Skip to main content
Erschienen in: Microsystem Technologies 1/2015

01.01.2015 | Review Paper

Recent progress in low temperature nanoimprint lithography

verfasst von: Hongwen Sun

Erschienen in: Microsystem Technologies | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanoimprint lithography is a low cost and high throughput technology to fabricate nanostructures with excellent resolution. However, traditional thermal nanoimprint limits its application field because high temperature induces many problems. Low temperature nanoimprint lithography, including ultraviolet nanoimprint lithography and room temperature nanoimprint lithography, can reduce or remove thermal cycle, overcome the sticking problem, alleviate the alignment errors due to different coefficients of thermal expansion and pattern polymer based materials that are intolerant to high temperature. Recent development of these three low temperature NIL techniques was discussed from the aspects of new resist, stamp, process and application. Low temperature nanoimprint has wide application in the fields of optoelectronics, displays and bio-applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alkaisi MM, Blaikie RJ, McNab SJ (2001) Low temperature nanoimprint lithography using silicon nitride molds. Microelectron Eng 57–58:367–373CrossRef Alkaisi MM, Blaikie RJ, McNab SJ (2001) Low temperature nanoimprint lithography using silicon nitride molds. Microelectron Eng 57–58:367–373CrossRef
Zurück zum Zitat Amirsadeghi A, Lee JJ, Park S (2011) Surface adhesion and demolding force dependence on resist composition in ultraviolet nanoimprint lithography. Appl Surf Sci 258:1272–1278CrossRef Amirsadeghi A, Lee JJ, Park S (2011) Surface adhesion and demolding force dependence on resist composition in ultraviolet nanoimprint lithography. Appl Surf Sci 258:1272–1278CrossRef
Zurück zum Zitat Auner C, Palfinger U, Gold H, Kraxner J, Haase A, Haber T, Sezen M, Grogger W, Jakopic G, Krenn JR, Leising G, Stadlober B (2010) High-performing submicron organic thin-film transistors fabricated by residue-free embossing. Org Electron 11:552–557CrossRef Auner C, Palfinger U, Gold H, Kraxner J, Haase A, Haber T, Sezen M, Grogger W, Jakopic G, Krenn JR, Leising G, Stadlober B (2010) High-performing submicron organic thin-film transistors fabricated by residue-free embossing. Org Electron 11:552–557CrossRef
Zurück zum Zitat Chen Y, Tao J, Zhao X, Cui Z, Schwanecke AS, Zheludev NI (2005) Nanoimprint lithography for planar chiral photonic meta-materials. Microelectron Eng 78–79:612–617CrossRef Chen Y, Tao J, Zhao X, Cui Z, Schwanecke AS, Zheludev NI (2005) Nanoimprint lithography for planar chiral photonic meta-materials. Microelectron Eng 78–79:612–617CrossRef
Zurück zum Zitat Chen HL, Chuang SY, Cheng HC, Lin CH, Chu TC (2006) Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure. Microelectron Eng 83:893–896CrossRef Chen HL, Chuang SY, Cheng HC, Lin CH, Chu TC (2006) Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure. Microelectron Eng 83:893–896CrossRef
Zurück zum Zitat Choi WM, Song MY, Park OO (2006) Compressed-carbon dioxide (CO2) assisted nanoimprint lithography using polymeric mold. Microelectron Eng 83:1957–1960CrossRef Choi WM, Song MY, Park OO (2006) Compressed-carbon dioxide (CO2) assisted nanoimprint lithography using polymeric mold. Microelectron Eng 83:1957–1960CrossRef
Zurück zum Zitat Chou SY, Krauss PR, Renstrom PJ (1995) Imprint of sub-25 nm vias and trenches in polymers Appl Phys Lett 67:3114CrossRef Chou SY, Krauss PR, Renstrom PJ (1995) Imprint of sub-25 nm vias and trenches in polymers Appl Phys Lett 67:3114CrossRef
Zurück zum Zitat Greer AIM, Seunarine K, Khokhar AZ, MacLaren I, Brydone AS, Moran DAJ, Gadegaard N (2013) Increased efficiency of direct nanoimprinting on planar and curved bulk titanium through surface modification. Microelectron Eng 112:67–73CrossRef Greer AIM, Seunarine K, Khokhar AZ, MacLaren I, Brydone AS, Moran DAJ, Gadegaard N (2013) Increased efficiency of direct nanoimprinting on planar and curved bulk titanium through surface modification. Microelectron Eng 112:67–73CrossRef
Zurück zum Zitat Harrer S, Yang JKW, Salvatore GA, Berggren KK, Ilievski F, Ross CA (2007) Pattern generation by using multistep room-temperature nanoimprint lithography. IEEE Trans Nanotechnol 6(6):639–644CrossRef Harrer S, Yang JKW, Salvatore GA, Berggren KK, Ilievski F, Ross CA (2007) Pattern generation by using multistep room-temperature nanoimprint lithography. IEEE Trans Nanotechnol 6(6):639–644CrossRef
Zurück zum Zitat Harrer S, Strobel S, Scarpa G, Abstreiter G, Tornow M, Lugli P (2008) Room temperature nanoimprint lithography using molds fabricated by molecular beam epitaxy. IEEE Trans Nanotechnol 7(3):363–370CrossRef Harrer S, Strobel S, Scarpa G, Abstreiter G, Tornow M, Lugli P (2008) Room temperature nanoimprint lithography using molds fabricated by molecular beam epitaxy. IEEE Trans Nanotechnol 7(3):363–370CrossRef
Zurück zum Zitat Hong S-H, Jeong J-H, Kim K-I, Lee H (2011) High density phase change data on flexible substrates by thermal curing type nanoimprint lithography. Microelectron Eng 88:2013–2016CrossRef Hong S-H, Jeong J-H, Kim K-I, Lee H (2011) High density phase change data on flexible substrates by thermal curing type nanoimprint lithography. Microelectron Eng 88:2013–2016CrossRef
Zurück zum Zitat Hulme JP, An SSA, Goddard N, Miyahara Y, Oki A (2009) Fabrication of a flexible multi-referenced surface plasmon sensor using room temperature nanoimprint lithography. Curr Appl Phy 9:e185–e188CrossRef Hulme JP, An SSA, Goddard N, Miyahara Y, Oki A (2009) Fabrication of a flexible multi-referenced surface plasmon sensor using room temperature nanoimprint lithography. Curr Appl Phy 9:e185–e188CrossRef
Zurück zum Zitat Jiao F, Huang Q, Ren W, Zhou W, Qi F, Zheng Y, Xie J (2013) Enhanced performance for solar cells with moth-eye structure fabricated by UV nanoimprint lithography. Microelectron Eng 103:126–130CrossRef Jiao F, Huang Q, Ren W, Zhou W, Qi F, Zheng Y, Xie J (2013) Enhanced performance for solar cells with moth-eye structure fabricated by UV nanoimprint lithography. Microelectron Eng 103:126–130CrossRef
Zurück zum Zitat Kettle J, Whitelegg S, Song AM, Wedge DC, Kotacka L, Kolarik V, Madec MB, Yeates SG, Turner ML (2010) Fabrication of planar organic nanotransistors using low temperature thermal nanoimprint lithography for chemical sensor applications. Nanotechnology 21(7):075301. doi:10.1088/0957-4484/21/7/075301 CrossRef Kettle J, Whitelegg S, Song AM, Wedge DC, Kotacka L, Kolarik V, Madec MB, Yeates SG, Turner ML (2010) Fabrication of planar organic nanotransistors using low temperature thermal nanoimprint lithography for chemical sensor applications. Nanotechnology 21(7):075301. doi:10.​1088/​0957-4484/​21/​7/​075301 CrossRef
Zurück zum Zitat Kettle J, Rees A, Brousseau EB, Horie M (2013) Low-temperature thermal nanoimprint lithography of anti-reflective structures for flexible low band gap organic solar cells. J Phys D Appl Phys 46:105102CrossRef Kettle J, Rees A, Brousseau EB, Horie M (2013) Low-temperature thermal nanoimprint lithography of anti-reflective structures for flexible low band gap organic solar cells. J Phys D Appl Phys 46:105102CrossRef
Zurück zum Zitat Kim NW, Kim KW, Sin H-C (2008) Finite element analysis of low temperature thermal nanoimprint lithography using a viscoelastic model. Microelectron Eng 85:1858–1865CrossRef Kim NW, Kim KW, Sin H-C (2008) Finite element analysis of low temperature thermal nanoimprint lithography using a viscoelastic model. Microelectron Eng 85:1858–1865CrossRef
Zurück zum Zitat Lebib A, Chen Y, Cambril E, Youinou P, Studer V, Natali M, Pépin A, Janssen HM, Sijbesma RP (2002) Room-temperature and low-pressure nanoimprint lithography. Microelectron Eng 61–62:371–377CrossRef Lebib A, Chen Y, Cambril E, Youinou P, Studer V, Natali M, Pépin A, Janssen HM, Sijbesma RP (2002) Room-temperature and low-pressure nanoimprint lithography. Microelectron Eng 61–62:371–377CrossRef
Zurück zum Zitat Li J-Y, Yu H, Wen J-J, Li Z-D, Xu Z-C, Zhang Y-F, Yu H, Lu B-R, Liu R, Chen Y-F (2012) Fabrication of nano-strctures on PEDOT:pSS film by nanoimprint lithography. Adv Mater Res 465:287–291CrossRef Li J-Y, Yu H, Wen J-J, Li Z-D, Xu Z-C, Zhang Y-F, Yu H, Lu B-R, Liu R, Chen Y-F (2012) Fabrication of nano-strctures on PEDOT:pSS film by nanoimprint lithography. Adv Mater Res 465:287–291CrossRef
Zurück zum Zitat Lu Y, Hu W, Ma Y, Zhang L, Sun J, Lu N, Shen J (2006) Patterning layered polymeric multilayer films by room—temperature nanoimprint lithography. Macromol Rapid Commun 27(7):505–510CrossRef Lu Y, Hu W, Ma Y, Zhang L, Sun J, Lu N, Shen J (2006) Patterning layered polymeric multilayer films by room—temperature nanoimprint lithography. Macromol Rapid Commun 27(7):505–510CrossRef
Zurück zum Zitat Mekaru H, Takahashi M (2008) Ultrasonic nanoimprint on poly(ethylene terephthalate) at room temperature. Jpn J Appl Phys 47:5178–5184CrossRef Mekaru H, Takahashi M (2008) Ultrasonic nanoimprint on poly(ethylene terephthalate) at room temperature. Jpn J Appl Phys 47:5178–5184CrossRef
Zurück zum Zitat Mele E, Camposeo A, Del Carro P, Di Benedetto F, Stabile R, Persano L, Cingolani R, Pisignano D (2007) Imprinting strategies for 100 nm lithography on polyfluorene and poly(phenylenevinylene) derivatives and their blends. Mater Sci Eng C 27:1428–1433CrossRef Mele E, Camposeo A, Del Carro P, Di Benedetto F, Stabile R, Persano L, Cingolani R, Pisignano D (2007) Imprinting strategies for 100 nm lithography on polyfluorene and poly(phenylenevinylene) derivatives and their blends. Mater Sci Eng C 27:1428–1433CrossRef
Zurück zum Zitat Mohamed K, Alkaisi MM, Smaill J (2006) Resist deformation at low temperature in nanoimprint lithography. Curr Appl Phys 6:486–490CrossRef Mohamed K, Alkaisi MM, Smaill J (2006) Resist deformation at low temperature in nanoimprint lithography. Curr Appl Phys 6:486–490CrossRef
Zurück zum Zitat Muys J, Alkaisi MM, Evans JJ (2006) Bioimprint: Nanoscale analysis by replication of cellular topography using soft lithography. J Biomed Nanotech 2:11–15CrossRef Muys J, Alkaisi MM, Evans JJ (2006) Bioimprint: Nanoscale analysis by replication of cellular topography using soft lithography. J Biomed Nanotech 2:11–15CrossRef
Zurück zum Zitat Okada M, Shibata M, Haruyama Y, Kanda K, Hirai Y, Matsui S (2010) Cross-sectional observation of nanoimprint resins filled in SiO2/Si mold pattern using scanning electron microscopy. Microelectron Eng 87:1159–1163CrossRef Okada M, Shibata M, Haruyama Y, Kanda K, Hirai Y, Matsui S (2010) Cross-sectional observation of nanoimprint resins filled in SiO2/Si mold pattern using scanning electron microscopy. Microelectron Eng 87:1159–1163CrossRef
Zurück zum Zitat Okada M, Nakano S, Yamashita K, Kawahara S, Matsui S (2011) Direct patterning on side chain crystalline polymer by thermal nanoimprinting using mold without antisticking layer. Microelectron Eng 88:2084–2087CrossRef Okada M, Nakano S, Yamashita K, Kawahara S, Matsui S (2011) Direct patterning on side chain crystalline polymer by thermal nanoimprinting using mold without antisticking layer. Microelectron Eng 88:2084–2087CrossRef
Zurück zum Zitat Okada M, Miyake H, Iyoshi S, Yukawa T, Katase T, Tone K, Haruyama Y, Matsui S (2013) Double patterning in nanoimprint lithography. Microelectron Eng 112:139–142CrossRef Okada M, Miyake H, Iyoshi S, Yukawa T, Katase T, Tone K, Haruyama Y, Matsui S (2013) Double patterning in nanoimprint lithography. Microelectron Eng 112:139–142CrossRef
Zurück zum Zitat Pagliara S, Camposeo A, Mele E, Persano L, Cingolani R, Pisignano D (2010) Enhancement of light polarization from electrospun polymer fibers by room temperature nanoimprint lithography. Nanotechnology 21(21):215304CrossRef Pagliara S, Camposeo A, Mele E, Persano L, Cingolani R, Pisignano D (2010) Enhancement of light polarization from electrospun polymer fibers by room temperature nanoimprint lithography. Nanotechnology 21(21):215304CrossRef
Zurück zum Zitat Park SY, Choi KB, Lim HJ, Lee JJ (2011) Fabrication of a nano-scale embedded metal electrode in flexible films by UV/thermal nanoimprint lithography tools. Microelectron Eng 88:1606–1609CrossRef Park SY, Choi KB, Lim HJ, Lee JJ (2011) Fabrication of a nano-scale embedded metal electrode in flexible films by UV/thermal nanoimprint lithography tools. Microelectron Eng 88:1606–1609CrossRef
Zurück zum Zitat Samsuri F, Alkaisi MM, Mitchell JS, Evans JJ (2010) Replication of cancer cells using soft lithography bioimprint technique. Microelectron Eng 87:699–703CrossRef Samsuri F, Alkaisi MM, Mitchell JS, Evans JJ (2010) Replication of cancer cells using soft lithography bioimprint technique. Microelectron Eng 87:699–703CrossRef
Zurück zum Zitat Scheer H-C, Bogdanski N, Wissen M, Konishi T, Hirai Y (2005) Polymer time constants during low temperature nanoimprint lithography. J Vac Sci Technol B: Microelectron Nanometer Struct 23(6):2963–2966CrossRef Scheer H-C, Bogdanski N, Wissen M, Konishi T, Hirai Y (2005) Polymer time constants during low temperature nanoimprint lithography. J Vac Sci Technol B: Microelectron Nanometer Struct 23(6):2963–2966CrossRef
Zurück zum Zitat Schuster C, Reuther F, Kolander A, Gruetzner G (2009) mr-NIL 6000LT—epoxy-based curing resist for combined thermal and UV nanoimprint lithography below 50 °C. Microelectron Eng 86:722–725CrossRef Schuster C, Reuther F, Kolander A, Gruetzner G (2009) mr-NIL 6000LT—epoxy-based curing resist for combined thermal and UV nanoimprint lithography below 50 °C. Microelectron Eng 86:722–725CrossRef
Zurück zum Zitat Song JH, Huh H, Kim SH, Hahn HT (2006) Finite element analysis of room temperature nanoimprint lithography process with rate dependent plasticity. Mater Sci Forum 505–507(1):85–90CrossRef Song JH, Huh H, Kim SH, Hahn HT (2006) Finite element analysis of room temperature nanoimprint lithography process with rate dependent plasticity. Mater Sci Forum 505–507(1):85–90CrossRef
Zurück zum Zitat Sung J-H, Lee M-W, Lee S-G, Park S-G, Lee E-H, Beom-Hoan O (2007) Realization of various sub-micron metal patterns using room temperature nanoimprint lithography. Thin Solid Films 515:5153–5157CrossRef Sung J-H, Lee M-W, Lee S-G, Park S-G, Lee E-H, Beom-Hoan O (2007) Realization of various sub-micron metal patterns using room temperature nanoimprint lithography. Thin Solid Films 515:5153–5157CrossRef
Zurück zum Zitat Takei S, Ogawa T, Deschner R, Willson CG (2014) Reduction of pattern peeling in step-and-flash imprint lithography. Microelectron Eng 116:44–50CrossRef Takei S, Ogawa T, Deschner R, Willson CG (2014) Reduction of pattern peeling in step-and-flash imprint lithography. Microelectron Eng 116:44–50CrossRef
Zurück zum Zitat Wu C-C, Hsu SL-C, Liao W-C (2009) A photo-polymerization resist for UV nanoimprint lithography. Microelectron Eng 86:325–329CrossRef Wu C-C, Hsu SL-C, Liao W-C (2009) A photo-polymerization resist for UV nanoimprint lithography. Microelectron Eng 86:325–329CrossRef
Zurück zum Zitat Yajima K, Adachi K, Tsukahara Y, Taniguchi J (2013) Fabrication of antireflection structure with antifouling-effect surface by ultraviolet nanoimprint lithography. Microelectron Eng 110:188–191CrossRef Yajima K, Adachi K, Tsukahara Y, Taniguchi J (2013) Fabrication of antireflection structure with antifouling-effect surface by ultraviolet nanoimprint lithography. Microelectron Eng 110:188–191CrossRef
Metadaten
Titel
Recent progress in low temperature nanoimprint lithography
verfasst von
Hongwen Sun
Publikationsdatum
01.01.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 1/2015
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-014-2366-6

Weitere Artikel der Ausgabe 1/2015

Microsystem Technologies 1/2015 Zur Ausgabe

Neuer Inhalt