Skip to main content

2018 | OriginalPaper | Buchkapitel

8. Recent Development of Lead-Free Piezoelectrics

verfasst von : Jiagang Wu

Erschienen in: Advances in Lead-Free Piezoelectric Materials

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lead-free perovskite piezoelectric ceramics are important to both scientific and industrial communities due to the promising candidates to replace the toxic lead-based ones. After the great efforts by researchers for several decades, some remarkable progresses are obtained, covering the breakthroughs in electrical properties, temperature stability and physical mechanisms. This chapter briefly reviews the recent development of lead-free piezoelectric ceramics, including temperature stability, electrical properties (e.g., piezoelectricity, electrocaloric effect, energy storage and electrostrictive effect) and physical mechanisms with a focus on crystallographic structure and domain configuration. Finally, the competition and challenge for each lead-free piezoelectric are listed, which could guide the development of lead-free piezoelectrics towards the practical applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Su S, Zuo RZ, Lu SB, Xu ZK, Wang XH, Li LT (2011) Poling dependence and stability of piezoelectric properties of Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics with huge piezoelectric coefficients. Curr Appl Phys 11:S120–S123CrossRef Su S, Zuo RZ, Lu SB, Xu ZK, Wang XH, Li LT (2011) Poling dependence and stability of piezoelectric properties of Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics with huge piezoelectric coefficients. Curr Appl Phys 11:S120–S123CrossRef
2.
Zurück zum Zitat Zuo RZ, Fu J, Lv DY, Liu Y (2010) Antimony tuned rhombohedral-orthorhombic phase transition and enhanced piezoelectric properties in sodium potassium niobate. J Am Ceram Soc 93:2783–2787CrossRef Zuo RZ, Fu J, Lv DY, Liu Y (2010) Antimony tuned rhombohedral-orthorhombic phase transition and enhanced piezoelectric properties in sodium potassium niobate. J Am Ceram Soc 93:2783–2787CrossRef
3.
Zurück zum Zitat Zheng T, Wu WJ, Wu J, Zhu JG, Xiao DQ (2016) Balanced development of piezoelectricity, Curie temperature, and temperature stability in potassium-sodium niobhrate lead-free ceramics. J Mater Chem C 4:9779–9787CrossRef Zheng T, Wu WJ, Wu J, Zhu JG, Xiao DQ (2016) Balanced development of piezoelectricity, Curie temperature, and temperature stability in potassium-sodium niobhrate lead-free ceramics. J Mater Chem C 4:9779–9787CrossRef
4.
Zurück zum Zitat Zheng T, Wu J, Cheng XJ, Wang XP, Zhang BY, Xiao DQ, Zhu JG, Wang XJ, Lou XJ (2014) High strain in (K0.40Na0.60)(Nb0.955Sb0.045)O3-Bi0.50Na0.50ZrO3 lead-free ceramics with large piezoelectricity. J Mater Chem C 2:8796CrossRef Zheng T, Wu J, Cheng XJ, Wang XP, Zhang BY, Xiao DQ, Zhu JG, Wang XJ, Lou XJ (2014) High strain in (K0.40Na0.60)(Nb0.955Sb0.045)O3-Bi0.50Na0.50ZrO3 lead-free ceramics with large piezoelectricity. J Mater Chem C 2:8796CrossRef
5.
Zurück zum Zitat Xu CG, Lin DM, Kwok KW (2008) Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoelectric ceramics. Solid State Sci 10:934–940CrossRef Xu CG, Lin DM, Kwok KW (2008) Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoelectric ceramics. Solid State Sci 10:934–940CrossRef
6.
Zurück zum Zitat Lv J, Lou XJ, Wu JG (2016) Defect dipole-induced poling characteristics and ferroelectricity of quenched bismuth ferrite-based ceramics. J Mater Chem C 4:6140CrossRef Lv J, Lou XJ, Wu JG (2016) Defect dipole-induced poling characteristics and ferroelectricity of quenched bismuth ferrite-based ceramics. J Mater Chem C 4:6140CrossRef
7.
Zurück zum Zitat Zheng T, Ding Y, Wu JG (2016) Bi nonstoichiometry and composition engineering in (1-x)Bi1+yFeO3+3y/2-xBaTiO3 ceramics. RSC Adv 6:90831–90839CrossRef Zheng T, Ding Y, Wu JG (2016) Bi nonstoichiometry and composition engineering in (1-x)Bi1+yFeO3+3y/2-xBaTiO3 ceramics. RSC Adv 6:90831–90839CrossRef
8.
Zurück zum Zitat Hou JG, Qu YF, Vaish R, Krsmanovic D, Kumar RV (2011) Effect of Sb substitution on the structural and electrical properties of Bi4Ti3-2xNbxTaxO12 ceramics. J Am Ceram Soc 94:2523–2529CrossRef Hou JG, Qu YF, Vaish R, Krsmanovic D, Kumar RV (2011) Effect of Sb substitution on the structural and electrical properties of Bi4Ti3-2xNbxTaxO12 ceramics. J Am Ceram Soc 94:2523–2529CrossRef
9.
Zurück zum Zitat Peng ZH, Yan DX, Chen Q, Xin DQ, Liu D, Xiao DQ, Zhu JG (2014) Crystal structure, dielectric and piezoelectric properties of Ta/W codoped Bi3TiNbO9 Aurivillius phase ceramics. Curr Appl Phys 14:1861–1866CrossRef Peng ZH, Yan DX, Chen Q, Xin DQ, Liu D, Xiao DQ, Zhu JG (2014) Crystal structure, dielectric and piezoelectric properties of Ta/W codoped Bi3TiNbO9 Aurivillius phase ceramics. Curr Appl Phys 14:1861–1866CrossRef
10.
Zurück zum Zitat Yan H, Zhang H, Ubic R, Reece MJ, Liu J, Shen ZJ, Zhang Z (2005) A lead-free high-curie-point ferroelectric ceramic, CaBi2Nb2O9. Ad Mater 17:1261–1265CrossRef Yan H, Zhang H, Ubic R, Reece MJ, Liu J, Shen ZJ, Zhang Z (2005) A lead-free high-curie-point ferroelectric ceramic, CaBi2Nb2O9. Ad Mater 17:1261–1265CrossRef
11.
Zurück zum Zitat Zhang SJ, Lee SM, Kim DH, Lee HY, Shrout TR (2007) Characterization of high single crystals fabricated by solid state crystal growth. Appl Phys Lett 90:232911CrossRef Zhang SJ, Lee SM, Kim DH, Lee HY, Shrout TR (2007) Characterization of high single crystals fabricated by solid state crystal growth. Appl Phys Lett 90:232911CrossRef
12.
Zurück zum Zitat Wang RP, Wang K, Yao FZ, Li JF, Schader FH, Webber KG, Jo W, Rödel J (2015) Temperature stability of lead-free niobate piezoceramics with engineered morphotropic phase boundary. J Am Ceram Soc 98:2177–2182CrossRef Wang RP, Wang K, Yao FZ, Li JF, Schader FH, Webber KG, Jo W, Rödel J (2015) Temperature stability of lead-free niobate piezoceramics with engineered morphotropic phase boundary. J Am Ceram Soc 98:2177–2182CrossRef
13.
Zurück zum Zitat Hiruma Y, Nagata H, Takenaka T (2009) Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics. J Appl Phys 105:084112CrossRef Hiruma Y, Nagata H, Takenaka T (2009) Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics. J Appl Phys 105:084112CrossRef
14.
Zurück zum Zitat Liu WF, Ren XB (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Ltter 103:257602CrossRef Liu WF, Ren XB (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Ltter 103:257602CrossRef
15.
Zurück zum Zitat Rojac T, Makarovic M, Walker J, Ursic H, Damjanovic D, Kos T (2016) Piezoelectric response of BiFeO3 ceramics at elevated temperatures. Appl Phys Lett 109:042904CrossRef Rojac T, Makarovic M, Walker J, Ursic H, Damjanovic D, Kos T (2016) Piezoelectric response of BiFeO3 ceramics at elevated temperatures. Appl Phys Lett 109:042904CrossRef
16.
Zurück zum Zitat Wang DW, Khesro A, Murakamia S, Feteira A, Zhao QL, Reaney IM (2017) Temperature dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics. J Eur Ceram Soc 37:1857–1860CrossRef Wang DW, Khesro A, Murakamia S, Feteira A, Zhao QL, Reaney IM (2017) Temperature dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics. J Eur Ceram Soc 37:1857–1860CrossRef
17.
Zurück zum Zitat Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432:84–87CrossRef Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432:84–87CrossRef
18.
Zurück zum Zitat Xue DZ, Zhou YM, Bao HX, Gao JH, Zhou C, Ren XB (2011) Large piezoelectric effect in Pb-free Ba(Ti,Sn)O3-x(Ba,Ca)TiO3 ceramics. Appl Phys Lett 99:122901CrossRef Xue DZ, Zhou YM, Bao HX, Gao JH, Zhou C, Ren XB (2011) Large piezoelectric effect in Pb-free Ba(Ti,Sn)O3-x(Ba,Ca)TiO3 ceramics. Appl Phys Lett 99:122901CrossRef
19.
Zurück zum Zitat Ma C, Tan X (2011) In situ transmission electron microscopy study on the phase transitions in lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics. J Am Ceram Soc 94:4040–4044CrossRef Ma C, Tan X (2011) In situ transmission electron microscopy study on the phase transitions in lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics. J Am Ceram Soc 94:4040–4044CrossRef
20.
Zurück zum Zitat Zhang ST, Kounga AB, Aulbach E, Deng Y (2008) Temperature-dependent electrical properties of 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics. J Am Ceram Soc 91:3950–3954CrossRef Zhang ST, Kounga AB, Aulbach E, Deng Y (2008) Temperature-dependent electrical properties of 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics. J Am Ceram Soc 91:3950–3954CrossRef
21.
Zurück zum Zitat Zheng T, Wu HJ, Yuan Y, Lv X, Li Q, Men TL, Zhao CL, Xiao DQ, Wu JG, Wang K, Li JF, Gu YL, Zhu JG, Pennycook SJ (2017) The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energ Environ Sci 10:528–537CrossRef Zheng T, Wu HJ, Yuan Y, Lv X, Li Q, Men TL, Zhao CL, Xiao DQ, Wu JG, Wang K, Li JF, Gu YL, Zhu JG, Pennycook SJ (2017) The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energ Environ Sci 10:528–537CrossRef
22.
Zurück zum Zitat Fancher CM, Jo W, RödelJ Blendell JE, Bowman KJ (2014) Effect of texture on temperature-dependent properties of K0.5Na0.5NbO3 modified Bi1/2Na1/2TiO3-xBaTiO3. J Am Ceram Soc 97:2557–2563CrossRef Fancher CM, Jo W, RödelJ Blendell JE, Bowman KJ (2014) Effect of texture on temperature-dependent properties of K0.5Na0.5NbO3 modified Bi1/2Na1/2TiO3-xBaTiO3. J Am Ceram Soc 97:2557–2563CrossRef
23.
Zurück zum Zitat Zhang SJ, Xia R, Shrout TR (2007) Modified K0.5Na0.5NbO3 based lead-free piezoelectrics with broad temperature usage range. Appl Phys Lett 91:132913CrossRef Zhang SJ, Xia R, Shrout TR (2007) Modified K0.5Na0.5NbO3 based lead-free piezoelectrics with broad temperature usage range. Appl Phys Lett 91:132913CrossRef
24.
Zurück zum Zitat Zhang J, Pan Z, Guo FF, Liu WC, Ning HP, Chen YB, Lu MH, Yang B, Chen J, Zhang ST, Xing XR, Rödel J, Cao WW, Chen YF (2015) Semiconductor/relaxor 0-3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics. Nat Commun 6(03) Zhang J, Pan Z, Guo FF, Liu WC, Ning HP, Chen YB, Lu MH, Yang B, Chen J, Zhang ST, Xing XR, Rödel J, Cao WW, Chen YF (2015) Semiconductor/relaxor 0-3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics. Nat Commun 6(03)
25.
Zurück zum Zitat Yu J, Chu S, Song X, Gao H, Pan J, Hao J (2017) Temperature-insensitive strain behavior in 0.99[(1-x)Bi0.5(Na0.80K0.20)0.5TiO3-xBiFeO3]-0.01Ta lead-free piezoelectric ceramics. Int J Appl Ceram Tech 14:623–629CrossRef Yu J, Chu S, Song X, Gao H, Pan J, Hao J (2017) Temperature-insensitive strain behavior in 0.99[(1-x)Bi0.5(Na0.80K0.20)0.5TiO3-xBiFeO3]-0.01Ta lead-free piezoelectric ceramics. Int J Appl Ceram Tech 14:623–629CrossRef
26.
Zurück zum Zitat Malik RA, Hussain A, Maqbool A, Zaman A, Ahn C, Rahman JU, Song T, Kim W, Kim M (2015) Temperature-insensitive high strain in lead-free Bi0.5 (Na0.84K0.16)0.5TiO3-0.04SrTiO3 ceramics for actuator applications. J Am Ceram Soc 98:3842–3848CrossRef Malik RA, Hussain A, Maqbool A, Zaman A, Ahn C, Rahman JU, Song T, Kim W, Kim M (2015) Temperature-insensitive high strain in lead-free Bi0.5 (Na0.84K0.16)0.5TiO3-0.04SrTiO3 ceramics for actuator applications. J Am Ceram Soc 98:3842–3848CrossRef
27.
Zurück zum Zitat Yao Z, Wang K, Jo W, Webber G, Comyn P, Ding X, Li F (2016) Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics. Adv Funct Mater 26:1217–1224CrossRef Yao Z, Wang K, Jo W, Webber G, Comyn P, Ding X, Li F (2016) Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics. Adv Funct Mater 26:1217–1224CrossRef
28.
Zurück zum Zitat Rödel J, Jo W, Seifert K, Anton EM, Granzow T, Damjanovic D (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 89:1153–1177CrossRef Rödel J, Jo W, Seifert K, Anton EM, Granzow T, Damjanovic D (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 89:1153–1177CrossRef
29.
Zurück zum Zitat Shrout TR, Zhang ST (2007) Lead-free piezoelectric ceramics: alternatives for PZT. J Electroceram 19:111–124CrossRef Shrout TR, Zhang ST (2007) Lead-free piezoelectric ceramics: alternatives for PZT. J Electroceram 19:111–124CrossRef
30.
Zurück zum Zitat Wu J, Xiao D, Zhu J (2015) Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 115:2559–2595CrossRef Wu J, Xiao D, Zhu J (2015) Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 115:2559–2595CrossRef
31.
Zurück zum Zitat Zhang ST, Kounga AB, Aulbach E (2007) Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Appl Phys Lett 91:112906CrossRef Zhang ST, Kounga AB, Aulbach E (2007) Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Appl Phys Lett 91:112906CrossRef
32.
Zurück zum Zitat Lee MH, Kim DJ, Park JS, Kim SW, Song TK, Kim MH, Kim WJ, Do D, Jeong IK (2015) High-performance lead-free piezoceramics with high curie temperatures. Adv Mater 27:6976–6982CrossRef Lee MH, Kim DJ, Park JS, Kim SW, Song TK, Kim MH, Kim WJ, Do D, Jeong IK (2015) High-performance lead-free piezoceramics with high curie temperatures. Adv Mater 27:6976–6982CrossRef
33.
Zurück zum Zitat Takeuchi T, Tani T, Saito Y (1999) Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with a preferred orientation processed by the reactive templated grain growth method. Jpn J Appl Phys 38:5553–5556CrossRef Takeuchi T, Tani T, Saito Y (1999) Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with a preferred orientation processed by the reactive templated grain growth method. Jpn J Appl Phys 38:5553–5556CrossRef
34.
Zurück zum Zitat Wang XP, Wu JG, Xiao DQ, Zhu JG, Cheng XJ, Zheng T, Zhang BY, Lou XJ, Wang XJ (2014) Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. J Am Chem Soc 136:2905–2910CrossRef Wang XP, Wu JG, Xiao DQ, Zhu JG, Cheng XJ, Zheng T, Zhang BY, Lou XJ, Wang XJ (2014) Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. J Am Chem Soc 136:2905–2910CrossRef
35.
Zurück zum Zitat Xu K, Li J, Lv X, Wu JG, Zhang XX, Xiao DQ, Zhu JG (2016) Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics. Adv Mater 28:8519–8523CrossRef Xu K, Li J, Lv X, Wu JG, Zhang XX, Xiao DQ, Zhu JG (2016) Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics. Adv Mater 28:8519–8523CrossRef
36.
Zurück zum Zitat Zuo RZ, Ye C, Fang XS (2007) Dielectric and piezoelectric properties of lead free Na0.5K0.5NbO3-BiScO3 ceramics. Jpn J Appl Phys 46:6733–6736CrossRef Zuo RZ, Ye C, Fang XS (2007) Dielectric and piezoelectric properties of lead free Na0.5K0.5NbO3-BiScO3 ceramics. Jpn J Appl Phys 46:6733–6736CrossRef
37.
Zurück zum Zitat Liang W, Wu W, Xiao DQ, Zhu JG (2011) Effect of the addition of CaZrO3 and LiNbO3 on the phase transitions and piezoelectric properties of K0.5Na0.5NbO3 lead-free ceramics. J Am Ceram Soc 94:4317–4322CrossRef Liang W, Wu W, Xiao DQ, Zhu JG (2011) Effect of the addition of CaZrO3 and LiNbO3 on the phase transitions and piezoelectric properties of K0.5Na0.5NbO3 lead-free ceramics. J Am Ceram Soc 94:4317–4322CrossRef
38.
Zurück zum Zitat Guo YP, Kakimoto KI, Ohsato H (2004) Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3(Na0.5K0.5)NbO3-LiNbO3 ceramics. Appl Phys Lett 85:4121CrossRef Guo YP, Kakimoto KI, Ohsato H (2004) Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3(Na0.5K0.5)NbO3-LiNbO3 ceramics. Appl Phys Lett 85:4121CrossRef
39.
Zurück zum Zitat Wu JG, Wang YY, Xiao DQ, Zhu JG, Yu P, Wu L, Wu WJ (2007) Piezoelectric properties of LiSbO3-modified (K0.48Na0.52)NbO3 lead-free ceramics. Jpn J Appl Phys 46:7375CrossRef Wu JG, Wang YY, Xiao DQ, Zhu JG, Yu P, Wu L, Wu WJ (2007) Piezoelectric properties of LiSbO3-modified (K0.48Na0.52)NbO3 lead-free ceramics. Jpn J Appl Phys 46:7375CrossRef
40.
Zurück zum Zitat Lv X, Wu J, Yang S, Xiao D, Zhu J (2016) Identification of phase boundaries and electrical properties in ternary potassium-sodium niobate-based ceramics. ACS Appl Mater Interfaces 8:18943–18953CrossRef Lv X, Wu J, Yang S, Xiao D, Zhu J (2016) Identification of phase boundaries and electrical properties in ternary potassium-sodium niobate-based ceramics. ACS Appl Mater Interfaces 8:18943–18953CrossRef
41.
Zurück zum Zitat Li FL, Tan Z, Xing J, Jiang LM, Wu B, Wu JG, Xiao DQ, Zhu JG (2017) Investigation of new lead free (1-x)KNNS-xBKZH piezoceramics with R-O-T phase boundary. J Mater Sci: Mater Electron 28:8803–8809 Li FL, Tan Z, Xing J, Jiang LM, Wu B, Wu JG, Xiao DQ, Zhu JG (2017) Investigation of new lead free (1-x)KNNS-xBKZH piezoceramics with R-O-T phase boundary. J Mater Sci: Mater Electron 28:8803–8809
42.
Zurück zum Zitat Wu B, Wu H, Wu J, Xiao D, Zhu J, Pennycook J (2016) Giant piezoelectricity and high curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence. J Am Chem Soc 138:15459–15464CrossRef Wu B, Wu H, Wu J, Xiao D, Zhu J, Pennycook J (2016) Giant piezoelectricity and high curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence. J Am Chem Soc 138:15459–15464CrossRef
43.
Zurück zum Zitat Zhao CL, Wang H, Xiong J, Wu JG (2016) Composition-driven phase boundary and electrical properties in (Ba0.94Ca0.06)(Ti1–xMx)O3 (M = Sn, Hf, Zr) lead-free ceramics. Dalton Trans 45:6466–6480CrossRef Zhao CL, Wang H, Xiong J, Wu JG (2016) Composition-driven phase boundary and electrical properties in (Ba0.94Ca0.06)(Ti1–xMx)O3 (M = Sn, Hf, Zr) lead-free ceramics. Dalton Trans 45:6466–6480CrossRef
44.
Zurück zum Zitat Acosta M, Novak N, Jo W, Rodel J (2014) Relationship between electromechanical properties and phase diagram in the Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 lead-free piezoceramic. Acta Mater 80:48–55CrossRef Acosta M, Novak N, Jo W, Rodel J (2014) Relationship between electromechanical properties and phase diagram in the Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 lead-free piezoceramic. Acta Mater 80:48–55CrossRef
45.
Zurück zum Zitat Zhu LF, Zhang BP, Zhao XK, Zhao L, Zhou PF, Li JF (2013) Enhanced piezoelectric properties of (Ba1−xCax)(Ti0.92Sn0.08)O3 lead-free ceramics. J Am Ceram Soc 96:241–245CrossRef Zhu LF, Zhang BP, Zhao XK, Zhao L, Zhou PF, Li JF (2013) Enhanced piezoelectric properties of (Ba1−xCax)(Ti0.92Sn0.08)O3 lead-free ceramics. J Am Ceram Soc 96:241–245CrossRef
46.
Zurück zum Zitat Zheng T, Wu JG (2016) Quenched bismuth ferrite-barium titanate lead-free piezoelectric ceramics. J Alloy Compd 676:505–512CrossRef Zheng T, Wu JG (2016) Quenched bismuth ferrite-barium titanate lead-free piezoelectric ceramics. J Alloy Compd 676:505–512CrossRef
47.
Zurück zum Zitat Zhao CL, Wu JG, Wang H, Wu JG (2016) Site engineering and polarization characteristics in (Ba1-yCay)(Ti1-xHfx)O3 lead-free ceramics. J Appl Phys 119:024108CrossRef Zhao CL, Wu JG, Wang H, Wu JG (2016) Site engineering and polarization characteristics in (Ba1-yCay)(Ti1-xHfx)O3 lead-free ceramics. J Appl Phys 119:024108CrossRef
48.
Zurück zum Zitat Jo W, Dittmer R, Acosta M, Zang JD, Groh C, Sapper E, Wang K, Rödel J (2012) Giant electric-field-induced strains in lead-free ceramics for actuator applications-status and perspective. J Electroceram 29:71–93CrossRef Jo W, Dittmer R, Acosta M, Zang JD, Groh C, Sapper E, Wang K, Rödel J (2012) Giant electric-field-induced strains in lead-free ceramics for actuator applications-status and perspective. J Electroceram 29:71–93CrossRef
49.
Zurück zum Zitat Lin DM, Zheng QJ, Xu CG, Kwok KW (2008) Structure, electrical properties and temperature characteristics of Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3-Bi0.5Li0.5TiO3 lead-free piezoelectric ceramics. Appl Phys A 93:549–558CrossRef Lin DM, Zheng QJ, Xu CG, Kwok KW (2008) Structure, electrical properties and temperature characteristics of Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3-Bi0.5Li0.5TiO3 lead-free piezoelectric ceramics. Appl Phys A 93:549–558CrossRef
50.
Zurück zum Zitat Zhang ST, Yang B, Cao WW (2012) The temperature-dependent electrical properties of Bi0.5Na0.5TiO3-BaTiO3-Bi0.5K0.5TiO3 near the mor-photropic phase boundary. Acta Mater 60:469–475CrossRef Zhang ST, Yang B, Cao WW (2012) The temperature-dependent electrical properties of Bi0.5Na0.5TiO3-BaTiO3-Bi0.5K0.5TiO3 near the mor-photropic phase boundary. Acta Mater 60:469–475CrossRef
51.
Zurück zum Zitat Jo W, Gronzow T, Aulbah E, Rodel J, Damjanovic D (2009) Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoceramics. J Appl Phys 105:09413302CrossRef Jo W, Gronzow T, Aulbah E, Rodel J, Damjanovic D (2009) Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoceramics. J Appl Phys 105:09413302CrossRef
52.
Zurück zum Zitat Zhang J, Pan Z, Guo FF, Liu WC, Ning HP, Chen YB, Lu MH, Yang B, Chen J, Zhang ST, Xing XR, Rodel J, Cao WW, Chen YF (2015) Semiconductor/relaxor 0–3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics. Nat Commun 6:6615CrossRef Zhang J, Pan Z, Guo FF, Liu WC, Ning HP, Chen YB, Lu MH, Yang B, Chen J, Zhang ST, Xing XR, Rodel J, Cao WW, Chen YF (2015) Semiconductor/relaxor 0–3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics. Nat Commun 6:6615CrossRef
53.
Zurück zum Zitat Liu XM, Tan XL (2016) Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv Mater 28:574–578CrossRef Liu XM, Tan XL (2016) Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv Mater 28:574–578CrossRef
54.
Zurück zum Zitat Xue F, Liang L, Gu L, Takeuchi I, Kalinin SV, Chen LQ (2015) Composition- and pressure-induced ferroelectric to antiferroelectric phase transitions in Sm-doped BiFeO3 system. Appl Phys Lett 106:012903CrossRef Xue F, Liang L, Gu L, Takeuchi I, Kalinin SV, Chen LQ (2015) Composition- and pressure-induced ferroelectric to antiferroelectric phase transitions in Sm-doped BiFeO3 system. Appl Phys Lett 106:012903CrossRef
55.
Zurück zum Zitat Troyanchuk IO, Karpinsky DV, Bushinsky MV, Khomchenko VA, Kakazei GN, Araujo JP, Tovar M, Sikolenko V, Efimov V, Kholkin AL (2011) Isothermal structure transitions, magnetization and large piezoelectric response in Bi1-xLaxFeO3 perovskites. Phys Rev B 83:054109CrossRef Troyanchuk IO, Karpinsky DV, Bushinsky MV, Khomchenko VA, Kakazei GN, Araujo JP, Tovar M, Sikolenko V, Efimov V, Kholkin AL (2011) Isothermal structure transitions, magnetization and large piezoelectric response in Bi1-xLaxFeO3 perovskites. Phys Rev B 83:054109CrossRef
56.
Zurück zum Zitat Jin L, Li F, Zhang SJ (2014) Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J Am Ceram Soc 1:1–27CrossRef Jin L, Li F, Zhang SJ (2014) Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J Am Ceram Soc 1:1–27CrossRef
57.
Zurück zum Zitat Serhiy OL, Richard EE (2009) Dielectric and piezoelectric properties in Mn-modified (1-x)BiFeO3-xBaTiO3 ceramics. J Am Ceram Soc 92:2957–2961CrossRef Serhiy OL, Richard EE (2009) Dielectric and piezoelectric properties in Mn-modified (1-x)BiFeO3-xBaTiO3 ceramics. J Am Ceram Soc 92:2957–2961CrossRef
58.
Zurück zum Zitat Zhou Q, Zhou CR, Yang HB, Chen GH, Li WZ, Wang H (2012) Dielectric, ferroelectric, and piezoelectric properties of Bi(Ni1/2Ti1/2)O3-Modified BiFeO3-BaTiO3 ceramics with high curie temperature. J Am Ceram Soc 95:3889–3893CrossRef Zhou Q, Zhou CR, Yang HB, Chen GH, Li WZ, Wang H (2012) Dielectric, ferroelectric, and piezoelectric properties of Bi(Ni1/2Ti1/2)O3-Modified BiFeO3-BaTiO3 ceramics with high curie temperature. J Am Ceram Soc 95:3889–3893CrossRef
59.
Zurück zum Zitat Wei YX, Wang XT, Zhu JT, Wang XL, Jia JJ (2013) Dielectric, ferroelectric, and piezoelectric properties of BiFeO3-BaTiO3 ceramics. J Am Ceram Soc 96:3163–3168 Wei YX, Wang XT, Zhu JT, Wang XL, Jia JJ (2013) Dielectric, ferroelectric, and piezoelectric properties of BiFeO3-BaTiO3 ceramics. J Am Ceram Soc 96:3163–3168
60.
Zurück zum Zitat Zheng T, Ding Y, Wu JG (2017) Effects of oxide additives on structure and properties of bismuth ferrite-based ceramics. J Mater Sci 28:11534–11542 Zheng T, Ding Y, Wu JG (2017) Effects of oxide additives on structure and properties of bismuth ferrite-based ceramics. J Mater Sci 28:11534–11542
61.
Zurück zum Zitat Wei YX, Wang XT, Jia JJ, Wang XL (2012) Multiferroic and piezoelectric properties of 0.65BiFeO3-0.35BaTiO3 ceramic with pseudo-cubic symmetry. Ceram Int 38:3499–3502CrossRef Wei YX, Wang XT, Jia JJ, Wang XL (2012) Multiferroic and piezoelectric properties of 0.65BiFeO3-0.35BaTiO3 ceramic with pseudo-cubic symmetry. Ceram Int 38:3499–3502CrossRef
62.
Zurück zum Zitat Cai K, Huang CC, Guo D (2017) Signifcantly enhanced piezoelectricity in low-temperature sintered Aurivillius-type ceramics with ultrahigh Curie temperature of 800 °C. J Phys D Appl Phys 50:155302CrossRef Cai K, Huang CC, Guo D (2017) Signifcantly enhanced piezoelectricity in low-temperature sintered Aurivillius-type ceramics with ultrahigh Curie temperature of 800 °C. J Phys D Appl Phys 50:155302CrossRef
63.
Zurück zum Zitat Shen ZY, Sun HJ, Tang YX, Li YM, Zhang SJ (2015) Enhanced piezoelectric properties of Nb and Mn co-doped CaBi4Ti4O15 high temperature piezoceramics. Mater Res Bull 63:129–133CrossRef Shen ZY, Sun HJ, Tang YX, Li YM, Zhang SJ (2015) Enhanced piezoelectric properties of Nb and Mn co-doped CaBi4Ti4O15 high temperature piezoceramics. Mater Res Bull 63:129–133CrossRef
64.
Zurück zum Zitat Noguchi Y, Miyayama M, Kudo T (2000) Ferroelectric properties of intergrowth Bi4Ti3O12-SrBi4Ti4O15 ceramics. Appl Phys Lett 77:3639–3641CrossRef Noguchi Y, Miyayama M, Kudo T (2000) Ferroelectric properties of intergrowth Bi4Ti3O12-SrBi4Ti4O15 ceramics. Appl Phys Lett 77:3639–3641CrossRef
65.
Zurück zum Zitat Tam WK, Kwok KW, Zeng JY, Chan HLW (2007) Fabrication of textured BNKL ceramics by reactive templated grain growth using NBT templates. J Phys D Appl Phys 41:670–672 Tam WK, Kwok KW, Zeng JY, Chan HLW (2007) Fabrication of textured BNKL ceramics by reactive templated grain growth using NBT templates. J Phys D Appl Phys 41:670–672
66.
Zurück zum Zitat Long CB, Fan HQ, Li MM, Ren PR, Cai Y (2013) A candidate for lead-free ultrahigh-temperature piezoelectrics: the excellent electro-mechanical properties of Aurivillius oxides, Ca1-5xLi2xNd2x-xBi2Nb2-2xScxWxO9-1.5x. Cryst Eng Comm 15:10212–10221CrossRef Long CB, Fan HQ, Li MM, Ren PR, Cai Y (2013) A candidate for lead-free ultrahigh-temperature piezoelectrics: the excellent electro-mechanical properties of Aurivillius oxides, Ca1-5xLi2xNd2x-xBi2Nb2-2xScxWxO9-1.5x. Cryst Eng Comm 15:10212–10221CrossRef
67.
Zurück zum Zitat Nagata N, Takenaka T (2002) Piezoelectricity properties of bismuth layer-structure ferroelectric ceramics with Sr-Bi-Ti-Ta system. Ferrroelectric 273:359–364CrossRef Nagata N, Takenaka T (2002) Piezoelectricity properties of bismuth layer-structure ferroelectric ceramics with Sr-Bi-Ti-Ta system. Ferrroelectric 273:359–364CrossRef
68.
Zurück zum Zitat Chen J, Yuan J, Bao SM, Wu YJ, Liu G, Chen Q, Xiao DQ, Zhu JG (2017) Effects of (Li, Ce, Y) co-substitution on the properties of CaBi2Nb2O9 high temperature piezoceramics. Ceram Int 43:5002–5006CrossRef Chen J, Yuan J, Bao SM, Wu YJ, Liu G, Chen Q, Xiao DQ, Zhu JG (2017) Effects of (Li, Ce, Y) co-substitution on the properties of CaBi2Nb2O9 high temperature piezoceramics. Ceram Int 43:5002–5006CrossRef
69.
Zurück zum Zitat Wu HZ, Wang CM, Guo ZL, Zhao TL, Wang YM (2015) Enhanced piezoelectric properties of Aurivillius-type sodium lanthanum bismuth titanate (Na0.5La0.5Bi4Ti4O15) by B-site manganese modification. Ceram Int 41:5492–5497CrossRef Wu HZ, Wang CM, Guo ZL, Zhao TL, Wang YM (2015) Enhanced piezoelectric properties of Aurivillius-type sodium lanthanum bismuth titanate (Na0.5La0.5Bi4Ti4O15) by B-site manganese modification. Ceram Int 41:5492–5497CrossRef
70.
Zurück zum Zitat Chen HB, Zhai JW (2012) Enhanced piezoelectric properties of CaBi2Nb2O9 with Eu modification and templated grain growth. Key Eng Mater 512–515:1367–1371CrossRef Chen HB, Zhai JW (2012) Enhanced piezoelectric properties of CaBi2Nb2O9 with Eu modification and templated grain growth. Key Eng Mater 512–515:1367–1371CrossRef
71.
Zurück zum Zitat Zhao TL, Wang CM, Wang CL, Wang YM, Dong SX (2015) Enhanced piezoelectric properties and excellent thermal stabilities of cobalt-modified Aurivillius-type calcium bismuth titanate (CaBi4Ti4O15). Mater Sci Eng, B 201:51–56CrossRef Zhao TL, Wang CM, Wang CL, Wang YM, Dong SX (2015) Enhanced piezoelectric properties and excellent thermal stabilities of cobalt-modified Aurivillius-type calcium bismuth titanate (CaBi4Ti4O15). Mater Sci Eng, B 201:51–56CrossRef
72.
Zurück zum Zitat Long CB, Fan HQ, Ren PR (2013) Structure, phase transition behaviors and electrical properties of Nd substituted Aurivillius polycrystallines Na0.5NdxBi2.5-xNb2O9 (x = 0.1, 0.2, 0.3, and 0.5). Inorg Chem 52:5045–5054CrossRef Long CB, Fan HQ, Ren PR (2013) Structure, phase transition behaviors and electrical properties of Nd substituted Aurivillius polycrystallines Na0.5NdxBi2.5-xNb2O9 (x = 0.1, 0.2, 0.3, and 0.5). Inorg Chem 52:5045–5054CrossRef
73.
Zurück zum Zitat Valant M (2012) Electrocaloric materials for future solid-state refrigeration technologies. Prog Mater Sci 57:980–1009CrossRef Valant M (2012) Electrocaloric materials for future solid-state refrigeration technologies. Prog Mater Sci 57:980–1009CrossRef
74.
Zurück zum Zitat Ožbolt M, Kitanovski A, Tušek J, Poredoš A (2014) Electrocaloric refrigeration: thermodynamics, state of the art and future perspectives. Int J Refrigeration 40:174–188CrossRef Ožbolt M, Kitanovski A, Tušek J, Poredoš A (2014) Electrocaloric refrigeration: thermodynamics, state of the art and future perspectives. Int J Refrigeration 40:174–188CrossRef
75.
Zurück zum Zitat Kutnjak Z, Rožič B, Pirc R (2015) Electrocaloric effect: theory, measurements, and applications. Wiley, New York Kutnjak Z, Rožič B, Pirc R (2015) Electrocaloric effect: theory, measurements, and applications. Wiley, New York
76.
Zurück zum Zitat Le Florian G (2013) Electrocaloric effect in ferroelectric relaxors: the road to solid-state cooling. Materials Ph.D., theses (Imperial College London) Le Florian G (2013) Electrocaloric effect in ferroelectric relaxors: the road to solid-state cooling. Materials Ph.D., theses (Imperial College London)
77.
Zurück zum Zitat Ponomareva I, Lisenkov S (2012) Bridging the macroscopic and atomistic descriptions of the electrocaloric effect. Phys Rev Lett 108:167604CrossRef Ponomareva I, Lisenkov S (2012) Bridging the macroscopic and atomistic descriptions of the electrocaloric effect. Phys Rev Lett 108:167604CrossRef
78.
Zurück zum Zitat Wang X, Wu J, Dkhil B, Xu B, Wang X, Dong G, Yang G, Lou X (2017) Enhanced electrocaloric effect near polymorphic phase boundary in lead-free potassium sodium niobate ceramics. App Phys Lett 110:063904CrossRef Wang X, Wu J, Dkhil B, Xu B, Wang X, Dong G, Yang G, Lou X (2017) Enhanced electrocaloric effect near polymorphic phase boundary in lead-free potassium sodium niobate ceramics. App Phys Lett 110:063904CrossRef
79.
Zurück zum Zitat Qian XS, Ye HJ, Zhang YT, Gu H, Li X, Randall CA, Zhang QM (2014) Giant electrocaloric response over a broad temperature range in modified BaTiO3 ceramics. Adv Funct Mater 24:1300–1305CrossRef Qian XS, Ye HJ, Zhang YT, Gu H, Li X, Randall CA, Zhang QM (2014) Giant electrocaloric response over a broad temperature range in modified BaTiO3 ceramics. Adv Funct Mater 24:1300–1305CrossRef
80.
Zurück zum Zitat Sanlialp M, Molin C, Shvartsman V-V, Gebhardt S, Lupascu D-C (2016) Modified differential scanning calorimeter for direct electrocaloric measurements. IEEE Trans Ultrason Ferroelectr Freq Control 63:1690–1696CrossRef Sanlialp M, Molin C, Shvartsman V-V, Gebhardt S, Lupascu D-C (2016) Modified differential scanning calorimeter for direct electrocaloric measurements. IEEE Trans Ultrason Ferroelectr Freq Control 63:1690–1696CrossRef
81.
Zurück zum Zitat Li F, Chen G, Liu X, Zhai J, Shen B, Li S, Li P, Yang K, Zeng H, Yan H (2017) Type–I pseudo–first–order phase transition induced electrocaloric effect in lead–free Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics. Appl Phys Lett 110:182904CrossRef Li F, Chen G, Liu X, Zhai J, Shen B, Li S, Li P, Yang K, Zeng H, Yan H (2017) Type–I pseudo–first–order phase transition induced electrocaloric effect in lead–free Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics. Appl Phys Lett 110:182904CrossRef
82.
Zurück zum Zitat Liu XQ, Chen TT, Fu MS, Wu YJ, Chen XM (2014) Electrocaloric effects in spark plasma sintered Ba0.7Sr0.3TiO3-based ceramics: effects of domain sizes and phase constitution. Ceram Int 40:11269–11276CrossRef Liu XQ, Chen TT, Fu MS, Wu YJ, Chen XM (2014) Electrocaloric effects in spark plasma sintered Ba0.7Sr0.3TiO3-based ceramics: effects of domain sizes and phase constitution. Ceram Int 40:11269–11276CrossRef
83.
Zurück zum Zitat Xiao QL, Chen TT, Yong JW, Xiang MC (2013) Enhanced electrocaloric effects in spark plasma-sintered Ba0.65Sr0.35TiO3-based ceramics at room temperature. J Am Ceram Soc 96:1021–1023CrossRef Xiao QL, Chen TT, Yong JW, Xiang MC (2013) Enhanced electrocaloric effects in spark plasma-sintered Ba0.65Sr0.35TiO3-based ceramics at room temperature. J Am Ceram Soc 96:1021–1023CrossRef
84.
Zurück zum Zitat Ding K, Zheng GP (2014) Scaling for the refrigeration effects in lead-free barium titanate based ferroelectric ceramics. J Electroceram 32:169–174CrossRef Ding K, Zheng GP (2014) Scaling for the refrigeration effects in lead-free barium titanate based ferroelectric ceramics. J Electroceram 32:169–174CrossRef
85.
Zurück zum Zitat Zhao L, Liu Q, Zhang S, Li JF (2016) Lead-free AgNbO3 anti-ferroelectric ceramics with an enhanced energy storage performance using MnO2 modification. J Mater Chem C 4:8380–8384CrossRef Zhao L, Liu Q, Zhang S, Li JF (2016) Lead-free AgNbO3 anti-ferroelectric ceramics with an enhanced energy storage performance using MnO2 modification. J Mater Chem C 4:8380–8384CrossRef
86.
Zurück zum Zitat Tian Y, Jin L, Zhang HF, Xu Z, Wei XY, Politova ED, Stefanovich SY, Tarakina NV, Abrahamsc I, Yan HX (2016) High energy density in silver niobate ceramics. J Mater Chem A 4:17279CrossRef Tian Y, Jin L, Zhang HF, Xu Z, Wei XY, Politova ED, Stefanovich SY, Tarakina NV, Abrahamsc I, Yan HX (2016) High energy density in silver niobate ceramics. J Mater Chem A 4:17279CrossRef
87.
Zurück zum Zitat Hao J, Xu Z, Chu R, Li W, Juan D, Peng F (2015) Enhanced energy-storage properties of (1-x)[(1-y)(Bi0.5Na0.5)TiO3-y(Bi0.5K0.5)TiO3]-x(K0.5Na0.5)NbO3 lead-free ceramics. Solid State Commun 204:19–22CrossRef Hao J, Xu Z, Chu R, Li W, Juan D, Peng F (2015) Enhanced energy-storage properties of (1-x)[(1-y)(Bi0.5Na0.5)TiO3-y(Bi0.5K0.5)TiO3]-x(K0.5Na0.5)NbO3 lead-free ceramics. Solid State Commun 204:19–22CrossRef
88.
Zurück zum Zitat Gao F, Dong XL, Mao CL, Liu W, Zhang HL, Yang LH, Cao F, Wang GS (2011) Energy-storage properties of 0.89Bi0.5Na0.5TiO3-0.06BaTiO3-0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics. J Am Ceram Soc 94:4382–4386CrossRef Gao F, Dong XL, Mao CL, Liu W, Zhang HL, Yang LH, Cao F, Wang GS (2011) Energy-storage properties of 0.89Bi0.5Na0.5TiO3-0.06BaTiO3-0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics. J Am Ceram Soc 94:4382–4386CrossRef
89.
Zurück zum Zitat Yang ZT, Du HL, Qu SB, Hou YD, Ma H, Wang JF, Wang J, Wei XY, Xu Z (2016) Significantly enhanced recoverable energy storage density in potassium-sodium niobate-based lead free ceramics. J Mater Chem A 4:13778–13785CrossRef Yang ZT, Du HL, Qu SB, Hou YD, Ma H, Wang JF, Wang J, Wei XY, Xu Z (2016) Significantly enhanced recoverable energy storage density in potassium-sodium niobate-based lead free ceramics. J Mater Chem A 4:13778–13785CrossRef
90.
Zurück zum Zitat Zheng D, Zuo R, Zhang D, Li Y (2015) Novel BiFeO3-BaTiO3-Ba(Mg1/3Nb2/3)O3 lead-free relaxor ferroelectric ceramics for energy-storage capacitors. J Am Ceram Soc 98:2692–2695CrossRef Zheng D, Zuo R, Zhang D, Li Y (2015) Novel BiFeO3-BaTiO3-Ba(Mg1/3Nb2/3)O3 lead-free relaxor ferroelectric ceramics for energy-storage capacitors. J Am Ceram Soc 98:2692–2695CrossRef
91.
Zurück zum Zitat Wang T, Jin L, Li C, Hu Q, Wei X (2015) Relaxor ferroelectric BaTiO3-Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J Am Ceram Soc 98:559–566CrossRef Wang T, Jin L, Li C, Hu Q, Wei X (2015) Relaxor ferroelectric BaTiO3-Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J Am Ceram Soc 98:559–566CrossRef
92.
Zurück zum Zitat Wang B, Luo L, Jiang X, Li W, Chen H (2014) Energy-storage properties of (1-x)Bi0.47Na0.47Ba0.06TiO3-xKNbO3 lead-free ceramics. J Alloys Compd 585:14–18CrossRef Wang B, Luo L, Jiang X, Li W, Chen H (2014) Energy-storage properties of (1-x)Bi0.47Na0.47Ba0.06TiO3-xKNbO3 lead-free ceramics. J Alloys Compd 585:14–18CrossRef
93.
Zurück zum Zitat Zhang Q, Wang L, Luo J, Tang Q, Du J (2009) Improved energy storage density in barium strontium titanate by addition of BaO-SiO2-B2O3 glass. J Am Ceram Soc 92:1871–1873CrossRef Zhang Q, Wang L, Luo J, Tang Q, Du J (2009) Improved energy storage density in barium strontium titanate by addition of BaO-SiO2-B2O3 glass. J Am Ceram Soc 92:1871–1873CrossRef
94.
Zurück zum Zitat Wang T, Jin L, Tian Y, Shu L, Hu Q, Wei X (2014) Microstructure and ferroelectric properties of Nb2O5-modified BiFeO3-BaTiO3 lead-free ceramics for energy storage. Mater Lett 137:79–81CrossRef Wang T, Jin L, Tian Y, Shu L, Hu Q, Wei X (2014) Microstructure and ferroelectric properties of Nb2O5-modified BiFeO3-BaTiO3 lead-free ceramics for energy storage. Mater Lett 137:79–81CrossRef
95.
Zurück zum Zitat Yin J, Lv X, Wu J (2017) Enhanced energy storage properties of {Bi0.5 [(Na0.8K0.2)1-zLiz]0.5}0.96Sr0.04(Ti1-x-yTaxNby)O3 lead-free ceramics. Ceram Int 43:13541–13546CrossRef Yin J, Lv X, Wu J (2017) Enhanced energy storage properties of {Bi0.5 [(Na0.8K0.2)1-zLiz]0.5}0.96Sr0.04(Ti1-x-yTaxNby)O3 lead-free ceramics. Ceram Int 43:13541–13546CrossRef
96.
Zurück zum Zitat Li F, Jin L, Xu Z, Zhang S (2014) Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity. Appl Phys Rev 1:011103CrossRef Li F, Jin L, Xu Z, Zhang S (2014) Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity. Appl Phys Rev 1:011103CrossRef
97.
Zurück zum Zitat DiAntonio CB, Williams F, Pilgrim SM (2001) The use of harmonic analysis of the strain response in Pb(Mg1/3Nb2/3)O3-based ceramics to calculate electrostrictive coefficients. IEEE Trans Ultrason Ferroelectr Freq Control 48:1532–1538CrossRef DiAntonio CB, Williams F, Pilgrim SM (2001) The use of harmonic analysis of the strain response in Pb(Mg1/3Nb2/3)O3-based ceramics to calculate electrostrictive coefficients. IEEE Trans Ultrason Ferroelectr Freq Control 48:1532–1538CrossRef
98.
Zurück zum Zitat Acosta M, Novak N, Rojas V, Patel S, Vaish R, Koruza J, Rossetti GA, Rödel J (2017) BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl Phys Rev 4:041305CrossRef Acosta M, Novak N, Rojas V, Patel S, Vaish R, Koruza J, Rossetti GA, Rödel J (2017) BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl Phys Rev 4:041305CrossRef
99.
Zurück zum Zitat Jin L, Huo RJ, Guo RP, Li F, Wang DW, Tian Y, Hu QY, Wei XY, He ZB, Yan Y, Liu G (2016) Diffuse phase transitions and giant electrostrictive coefficients in lead-free Fe3+-Doped 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ferroelectric ceramics. ACS Appl Mater Interfaces 8:31109–31119CrossRef Jin L, Huo RJ, Guo RP, Li F, Wang DW, Tian Y, Hu QY, Wei XY, He ZB, Yan Y, Liu G (2016) Diffuse phase transitions and giant electrostrictive coefficients in lead-free Fe3+-Doped 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ferroelectric ceramics. ACS Appl Mater Interfaces 8:31109–31119CrossRef
100.
Zurück zum Zitat Setter N, Cross LE (1980) The role of B-site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics. J Appl Phys 51:4356–4360CrossRef Setter N, Cross LE (1980) The role of B-site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics. J Appl Phys 51:4356–4360CrossRef
101.
Zurück zum Zitat Rauls MB, Dong W, Huber JE, Lynch CS (2011) The effect of temperature on the large field electromechanical response of relaxor ferroelectric 8/65/35 PLZT. Acta Mater 59:2713–2722CrossRef Rauls MB, Dong W, Huber JE, Lynch CS (2011) The effect of temperature on the large field electromechanical response of relaxor ferroelectric 8/65/35 PLZT. Acta Mater 59:2713–2722CrossRef
102.
Zurück zum Zitat Cross LE, Jang SJ, Newnham RE, Nomura S, Uchino K (1980) Large electrostrictive effects in relaxor ferroelectrics. Ferroelectric 23:187–191CrossRef Cross LE, Jang SJ, Newnham RE, Nomura S, Uchino K (1980) Large electrostrictive effects in relaxor ferroelectrics. Ferroelectric 23:187–191CrossRef
103.
Zurück zum Zitat Nye JF (1957) Physical properties of crystals: their representation by tensors and matrices. Oxford University Press, New York Nye JF (1957) Physical properties of crystals: their representation by tensors and matrices. Oxford University Press, New York
104.
Zurück zum Zitat Li F, Jin L, Xu Z, Wang DW, Zhang SJ (2013) Electrostrictive effect in Pb (Mg1/3Nb2/3)O3-xPbTiO3 crystals. Appl Phys Lett 102:152910CrossRef Li F, Jin L, Xu Z, Wang DW, Zhang SJ (2013) Electrostrictive effect in Pb (Mg1/3Nb2/3)O3-xPbTiO3 crystals. Appl Phys Lett 102:152910CrossRef
105.
Zurück zum Zitat Han HS, Jo W, Kang JK, Chang WA, Kim LW, Ahn KK, Lee JS (2013) Incipient piezoelectrics and electrostriction behavior in Sn-doped Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics. J Appl Phys 113:154102CrossRef Han HS, Jo W, Kang JK, Chang WA, Kim LW, Ahn KK, Lee JS (2013) Incipient piezoelectrics and electrostriction behavior in Sn-doped Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics. J Appl Phys 113:154102CrossRef
106.
Zurück zum Zitat Hao JG, Xu ZJ, Chu RQ, Li W, Du J (2015) Lead-free electrostrictive (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3-(K0.5Na0.5)NbO3 ceramics with good thermostability and fatigue-free behavior. J Mater Sci 50:5328–5336CrossRef Hao JG, Xu ZJ, Chu RQ, Li W, Du J (2015) Lead-free electrostrictive (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3-(K0.5Na0.5)NbO3 ceramics with good thermostability and fatigue-free behavior. J Mater Sci 50:5328–5336CrossRef
107.
Zurück zum Zitat Tran VDN, Dinh TH, Han HS, Jo W, Lee JS (2013) Lead-free Bi1/2(Na0.82K0.18)1/2TiO3 relaxor ferroelectrics with temperature insensitive electrostrictive coefficient. Ceram Int 39:S119–S124CrossRef Tran VDN, Dinh TH, Han HS, Jo W, Lee JS (2013) Lead-free Bi1/2(Na0.82K0.18)1/2TiO3 relaxor ferroelectrics with temperature insensitive electrostrictive coefficient. Ceram Int 39:S119–S124CrossRef
108.
Zurück zum Zitat Zuo RZ, Qi H, Fu J, Li JF, Shi M, Xu YD (2016) Giant electrostrictive effects of NaNbO3-BaTiO3 lead-free relaxor ferroelectrics. Appl Phys Lett 108:232904CrossRef Zuo RZ, Qi H, Fu J, Li JF, Shi M, Xu YD (2016) Giant electrostrictive effects of NaNbO3-BaTiO3 lead-free relaxor ferroelectrics. Appl Phys Lett 108:232904CrossRef
109.
Zurück zum Zitat Damjanovic D (2005) Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J Am Ceram Soc 88:2663–2676CrossRef Damjanovic D (2005) Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J Am Ceram Soc 88:2663–2676CrossRef
110.
Zurück zum Zitat Wu J, Xiao D, Zhu J (2015) Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Cheml Rev 115:2559–2595CrossRef Wu J, Xiao D, Zhu J (2015) Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Cheml Rev 115:2559–2595CrossRef
111.
Zurück zum Zitat Guo R, Cross E, Park E, Noheda B, Cox E, Shirane G (2000) Origin of the high piezoelectric response in PbZr1-xTixO3. Phys Rev Lett 84:5423CrossRef Guo R, Cross E, Park E, Noheda B, Cox E, Shirane G (2000) Origin of the high piezoelectric response in PbZr1-xTixO3. Phys Rev Lett 84:5423CrossRef
112.
Zurück zum Zitat Vanderbilt D, Cohen H (2001) Monoclinic and triclinic phases in higher-order Devonshire theory. Phys Rev B 63:094108CrossRef Vanderbilt D, Cohen H (2001) Monoclinic and triclinic phases in higher-order Devonshire theory. Phys Rev B 63:094108CrossRef
113.
Zurück zum Zitat Woodward I, Knudsen J, Reaney M (2005) Review of crystal and domain structures in the PbZr1-xTixO3 solid solution. Phys Rev B 72:104110CrossRef Woodward I, Knudsen J, Reaney M (2005) Review of crystal and domain structures in the PbZr1-xTixO3 solid solution. Phys Rev B 72:104110CrossRef
114.
Zurück zum Zitat Zhang H, Thong C, Lu X, Sun W, Li JF, Wang K (2017) (K,Na)NbO3-based lead-free piezoelectric materials: an encounter with scanning probe microscopy. J Korean Ceram Soc 54:261–271CrossRef Zhang H, Thong C, Lu X, Sun W, Li JF, Wang K (2017) (K,Na)NbO3-based lead-free piezoelectric materials: an encounter with scanning probe microscopy. J Korean Ceram Soc 54:261–271CrossRef
115.
Zurück zum Zitat Fu J, Zuo R, Gao X (2013) Electric field induced monoclinic phase in (Na0.52K0.48)(Nb1-ySby)O3 ceramics close to the rhombohedral-orthorhombic polymorphic phase boundary. Appl Phys Lett 103:182907CrossRef Fu J, Zuo R, Gao X (2013) Electric field induced monoclinic phase in (Na0.52K0.48)(Nb1-ySby)O3 ceramics close to the rhombohedral-orthorhombic polymorphic phase boundary. Appl Phys Lett 103:182907CrossRef
116.
Zurück zum Zitat Ge W, Ren Y, Zhang J, Devreugd P, Li J, Viehland D (2012) A monoclinic-tetragonal ferroelectric phase transition in lead-free (K0.5Na0.5)NbO3-x% LiNbO3 solid solution. J Appl Phys 111:103503CrossRef Ge W, Ren Y, Zhang J, Devreugd P, Li J, Viehland D (2012) A monoclinic-tetragonal ferroelectric phase transition in lead-free (K0.5Na0.5)NbO3-x% LiNbO3 solid solution. J Appl Phys 111:103503CrossRef
117.
Zurück zum Zitat Iamsasri T, Tutuncu G, Uthaisar C, Wongsaenmai S, Pojprapai S, Jones L (2015) Electric field-induced phase transitions in Li-modified Na0.5K0.5NbO3 at the polymorphic phase boundary. J Appl Phys 117:024101CrossRef Iamsasri T, Tutuncu G, Uthaisar C, Wongsaenmai S, Pojprapai S, Jones L (2015) Electric field-induced phase transitions in Li-modified Na0.5K0.5NbO3 at the polymorphic phase boundary. J Appl Phys 117:024101CrossRef
118.
Zurück zum Zitat Zuo R, Qi H, Fu J (2017) Strain effects of temperature and electric field induced phase instability in (Na,K)(Nb,Sb)O3-LiTaO3 lead-free ceramics. J Eur Ceram Soc 37:2309–2313CrossRef Zuo R, Qi H, Fu J (2017) Strain effects of temperature and electric field induced phase instability in (Na,K)(Nb,Sb)O3-LiTaO3 lead-free ceramics. J Eur Ceram Soc 37:2309–2313CrossRef
119.
Zurück zum Zitat Guo H, Zhang S, Beckman SP, Tan X (2013) Microstructural origin for the piezoelectricity evolution in (K0.5Na0.5)NbO3-based lead-free ceramics. J Appl Phys 114:154102CrossRef Guo H, Zhang S, Beckman SP, Tan X (2013) Microstructural origin for the piezoelectricity evolution in (K0.5Na0.5)NbO3-based lead-free ceramics. J Appl Phys 114:154102CrossRef
120.
Zurück zum Zitat Fu J, Zuo R, Wu C, Jiang Z, Li L, Yang Y, Li L (2012) Electric field induced intermediate phase and polarization rotation path in alkaline niobate based piezoceramics close to the rhombohedral and tetragonal phase boundary. Appl Phys Lett 100:122902CrossRef Fu J, Zuo R, Wu C, Jiang Z, Li L, Yang Y, Li L (2012) Electric field induced intermediate phase and polarization rotation path in alkaline niobate based piezoceramics close to the rhombohedral and tetragonal phase boundary. Appl Phys Lett 100:122902CrossRef
121.
Zurück zum Zitat Lv X, Wu J, Xiao D, Zhu J, Zhang X (2017) Electric field-induced phase transitions and composition-driven nanodomains in rhombohedral-tetragonal potassium-sodium niobate-based ceramics. Acta Mater 140:79–86CrossRef Lv X, Wu J, Xiao D, Zhu J, Zhang X (2017) Electric field-induced phase transitions and composition-driven nanodomains in rhombohedral-tetragonal potassium-sodium niobate-based ceramics. Acta Mater 140:79–86CrossRef
122.
Zurück zum Zitat Damjanovic D (2009) Comments on origins of enhanced piezoelectric properties in ferroelectrics. IEEE Trans Ultrason Ferroelectr Freq Control 56:1574–1585CrossRef Damjanovic D (2009) Comments on origins of enhanced piezoelectric properties in ferroelectrics. IEEE Trans Ultrason Ferroelectr Freq Control 56:1574–1585CrossRef
123.
Zurück zum Zitat Wada S, Suzuki S, Noma T, Suzuki T, Osada M, Kakihana M, Park SE, Cross LE, Shrout TR (1999) Enhanced piezoelectric properties of barium titanate single crystals with engineered domain configurations. Jpn J Appl Phys 38:5505–5511CrossRef Wada S, Suzuki S, Noma T, Suzuki T, Osada M, Kakihana M, Park SE, Cross LE, Shrout TR (1999) Enhanced piezoelectric properties of barium titanate single crystals with engineered domain configurations. Jpn J Appl Phys 38:5505–5511CrossRef
124.
Zurück zum Zitat Jaffe B, Roth RS, Marzullo S (1954) Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J Appl Phys 25:809–810CrossRef Jaffe B, Roth RS, Marzullo S (1954) Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J Appl Phys 25:809–810CrossRef
125.
Zurück zum Zitat Kutnjak Z, Petzelt J, Blinc R (2006) The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441:956–959CrossRef Kutnjak Z, Petzelt J, Blinc R (2006) The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441:956–959CrossRef
126.
Zurück zum Zitat Weyland F, Acosta M, Koruza J, Breckner P, Rödel J, Novak N (2016) Criticality: concept to enhance the piezoelectric and electrocaloric properties of ferroelectrics. Adv Funct Mater 26:7326–7333CrossRef Weyland F, Acosta M, Koruza J, Breckner P, Rödel J, Novak N (2016) Criticality: concept to enhance the piezoelectric and electrocaloric properties of ferroelectrics. Adv Funct Mater 26:7326–7333CrossRef
127.
Zurück zum Zitat Acosta M, Schmitt LA, Molina-Luna L, Scherrer MC, Brilz M, Webber KG, Deluca M, Kleebe HJ, Rödel J, Donner W (2015) Core-shell lead-free piezoelectric ceramics, current status and advanced characterization of the Bi0.5Na0.5TiO3-SrTiO3 system. J Am Ceram Soc 98:3405–3422CrossRef Acosta M, Schmitt LA, Molina-Luna L, Scherrer MC, Brilz M, Webber KG, Deluca M, Kleebe HJ, Rödel J, Donner W (2015) Core-shell lead-free piezoelectric ceramics, current status and advanced characterization of the Bi0.5Na0.5TiO3-SrTiO3 system. J Am Ceram Soc 98:3405–3422CrossRef
128.
Zurück zum Zitat Cheng SY, Shieh J, Lu HY, Shen CY, Tang YC, Ho NJ (2013) Structure analysis of bismuth sodium titanate-based A-site relaxor ferroelectrics by electron diffraction. J Eur Ceram Soc 33:2141–2153CrossRef Cheng SY, Shieh J, Lu HY, Shen CY, Tang YC, Ho NJ (2013) Structure analysis of bismuth sodium titanate-based A-site relaxor ferroelectrics by electron diffraction. J Eur Ceram Soc 33:2141–2153CrossRef
129.
Zurück zum Zitat Lu S, Xu Z, Zuo R (2014) Comparative study of the effect of domain structures on piezoelectric properties in three typical Pb-free piezoceramics. Ceram Int 40:13565–13571CrossRef Lu S, Xu Z, Zuo R (2014) Comparative study of the effect of domain structures on piezoelectric properties in three typical Pb-free piezoceramics. Ceram Int 40:13565–13571CrossRef
130.
Zurück zum Zitat Kobayashi K, Suzuki T, Mizuno Y (2009) Microstructure study of BaTiO3 ceramics using convergent beam electron diffraction. Key Eng Mater 388:273–276CrossRef Kobayashi K, Suzuki T, Mizuno Y (2009) Microstructure study of BaTiO3 ceramics using convergent beam electron diffraction. Key Eng Mater 388:273–276CrossRef
131.
Zurück zum Zitat Randall CA, Barber DJ, Whatmore RW (1987) Ferroelectric domain configurations in a modified-PZT ceramic. J Mater Sci 22:925–931CrossRef Randall CA, Barber DJ, Whatmore RW (1987) Ferroelectric domain configurations in a modified-PZT ceramic. J Mater Sci 22:925–931CrossRef
132.
Zurück zum Zitat Schmitt LA, Schrade D, Kungl H, Xu BX, Mueller R, Hoffmann MJ, Kleebe HJ, Fuess H (2014) Bimodal domain configuration and wedge formation in tetragonal PbZr1-xTixO3 ferroelectrics. Comput Mater Sci 81:123–132CrossRef Schmitt LA, Schrade D, Kungl H, Xu BX, Mueller R, Hoffmann MJ, Kleebe HJ, Fuess H (2014) Bimodal domain configuration and wedge formation in tetragonal PbZr1-xTixO3 ferroelectrics. Comput Mater Sci 81:123–132CrossRef
133.
Zurück zum Zitat Acosta M, Jo W, Rödel J (2014) Temperature- and frequency-dependent properties of the 0.75Bi1/2Na1/2TiO3-0.25SrTiO3 lead-free incipient piezoceramic. J Am Ceram Soc 97:1937–1943CrossRef Acosta M, Jo W, Rödel J (2014) Temperature- and frequency-dependent properties of the 0.75Bi1/2Na1/2TiO3-0.25SrTiO3 lead-free incipient piezoceramic. J Am Ceram Soc 97:1937–1943CrossRef
134.
Zurück zum Zitat Koruza J, Rojas V, Molina-Luna L, Kunz U, Duerrschnabel M, Kleebe HJ, Acosta M (2016) Formation of the core-shell microstructure in lead-free Bi1/2Na1/2TiO3-SrTiO3 piezoceramics and its influence on the electromechanical properties. J Eur Ceram Soc 36:1009–1016CrossRef Koruza J, Rojas V, Molina-Luna L, Kunz U, Duerrschnabel M, Kleebe HJ, Acosta M (2016) Formation of the core-shell microstructure in lead-free Bi1/2Na1/2TiO3-SrTiO3 piezoceramics and its influence on the electromechanical properties. J Eur Ceram Soc 36:1009–1016CrossRef
135.
Zurück zum Zitat Liu X, Tan X (2016) Giant strain with low cycling degradation in Ta-doped [Bi1/2(Na0.8K0.2)1/2]TiO3 lead-free ceramics. J Appl Phys 120:034102CrossRef Liu X, Tan X (2016) Giant strain with low cycling degradation in Ta-doped [Bi1/2(Na0.8K0.2)1/2]TiO3 lead-free ceramics. J Appl Phys 120:034102CrossRef
136.
Zurück zum Zitat Liu W, Ren X (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 103:257602CrossRef Liu W, Ren X (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 103:257602CrossRef
137.
Zurück zum Zitat Keeble DS, Benabdallah F, Thomas PA, Maglione M, Kreisel J (2013) Revised structural phase diagram of (Ba0.7Ca0.3TiO3)-(BaZr0.2Ti0.8O3). Appl Phys Lett 102:092903CrossRef Keeble DS, Benabdallah F, Thomas PA, Maglione M, Kreisel J (2013) Revised structural phase diagram of (Ba0.7Ca0.3TiO3)-(BaZr0.2Ti0.8O3). Appl Phys Lett 102:092903CrossRef
138.
Zurück zum Zitat Cordero F, Craciun F, Dinescu M, Scarisoreanu N (2014) Elastic response of (1 − x)Ba(Ti0.8Zr0.2)O3-x(Ba0.7Ca0.3)TiO3 (x = 0.45–0.55) and the role of the intermediate orthorhombic phase in enhancing the piezoelectric coupling. Appl Phys Lett 105:232904CrossRef Cordero F, Craciun F, Dinescu M, Scarisoreanu N (2014) Elastic response of (1 − x)Ba(Ti0.8Zr0.2)O3-x(Ba0.7Ca0.3)TiO3 (x = 0.45–0.55) and the role of the intermediate orthorhombic phase in enhancing the piezoelectric coupling. Appl Phys Lett 105:232904CrossRef
139.
Zurück zum Zitat Zhang L, Zhang M, Wang L, Zhou C, Zhang Z, Yao Y, Ren X (2014) Phase transitions and the piezoelectricity around morphotropic phase boundary in Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 lead-free solid solution. Appl Phys Lett 105:162908CrossRef Zhang L, Zhang M, Wang L, Zhou C, Zhang Z, Yao Y, Ren X (2014) Phase transitions and the piezoelectricity around morphotropic phase boundary in Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 lead-free solid solution. Appl Phys Lett 105:162908CrossRef
140.
Zurück zum Zitat Brajesh K, Tanwar K, Abebe M, Ranjan R (2015) Relaxor ferroelectricity and electric-field-driven structural transformation in the giant lead-free piezoelectric (Ba,Ca)(Ti,Zr)O3. Phys Rev B 92:224112CrossRef Brajesh K, Tanwar K, Abebe M, Ranjan R (2015) Relaxor ferroelectricity and electric-field-driven structural transformation in the giant lead-free piezoelectric (Ba,Ca)(Ti,Zr)O3. Phys Rev B 92:224112CrossRef
141.
Zurück zum Zitat Acosta M, Khakpash N, Someya T, Novak N, Jo W, Nagata H, Rödel J (2015) Origin of the large piezoelectric activity in (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics. Phys Rev B 91:104108CrossRef Acosta M, Khakpash N, Someya T, Novak N, Jo W, Nagata H, Rödel J (2015) Origin of the large piezoelectric activity in (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics. Phys Rev B 91:104108CrossRef
142.
Zurück zum Zitat Nahas Y, Akbarzadeh A, Prokhorenko S, Prosandeev S, Walter R, Kornev I, Bellaiche L (2017) Microscopic origins of the large piezoelectricity of lead free (Ba,Ca)(Zr,Ti)O3. Nat Commun 8:15944CrossRef Nahas Y, Akbarzadeh A, Prokhorenko S, Prosandeev S, Walter R, Kornev I, Bellaiche L (2017) Microscopic origins of the large piezoelectricity of lead free (Ba,Ca)(Zr,Ti)O3. Nat Commun 8:15944CrossRef
143.
Zurück zum Zitat Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719–1722CrossRef Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719–1722CrossRef
144.
Zurück zum Zitat Zeches RJ, Rossell MD, Zhang JX, Hatt AJ, He Q, Yang CH, Kumar A, Wang CH, Melville A, Adamo C, Sheng G, Chu YH, Ihlefeld JF, Erni R, Ederer C, Gopalan V, Chen LQ, Schlom DG, Spaldin NA, Martin LW, Ramesh R (2009) A strain-driven morphotropic phase boundary in BiFeO3. Science 326:977–980CrossRef Zeches RJ, Rossell MD, Zhang JX, Hatt AJ, He Q, Yang CH, Kumar A, Wang CH, Melville A, Adamo C, Sheng G, Chu YH, Ihlefeld JF, Erni R, Ederer C, Gopalan V, Chen LQ, Schlom DG, Spaldin NA, Martin LW, Ramesh R (2009) A strain-driven morphotropic phase boundary in BiFeO3. Science 326:977–980CrossRef
145.
Zurück zum Zitat Liu HJ, Yang P, Yao K, Ong KP, Wu P, Wang J (2012) Origin of a tetragonal BiFeO3 phase with a giant c/a ratio on SrTiO3 substrates. Adv Funct Mater 22:937–942CrossRef Liu HJ, Yang P, Yao K, Ong KP, Wu P, Wang J (2012) Origin of a tetragonal BiFeO3 phase with a giant c/a ratio on SrTiO3 substrates. Adv Funct Mater 22:937–942CrossRef
146.
Zurück zum Zitat Zhang JX, Xiang B, He Q, Seidel J, Zeches RJ, Yu P, Yang SY, Wang CH, Chu YH, Martin LW, Minor AM, Ramesh R (2011) Large field-induced strains in a lead-free piezoelectric material. Nat Nano 6:98–102CrossRef Zhang JX, Xiang B, He Q, Seidel J, Zeches RJ, Yu P, Yang SY, Wang CH, Chu YH, Martin LW, Minor AM, Ramesh R (2011) Large field-induced strains in a lead-free piezoelectric material. Nat Nano 6:98–102CrossRef
147.
Zurück zum Zitat Fujino S, Murakami M, Anbusathaiah V, Lim SH, Nagarajan V, Fennie CJ, Wuttig M, Salamanca-Riba L, Takeuchi I (2008) Combinatorial discovery of a lead-free morphotropic phase boundary in a thin-film piezoelectric perovskite. Appl Phys Lett 92:202904CrossRef Fujino S, Murakami M, Anbusathaiah V, Lim SH, Nagarajan V, Fennie CJ, Wuttig M, Salamanca-Riba L, Takeuchi I (2008) Combinatorial discovery of a lead-free morphotropic phase boundary in a thin-film piezoelectric perovskite. Appl Phys Lett 92:202904CrossRef
148.
Zurück zum Zitat Kan BD, Pálová L, Anbusathaiah V, Cheng CJ, Fujino S, Nagarajan V, Rabe KM, Takeuchi I (2010) Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3. Adv Funct Mater 20:1108–1115CrossRef Kan BD, Pálová L, Anbusathaiah V, Cheng CJ, Fujino S, Nagarajan V, Rabe KM, Takeuchi I (2010) Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3. Adv Funct Mater 20:1108–1115CrossRef
149.
Zurück zum Zitat Liao ZY, Xue F, Sun W, Song DS, Zhang QQ, Li JF, Chen LQ, Zhu J (2017) Reversible phase transition induced large piezoelectric response in Sm-doped BiFeO3 with a composition near the morphotropic phase boundary. Phys Rev B 95:214101CrossRef Liao ZY, Xue F, Sun W, Song DS, Zhang QQ, Li JF, Chen LQ, Zhu J (2017) Reversible phase transition induced large piezoelectric response in Sm-doped BiFeO3 with a composition near the morphotropic phase boundary. Phys Rev B 95:214101CrossRef
150.
Zurück zum Zitat Noheda B, Gonzalo JA (2000) Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: the structure of PbZr0.52Ti0.48O3. Phys Rev B 61:13CrossRef Noheda B, Gonzalo JA (2000) Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: the structure of PbZr0.52Ti0.48O3. Phys Rev B 61:13CrossRef
151.
Zurück zum Zitat Xu GY, Hiraka H, Shirane G (2005) Low symmetry phase in (001) BiFeO3 epitaxial constrained thin films. Appl Phys Lett 86:182905CrossRef Xu GY, Hiraka H, Shirane G (2005) Low symmetry phase in (001) BiFeO3 epitaxial constrained thin films. Appl Phys Lett 86:182905CrossRef
152.
Zurück zum Zitat Chen ZH, Qi YJ, You L, Yang P, Huang CW, Wang JL, Sritharan T, Chen L (2013) Large tensile-strain-induced monoclinic MB phase in BiFeO3 epitaxial thin films on a PrScO3 substrate. Phys Rev B 88:054114CrossRef Chen ZH, Qi YJ, You L, Yang P, Huang CW, Wang JL, Sritharan T, Chen L (2013) Large tensile-strain-induced monoclinic MB phase in BiFeO3 epitaxial thin films on a PrScO3 substrate. Phys Rev B 88:054114CrossRef
153.
Zurück zum Zitat Chen ZH, Luo ZL, Huang CW, Qi YJ, Yang P, You L, Hu CS, Wu T, Wang JL, Gao C, Sritharan T, Chen L (2011) Low-symmetry monoclinic phases and polarization rotation path mediated by epitaxial strain in multiferroic BiFeO3 thin films. Adv Funct Mater 21:133–138CrossRef Chen ZH, Luo ZL, Huang CW, Qi YJ, Yang P, You L, Hu CS, Wu T, Wang JL, Gao C, Sritharan T, Chen L (2011) Low-symmetry monoclinic phases and polarization rotation path mediated by epitaxial strain in multiferroic BiFeO3 thin films. Adv Funct Mater 21:133–138CrossRef
154.
Zurück zum Zitat Liu HJ, Liang CW, Liang WI, Chen HJ, Yang JC, Peng CY, Wang GF, Chu FN, Chen YC, Lee HY, Chang L, Lin SJ, Chu YH (2012) Strain-driven phase boundaries in BiFeO3 thin films studied by atomic force microscopy and X-ray diffraction. Phys Rev B 85:014104CrossRef Liu HJ, Liang CW, Liang WI, Chen HJ, Yang JC, Peng CY, Wang GF, Chu FN, Chen YC, Lee HY, Chang L, Lin SJ, Chu YH (2012) Strain-driven phase boundaries in BiFeO3 thin films studied by atomic force microscopy and X-ray diffraction. Phys Rev B 85:014104CrossRef
155.
Zurück zum Zitat Shimizu K, Hojo H, Ikuhara Y, Azuma M (2016) Enhanced piezoelectric response due to polarization rotation in cobalt-substituted BiFeO3 epitaxial thin films. Adv Mater 28:8639–8644CrossRef Shimizu K, Hojo H, Ikuhara Y, Azuma M (2016) Enhanced piezoelectric response due to polarization rotation in cobalt-substituted BiFeO3 epitaxial thin films. Adv Mater 28:8639–8644CrossRef
156.
Zurück zum Zitat Jang HW, Baek SH, Ortiz D, Folkman CM, Das RR, Chu YH, Shafer P, Zhang JX, Choudhury S, Vaithyanathan V, Chen YB, Felker DA, Biegalski MD, Rzchowski MS, Pan XQ, Schlom DG, Chen LQ, Ramesh R, Eom CB (2008) Strain-induced polarization rotation in epitaxial (001) BiFeO3 thin films. Phys Rev Lett 101:107602CrossRef Jang HW, Baek SH, Ortiz D, Folkman CM, Das RR, Chu YH, Shafer P, Zhang JX, Choudhury S, Vaithyanathan V, Chen YB, Felker DA, Biegalski MD, Rzchowski MS, Pan XQ, Schlom DG, Chen LQ, Ramesh R, Eom CB (2008) Strain-induced polarization rotation in epitaxial (001) BiFeO3 thin films. Phys Rev Lett 101:107602CrossRef
157.
Zurück zum Zitat Wu J, Xiao D, Zhu J (2015) Potassium-sodium niobate lead-free piezoelectric ceramics: recent advances and perspectives. J Mater Sci: Mater Electron 26:9297–9308 Wu J, Xiao D, Zhu J (2015) Potassium-sodium niobate lead-free piezoelectric ceramics: recent advances and perspectives. J Mater Sci: Mater Electron 26:9297–9308
158.
Zurück zum Zitat Zheng T, Wu H, Yuan Y, Lv X, Li Q, Men T, Zhao C, Xiao D, Wu J, Wang K (2017) The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ Sci 10:528–537CrossRef Zheng T, Wu H, Yuan Y, Lv X, Li Q, Men T, Zhao C, Xiao D, Wu J, Wang K (2017) The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ Sci 10:528–537CrossRef
159.
Zurück zum Zitat Zhou S, Wang K, Yao Z, Zheng T, Wu J, Xiao D, Li F (2015) Multi-scale thermal stability of niobate-based lead-free piezoceramics with large piezoelectricity. J Mater Chem C 3:8780–8787CrossRef Zhou S, Wang K, Yao Z, Zheng T, Wu J, Xiao D, Li F (2015) Multi-scale thermal stability of niobate-based lead-free piezoceramics with large piezoelectricity. J Mater Chem C 3:8780–8787CrossRef
160.
Zurück zum Zitat Qin Y, Zhang J, Yao W, Lu C, Zhang S (2016) Domain configuration and thermal stability of (K0.48Na0.52)(Nb0.96Sb0.04)O3-Bi0.50(Na0.82K0.18)0.50ZrO3 piezoceramics with high d33 coefficient. ACS Appl Mater Interfaces 8:7257–7265CrossRef Qin Y, Zhang J, Yao W, Lu C, Zhang S (2016) Domain configuration and thermal stability of (K0.48Na0.52)(Nb0.96Sb0.04)O3-Bi0.50(Na0.82K0.18)0.50ZrO3 piezoceramics with high d33 coefficient. ACS Appl Mater Interfaces 8:7257–7265CrossRef
161.
Zurück zum Zitat Ma C, Tan X, Dul’Kin E, Roth M (2010) Domain structure-dielectric property relationship in lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics. J Appl Phys 108:104105CrossRef Ma C, Tan X, Dul’Kin E, Roth M (2010) Domain structure-dielectric property relationship in lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics. J Appl Phys 108:104105CrossRef
162.
Zurück zum Zitat Takenaka T, Maruyama K, Sakata K (1991) (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys 30:2236–2239CrossRef Takenaka T, Maruyama K, Sakata K (1991) (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys 30:2236–2239CrossRef
163.
Zurück zum Zitat Yin J, Zhao CL, Zhang YX, Wu JG (2018) Ultrahigh strain in site engineering-independent Bi0.5Na0.5TiO3-based relaxor-ferroelectrics. Acta Mater 147:70–77CrossRef Yin J, Zhao CL, Zhang YX, Wu JG (2018) Ultrahigh strain in site engineering-independent Bi0.5Na0.5TiO3-based relaxor-ferroelectrics. Acta Mater 147:70–77CrossRef
164.
Zurück zum Zitat Tan X, Ma C, Frederick J, Beckman S, Webber KG (2011) The antiferroelectric ↔ ferroelectric phase transition in lead-containing and lead-free perovskite ceramics. J Am Ceram Soc 94:4091–4107CrossRef Tan X, Ma C, Frederick J, Beckman S, Webber KG (2011) The antiferroelectric ↔ ferroelectric phase transition in lead-containing and lead-free perovskite ceramics. J Am Ceram Soc 94:4091–4107CrossRef
165.
Zurück zum Zitat Ma C, Guo H, Beckman SP, Tan X (2012) Creation and destruction of morphotropic phase boundaries through electrical poling: a case study of lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoelectrics. Phys Rev Lett 109:107602CrossRef Ma C, Guo H, Beckman SP, Tan X (2012) Creation and destruction of morphotropic phase boundaries through electrical poling: a case study of lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoelectrics. Phys Rev Lett 109:107602CrossRef
166.
Zurück zum Zitat Gao J, Xue D, Wang Y, Wang D, Zhang L, Wu H, Liu W (2011) Microstructure basis for strong piezoelectricity in Pb-free Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics. Appl Phys Lett 99:092901CrossRef Gao J, Xue D, Wang Y, Wang D, Zhang L, Wu H, Liu W (2011) Microstructure basis for strong piezoelectricity in Pb-free Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics. Appl Phys Lett 99:092901CrossRef
167.
Zurück zum Zitat Lu S, Xu Z, Su S, Zuo R (2014) Temperature driven nano-domain evolution in lead-free Ba(Zr0.2Ti0.8)O3-50(Ba0.7Ca0.3)TiO3 piezoceramics. Appl Phys Lett 105:032903CrossRef Lu S, Xu Z, Su S, Zuo R (2014) Temperature driven nano-domain evolution in lead-free Ba(Zr0.2Ti0.8)O3-50(Ba0.7Ca0.3)TiO3 piezoceramics. Appl Phys Lett 105:032903CrossRef
168.
Zurück zum Zitat Zhang Y, Xue D, Wu H, Ding X, Lookman T, Ren X (2014) Adaptive ferroelectric state at morphotropic phase boundary: coexisting tetragonal and rhombohedral phases. Acta Mater 71:176–184CrossRef Zhang Y, Xue D, Wu H, Ding X, Lookman T, Ren X (2014) Adaptive ferroelectric state at morphotropic phase boundary: coexisting tetragonal and rhombohedral phases. Acta Mater 71:176–184CrossRef
169.
Zurück zum Zitat Tanaka M, Honjo G (1964) Electron optical studies of barium titanate single crystal films. J Phys Soc Jpn 19:954–970CrossRef Tanaka M, Honjo G (1964) Electron optical studies of barium titanate single crystal films. J Phys Soc Jpn 19:954–970CrossRef
170.
Zurück zum Zitat Zakhozheva M, Schmitt L-A, Acosta M, Guo H, Jo W, Schierholz R, Tan X (2015) Wide compositional range in situ electric field investigations on lead-free Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 piezoceramic. Phys Rev App 13:064018CrossRef Zakhozheva M, Schmitt L-A, Acosta M, Guo H, Jo W, Schierholz R, Tan X (2015) Wide compositional range in situ electric field investigations on lead-free Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 piezoceramic. Phys Rev App 13:064018CrossRef
171.
Zurück zum Zitat Wang DW, Hussain F, Khesro A, Feteira A, Tian Y, Zhao QL, Reaney IM (2016) Composition and temperature dependence of structure and piezoelectricity in (1-x)(K1-yNay)NbO3-x(Bi1/2Na1/2)ZrO3 lead-free ceramics. J Am Ceram Soc 100:627–637CrossRef Wang DW, Hussain F, Khesro A, Feteira A, Tian Y, Zhao QL, Reaney IM (2016) Composition and temperature dependence of structure and piezoelectricity in (1-x)(K1-yNay)NbO3-x(Bi1/2Na1/2)ZrO3 lead-free ceramics. J Am Ceram Soc 100:627–637CrossRef
172.
Zurück zum Zitat Bai W, Bian Y, Hao J, Shen B, Zhai J (2013) The composition and temperature-dependent structure evolution and large strain response in (1-x)(Bi0.5Na0.5)TiO3-xBa(Al0.5Ta0.5)O3 ceramics. J Am Ceram Soc 96:246–252CrossRef Bai W, Bian Y, Hao J, Shen B, Zhai J (2013) The composition and temperature-dependent structure evolution and large strain response in (1-x)(Bi0.5Na0.5)TiO3-xBa(Al0.5Ta0.5)O3 ceramics. J Am Ceram Soc 96:246–252CrossRef
173.
Zurück zum Zitat Wang K, Hussain A, Jo W, Rödel J (2012) Temperature-dependent properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-SrTiO3 lead-free piezoceramics. J Am Ceram Soc 95:2241–2247CrossRef Wang K, Hussain A, Jo W, Rödel J (2012) Temperature-dependent properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-SrTiO3 lead-free piezoceramics. J Am Ceram Soc 95:2241–2247CrossRef
174.
Zurück zum Zitat Bai W, Xi J, Zhang J, Shen B, Zhai J, Yan H (2015) Effect of different templates on structure evolution and large strain response under a low electric field in <0 0 l>-textured lead-free BNT-based piezoelectric ceramics. J Eur Ceram Soc 35:2489–2499CrossRef Bai W, Xi J, Zhang J, Shen B, Zhai J, Yan H (2015) Effect of different templates on structure evolution and large strain response under a low electric field in <0 0 l>-textured lead-free BNT-based piezoelectric ceramics. J Eur Ceram Soc 35:2489–2499CrossRef
175.
Zurück zum Zitat Zhang H, Xu P, Patterson E, Zang J, Jiang S, Rödel J (2015) Preparation and enhanced electrical properties of grain-oriented (Bi1/2Na1/2)TiO3-based lead-free incipient piezoceramics. J Eur Ceram Soc 35:2501–2512CrossRef Zhang H, Xu P, Patterson E, Zang J, Jiang S, Rödel J (2015) Preparation and enhanced electrical properties of grain-oriented (Bi1/2Na1/2)TiO3-based lead-free incipient piezoceramics. J Eur Ceram Soc 35:2501–2512CrossRef
176.
Zurück zum Zitat Zhang ST, Kounga AB, Aulbach E, Jo W, Granzow T, Ehrenberg H, Rödel J (2008) Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 II. Temperature dependent properties. J Appl Phys 103:34108 Zhang ST, Kounga AB, Aulbach E, Jo W, Granzow T, Ehrenberg H, Rödel J (2008) Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 II. Temperature dependent properties. J Appl Phys 103:34108
177.
Zurück zum Zitat Lv X, Wu JG, Zhu JG, Xiao DQ, Zhang XX (2018) Temperature stability and electrical properties in La-doped KNN-based ceramics. J Am Ceram Soc. 101:4084–4094 Lv X, Wu JG, Zhu JG, Xiao DQ, Zhang XX (2018) Temperature stability and electrical properties in La-doped KNN-based ceramics. J Am Ceram Soc. 101:4084–4094
178.
Zurück zum Zitat Yin J, Zhao CL, Zhang YX, Wu JG (2017) Composition-induced phase transitions and enhanced electrical properties in bismuth sodium titanate ceramics. J Am Ceram Soc 100:5601–5609CrossRef Yin J, Zhao CL, Zhang YX, Wu JG (2017) Composition-induced phase transitions and enhanced electrical properties in bismuth sodium titanate ceramics. J Am Ceram Soc 100:5601–5609CrossRef
179.
Zurück zum Zitat Bai Y, Han X, Zheng XC, Qiao L (2013) Both high reliability and giant electrocaloric strength in BaTiO3 ceramics. Sci Rep 3:2895CrossRef Bai Y, Han X, Zheng XC, Qiao L (2013) Both high reliability and giant electrocaloric strength in BaTiO3 ceramics. Sci Rep 3:2895CrossRef
180.
Zurück zum Zitat Park YA, Sung KD, Jung JH, Hur N, Cheong S-W (2015) Increased saturation field as the origin of the giant electrocaloric effect in Ba0.8Sr0.2TiO3 thin films. J Korean Phys Soc 67:551–555CrossRef Park YA, Sung KD, Jung JH, Hur N, Cheong S-W (2015) Increased saturation field as the origin of the giant electrocaloric effect in Ba0.8Sr0.2TiO3 thin films. J Korean Phys Soc 67:551–555CrossRef
181.
Zurück zum Zitat Bai Y, Ding K, Zheng GP, Shi SQ, Qiao LJ, Guo D (2012) The electrocaloric effect in BaTiO3 thick film multilayer structure at high electric field. Key Eng Mater 512:1304–1307CrossRef Bai Y, Ding K, Zheng GP, Shi SQ, Qiao LJ, Guo D (2012) The electrocaloric effect in BaTiO3 thick film multilayer structure at high electric field. Key Eng Mater 512:1304–1307CrossRef
182.
Zurück zum Zitat Fan Z, Liu X, Tan X (2017) Large electrocaloric responses in [Bi1/2(Na,K)1/2] TiO3-based ceramics with giant electro-strains. J Am Ceram Soc 100:2088–2097CrossRef Fan Z, Liu X, Tan X (2017) Large electrocaloric responses in [Bi1/2(Na,K)1/2] TiO3-based ceramics with giant electro-strains. J Am Ceram Soc 100:2088–2097CrossRef
183.
Zurück zum Zitat Lawless WN, Morrow AJ (1977) Specific heat and electrocaloric properties of a SrTiO3 ceramic at low temperatures. Ferroelectric 15:159–165CrossRef Lawless WN, Morrow AJ (1977) Specific heat and electrocaloric properties of a SrTiO3 ceramic at low temperatures. Ferroelectric 15:159–165CrossRef
184.
Zurück zum Zitat Lawless WN (1977) Specific heat and electrocaloric properties of a KTaO3 at low temperatures. Phys Rev B 16:433–439CrossRef Lawless WN (1977) Specific heat and electrocaloric properties of a KTaO3 at low temperatures. Phys Rev B 16:433–439CrossRef
185.
Zurück zum Zitat Koruza J, Rožič B, Cordoyiannis G, Malič B, Kutnjak Z (2015) Large electrocaloric effect in lead-free K0.5Na0.5NbO3-SrTiO3 ceramics. Appl Phys Lett 106:202905CrossRef Koruza J, Rožič B, Cordoyiannis G, Malič B, Kutnjak Z (2015) Large electrocaloric effect in lead-free K0.5Na0.5NbO3-SrTiO3 ceramics. Appl Phys Lett 106:202905CrossRef
Metadaten
Titel
Recent Development of Lead-Free Piezoelectrics
verfasst von
Jiagang Wu
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-8998-5_8

Neuer Inhalt