):131–140
125.
Zurück zum Zitat Lai W, Cao R, Dong G et al (2012) Why is cobalt the best transition metal in transition-metal hangman corroles for O-O bond formation during water oxidation? J Phys Chem Lett 3(17):2315–2319 Lai W, Cao R, Dong G et al (2012) Why is cobalt the best transition metal in transition-metal hangman corroles for O-O bond formation during water oxidation? J Phys Chem Lett 3(17):2315–2319
126.
Zurück zum Zitat Lei H, Han A, Li F et al (2014) Electrochemical, spectroscopic and theoretical studies of a simple bifunctional cobalt corrole catalyst for oxygen evolution and hydrogen production. Phys Chem Chem Phys 16(5):1883–1893 Lei H, Han A, Li F et al (2014) Electrochemical, spectroscopic and theoretical studies of a simple bifunctional cobalt corrole catalyst for oxygen evolution and hydrogen production. Phys Chem Chem Phys 16(5):1883–1893
127.
Zurück zum Zitat McCool NS, Robinson DM, Sheats JE et al (2011) A Co4O4 “cubane” water oxidation catalyst inspired by photosynthesis. J Am Chem Soc 133(30):11446–11449 McCool NS, Robinson DM, Sheats JE et al (2011) A Co4O4 “cubane” water oxidation catalyst inspired by photosynthesis. J Am Chem Soc 133(30):11446–11449
128.
Zurück zum Zitat Beattie JK, Hambley TW, Klepetko JA et al (1998) The chemistry of cobalt acetate—IV. The isolation and crystal structure of the symmetric cubane, tetrakis[(μ-acetato)(μ 3-oxo) (pyridine)cobalt(III)] ⋅ chloroform solvate, [Co4(μ 3-O)4(μ-CH3CO2)4(C5H5N)in4] ⋅ 5CHCl3 and of the dicationic partial cubane, trimeric, [(μ-acetato)(acetato)tris(μ-hydroxy(μ 3-oxo) hexakispyridinetricobalt(III)]hexafluorophosphate ⋅ water solvate, [Co3(μ 3-O)(μ-OH)3(μ-CH3CO2(CH3CO2(C5H5N)6[PF6]2 ⋅ 2H2O. Polyhedron 17(8):1343–1354 Beattie JK, Hambley TW, Klepetko JA et al (1998) The chemistry of cobalt acetate—IV. The isolation and crystal structure of the symmetric cubane, tetrakis[(μ-acetato)(μ 3-oxo) (pyridine)cobalt(III)] ⋅ chloroform solvate, [Co4(μ 3-O)4(μ-CH3CO2)4(C5H5N)in4] ⋅ 5CHCl3 and of the dicationic partial cubane, trimeric, [(μ-acetato)(acetato)tris(μ-hydroxy(μ 3-oxo) hexakispyridinetricobalt(III)]hexafluorophosphate ⋅ water solvate, [Co3(μ 3-O)(μ-OH)3(μ-CH3CO2(CH3CO2(C5H5N)6[PF6]2 ⋅ 2H2O. Polyhedron 17(8):1343–1354
129.
Zurück zum Zitat Chakrabarty R, Bora SJ, Das BK (2007) Synthesis, structure, spectral and electrochemical properties, and catalytic use of cobalt(III)–oxo cubane clusters. Inorg Chem 46(22):9450–9462 Chakrabarty R, Bora SJ, Das BK (2007) Synthesis, structure, spectral and electrochemical properties, and catalytic use of cobalt(III)–oxo cubane clusters. Inorg Chem 46(22):9450–9462
130.
Zurück zum Zitat Berardi S, La Ganga G, Natali M et al (2012) Photocatalytic water oxidation: tuning light-induced electron transfer by molecular Co4O4 cores. J Am Chem Soc 134(27):11104–11107 Berardi S, La Ganga G, Natali M et al (2012) Photocatalytic water oxidation: tuning light-induced electron transfer by molecular Co4O4 cores. J Am Chem Soc 134(27):11104–11107
131.
Zurück zum Zitat La Ganga G, Puntoriero F, Campagna S et al (2012) Light-driven water oxidation with a molecular tetra-cobalt(III) cubane cluster. Faraday Discuss 155:177–190 La Ganga G, Puntoriero F, Campagna S et al (2012) Light-driven water oxidation with a molecular tetra-cobalt(III) cubane cluster. Faraday Discuss 155:177–190
132.
Zurück zum Zitat McAlpin JG, Stich TA, Ohlin CA et al (2011) Electronic structure description of a [Co(III)3Co(IV)O4] cluster: a model for the paramagnetic intermediate in cobalt-catalyzed water oxidation. J Am Chem Soc 133(39):15444–15452 McAlpin JG, Stich TA, Ohlin CA et al (2011) Electronic structure description of a [Co(III)3Co(IV)O4] cluster: a model for the paramagnetic intermediate in cobalt-catalyzed water oxidation. J Am Chem Soc 133(39):15444–15452
133.
Zurück zum Zitat Symes MD, Surendranath Y, Lutterman DA et al (2011) Bidirectional and unidirectional PCET in a molecular model of a cobalt-based oxygen-evolving catalyst. J Am Chem Soc 133(14):5174–5177 Symes MD, Surendranath Y, Lutterman DA et al (2011) Bidirectional and unidirectional PCET in a molecular model of a cobalt-based oxygen-evolving catalyst. J Am Chem Soc 133(14):5174–5177
134.
Zurück zum Zitat Symes MD, Lutterman DA, Teets TS et al (2013) Photo-active cobalt cubane model of an oxygen-evolving catalyst. ChemSusChem 6(1):65–69 Symes MD, Lutterman DA, Teets TS et al (2013) Photo-active cobalt cubane model of an oxygen-evolving catalyst. ChemSusChem 6(1):65–69
135.
Zurück zum Zitat Evangelisti F, Güttinger R, Moré R et al (2013) Closer to Photosystem II: a Co4O4 cubane catalyst with flexible ligand architecture. J Am Chem Soc 135(50):18734–18737 Evangelisti F, Güttinger R, Moré R et al (2013) Closer to Photosystem II: a Co4O4 cubane catalyst with flexible ligand architecture. J Am Chem Soc 135(50):18734–18737
136.
Zurück zum Zitat Zhang B, Li F, Yu F et al (2014) Electrochemical and photoelectrochemical water oxidation by supported cobalt–oxo cubanes. ACS Catal 4(3):804–809 Zhang B, Li F, Yu F et al (2014) Electrochemical and photoelectrochemical water oxidation by supported cobalt–oxo cubanes. ACS Catal 4(3):804–809
137.
Zurück zum Zitat Nakazono T, Parent AR, Sakai K (2013) Cobalt porphyrins as homogeneous catalysts for water oxidation. Chem Commun 49(56):6325–6327 Nakazono T, Parent AR, Sakai K (2013) Cobalt porphyrins as homogeneous catalysts for water oxidation. Chem Commun 49(56):6325–6327
138.
Zurück zum Zitat Wang D, Groves JT (2013) Efficient water oxidation catalyzed by homogeneous cationic cobalt porphyrins with critical roles for the buffer base. Proc Natl Acad Sci U S A 110(39):15579–15584 Wang D, Groves JT (2013) Efficient water oxidation catalyzed by homogeneous cationic cobalt porphyrins with critical roles for the buffer base. Proc Natl Acad Sci U S A 110(39):15579–15584
139.
Zurück zum Zitat Pizzolato E, Natali M, Posocco B et al (2013) Light driven water oxidation by a single site cobalt salophen catalyst. Chem Commun 49(85):9941–9943 Pizzolato E, Natali M, Posocco B et al (2013) Light driven water oxidation by a single site cobalt salophen catalyst. Chem Commun 49(85):9941–9943
Metadaten
Titel
Recent Development in Water Oxidation Catalysts Based on Manganese and Cobalt Complexes
verfasst von
Lawrence Yoon Suk Lee
Kwok-Yin Wong
Copyright-Jahr
2015
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46054-2_13