Skip to main content
Erschienen in: Journal of Materials Science 12/2018

15.02.2018 | Review

Recent progress in the modification of carbon materials and their application in composites for electromagnetic interference shielding

verfasst von: Ahsan Nazir, Haojie Yu, Li Wang, Muhammad Haroon, Raja Summe Ullah, Shah Fahad, Kaleem-ur-Rahman Naveed, Tarig Elshaarani, Amin Khan, Muhammad Usman

Erschienen in: Journal of Materials Science | Ausgabe 12/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the development in the modern technologies such as telecommunication instruments and scientific electronic devices, large amount of the electromagnetic radiations are produced, which lead to harmful effect on the highly sensitive electronic devices as well as on the health of human beings. To minimize the effect of electromagnetic radiations produced by different technologies, more efficient shielding materials are required which must be cost-effective, lightweight and good corrosion resistive. In this review, we focused on the shielding materials based on composites of carbon nanotubes and graphene. The typical surface modification of carbon nanotubes and graphene to optimize their interactions with polymers matrix has also summarized. It was found that the composites based on these carbon fillers were more efficient for electromagnetic interference shielding due to their unique properties (i.e., superior electrical, mechanical and thermal) together with lightweight, easy processing. Hence, the carbon nanotubes and graphene-based composites are excellent shielding materials against the electromagnetic radiations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Namai A, Sakurai S, Nakajima M et al (2009) Synthesis of an electromagnetic wave absorber for high-speed wireless communication. J Am Chem Soc 131:1170–1173CrossRef Namai A, Sakurai S, Nakajima M et al (2009) Synthesis of an electromagnetic wave absorber for high-speed wireless communication. J Am Chem Soc 131:1170–1173CrossRef
2.
Zurück zum Zitat Bhargavi KB, Nageswar P (2013) Mobile phone radiation effects on human health. Int J Comput Eng Res 3:196–203 Bhargavi KB, Nageswar P (2013) Mobile phone radiation effects on human health. Int J Comput Eng Res 3:196–203
3.
Zurück zum Zitat Pathania A (2014) Human exposure to electromagnetic radiations. Int J Eng Res Dev 10:49–56 Pathania A (2014) Human exposure to electromagnetic radiations. Int J Eng Res Dev 10:49–56
4.
Zurück zum Zitat Bhattacharjee S (2014) Protective measures to minimize the electromagnetic radiation. Adv Electron Electr Eng 4:375–380 Bhattacharjee S (2014) Protective measures to minimize the electromagnetic radiation. Adv Electron Electr Eng 4:375–380
5.
Zurück zum Zitat MS Ankur Mahajan (2012) Human health and electromagnetic radiations. Int J Eng Innov Tech 1:95–97 MS Ankur Mahajan (2012) Human health and electromagnetic radiations. Int J Eng Innov Tech 1:95–97
6.
Zurück zum Zitat Singh K, Nagaraj A, Yousuf A, Ganta S, Pareek S, Vishnani P (2016) Effect of electromagnetic radiations from mobile phone base stations on general health and salivary function. J Int Soc Prev Community Dent 6:54–59CrossRef Singh K, Nagaraj A, Yousuf A, Ganta S, Pareek S, Vishnani P (2016) Effect of electromagnetic radiations from mobile phone base stations on general health and salivary function. J Int Soc Prev Community Dent 6:54–59CrossRef
7.
Zurück zum Zitat Jiang SX, Guo RH (2011) Electromagnetic shielding and corrosion resistance of electroless Ni–P/Cu–Ni multilayer plated polyester fabric. Surf Coat Tech 205:4274–4279CrossRef Jiang SX, Guo RH (2011) Electromagnetic shielding and corrosion resistance of electroless Ni–P/Cu–Ni multilayer plated polyester fabric. Surf Coat Tech 205:4274–4279CrossRef
8.
Zurück zum Zitat Zhang CS, Ni QQ, Fu SY, Kurashiki K (2007) Electromagnetic interference shielding effect of nanocomposites with carbon nanotube and shape memory polymer. Compos Sci Technol 67:2973–2980CrossRef Zhang CS, Ni QQ, Fu SY, Kurashiki K (2007) Electromagnetic interference shielding effect of nanocomposites with carbon nanotube and shape memory polymer. Compos Sci Technol 67:2973–2980CrossRef
9.
Zurück zum Zitat Eddib AA, Chung DDL (2017) The importance of the electrical contact between specimen and testing fixture in evaluating the electromagnetic interference shielding effectiveness of carbon materials. Carbon 117:427–436CrossRef Eddib AA, Chung DDL (2017) The importance of the electrical contact between specimen and testing fixture in evaluating the electromagnetic interference shielding effectiveness of carbon materials. Carbon 117:427–436CrossRef
10.
Zurück zum Zitat Kato Y, Horibe M, Ata S, Yamada T, Hata K (2017) Stretchable electromagnetic-interference shielding materials made of a long single-walled carbon-nanotube-elastomer composite. RSC Adv 7:10841–10847CrossRef Kato Y, Horibe M, Ata S, Yamada T, Hata K (2017) Stretchable electromagnetic-interference shielding materials made of a long single-walled carbon-nanotube-elastomer composite. RSC Adv 7:10841–10847CrossRef
11.
Zurück zum Zitat Jung J, Lee H, Ha I et al (2017) Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl Mater Interfaces 9:44609–44616CrossRef Jung J, Lee H, Ha I et al (2017) Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl Mater Interfaces 9:44609–44616CrossRef
12.
Zurück zum Zitat Chung DDL (2000) Materials for electromagnetic interference shielding. J Mater Eng Perform 9:350–354CrossRef Chung DDL (2000) Materials for electromagnetic interference shielding. J Mater Eng Perform 9:350–354CrossRef
13.
Zurück zum Zitat Geetha S, Kumar KKS, Rao CRK, Vijayan M, Trivedi DC (2009) EMI Shielding methods and materials-a review. J Appl Polym Sci 112:2073–2086CrossRef Geetha S, Kumar KKS, Rao CRK, Vijayan M, Trivedi DC (2009) EMI Shielding methods and materials-a review. J Appl Polym Sci 112:2073–2086CrossRef
14.
Zurück zum Zitat Joshi A, Datar S (2015) Carbon nanostructure composite for electromagnetic interference shielding. Pramana-J Phys 84:1099–1116CrossRef Joshi A, Datar S (2015) Carbon nanostructure composite for electromagnetic interference shielding. Pramana-J Phys 84:1099–1116CrossRef
15.
Zurück zum Zitat Dhakate SR, Subhedar KM, Singh BP (2015) Polymer nanocomposite foam filled with carbon nanomaterials as an efficient electromagnetic interference shielding material. RSC Adv 5:43036–43057CrossRef Dhakate SR, Subhedar KM, Singh BP (2015) Polymer nanocomposite foam filled with carbon nanomaterials as an efficient electromagnetic interference shielding material. RSC Adv 5:43036–43057CrossRef
16.
Zurück zum Zitat Wang LL, Tay BK, See KY, Sun Z, Tan LK, Lua D (2009) Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing. Carbon 47:1905–1910CrossRef Wang LL, Tay BK, See KY, Sun Z, Tan LK, Lua D (2009) Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing. Carbon 47:1905–1910CrossRef
17.
Zurück zum Zitat Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285CrossRef Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285CrossRef
18.
Zurück zum Zitat Bhingardive V, Sharma M, Suwas S, Madras G, Bose S (2015) Polyvinylidene fluoride based lightweight and corrosion resistant electromagnetic shielding materials. RSC Adv 5:35909–35916CrossRef Bhingardive V, Sharma M, Suwas S, Madras G, Bose S (2015) Polyvinylidene fluoride based lightweight and corrosion resistant electromagnetic shielding materials. RSC Adv 5:35909–35916CrossRef
19.
Zurück zum Zitat Kim HR, Fujimori K, Kim BS, Kim IS (2012) Lightweight nanofibrous EMI shielding nanowebs prepared by electrospinning and metallization. Compos Sci Technol 72:1233–1239CrossRef Kim HR, Fujimori K, Kim BS, Kim IS (2012) Lightweight nanofibrous EMI shielding nanowebs prepared by electrospinning and metallization. Compos Sci Technol 72:1233–1239CrossRef
20.
Zurück zum Zitat Jiang G, Gilbert M, Hitt DJ, Wilcox GD, Balasubramanian K (2002) Preparation of nickel coated mica as a conductive filler. Compos Pt A Appl Sci Manuf 33:745–751CrossRef Jiang G, Gilbert M, Hitt DJ, Wilcox GD, Balasubramanian K (2002) Preparation of nickel coated mica as a conductive filler. Compos Pt A Appl Sci Manuf 33:745–751CrossRef
21.
Zurück zum Zitat Kumar R, Dhakate SR, Gupta T, Saini P, Singh BP, Mathur RB (2013) Effective improvement of the properties of light weight carbon foam by decoration with multi-wall carbon nanotubes. J Mater Chem A 1:5727–5735CrossRef Kumar R, Dhakate SR, Gupta T, Saini P, Singh BP, Mathur RB (2013) Effective improvement of the properties of light weight carbon foam by decoration with multi-wall carbon nanotubes. J Mater Chem A 1:5727–5735CrossRef
22.
Zurück zum Zitat Huo J, Wang L, Yu H (2009) Polymeric nanocomposites for electromagnetic wave absorption. J Mater Sci 44:3917–3927CrossRef Huo J, Wang L, Yu H (2009) Polymeric nanocomposites for electromagnetic wave absorption. J Mater Sci 44:3917–3927CrossRef
23.
Zurück zum Zitat Jia LC, Yan DX, Cui CH, Jiang X, Ji X, Li ZM (2015) Electrically conductive and electromagnetic interference shielding of polyethylene composites with devisable carbon nanotube networks. J Mater Chem C 3:9369–9378CrossRef Jia LC, Yan DX, Cui CH, Jiang X, Ji X, Li ZM (2015) Electrically conductive and electromagnetic interference shielding of polyethylene composites with devisable carbon nanotube networks. J Mater Chem C 3:9369–9378CrossRef
24.
Zurück zum Zitat Al-Saleh MH, Sundararaj U (2009) Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47:1738–1746CrossRef Al-Saleh MH, Sundararaj U (2009) Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47:1738–1746CrossRef
25.
Zurück zum Zitat Bhardwaj P, Singh K (2014) Carbon nanomaterials reinforced di-glycidyl ether of bisphenol A (DGEBA) composites for improved mechanical and electromagnetic interference shielding properties Int J Eng Manag Res 4:138–153 Bhardwaj P, Singh K (2014) Carbon nanomaterials reinforced di-glycidyl ether of bisphenol A (DGEBA) composites for improved mechanical and electromagnetic interference shielding properties Int J Eng Manag Res 4:138–153
26.
Zurück zum Zitat Maiti S, Shrivastava NK, Suin S, Khatua BB (2013) Polystyrene/MWCNT/Graphite nanoplate nanocomposites: efficient electromagnetic interference shielding material through graphite nanoplate-MWCNT-graphite nanoplate networking. ACS Appl Mater Interfaces 5:4712–4724CrossRef Maiti S, Shrivastava NK, Suin S, Khatua BB (2013) Polystyrene/MWCNT/Graphite nanoplate nanocomposites: efficient electromagnetic interference shielding material through graphite nanoplate-MWCNT-graphite nanoplate networking. ACS Appl Mater Interfaces 5:4712–4724CrossRef
27.
Zurück zum Zitat Saini P, Choudhary V, Sood KN, Dhawan SK (2009) Electromagnetic interference shielding behavior of polyaniline/graphite composites prepared by in situ emulsion pathway. J Appl Polym Sci 113:3146–3155CrossRef Saini P, Choudhary V, Sood KN, Dhawan SK (2009) Electromagnetic interference shielding behavior of polyaniline/graphite composites prepared by in situ emulsion pathway. J Appl Polym Sci 113:3146–3155CrossRef
28.
Zurück zum Zitat Joshi A, Bajaj A, Singh R, Alegaonkar PS, Balasubramanian K, Datar S (2013) Graphene nanoribbon-PVA composite as EMI shielding material in the X band. Nanotechnology 24:8CrossRef Joshi A, Bajaj A, Singh R, Alegaonkar PS, Balasubramanian K, Datar S (2013) Graphene nanoribbon-PVA composite as EMI shielding material in the X band. Nanotechnology 24:8CrossRef
29.
Zurück zum Zitat Shen B, Zhai W, Tao M, Ling J, Zheng W (2013) Lightweight multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl Mater Interfaces 5:11383–11391CrossRef Shen B, Zhai W, Tao M, Ling J, Zheng W (2013) Lightweight multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl Mater Interfaces 5:11383–11391CrossRef
30.
Zurück zum Zitat Chen Z, Xu C, Ma C, Ren W, Cheng H-M (2013) Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater 25:1296–1300CrossRef Chen Z, Xu C, Ma C, Ren W, Cheng H-M (2013) Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater 25:1296–1300CrossRef
31.
Zurück zum Zitat Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
32.
Zurück zum Zitat Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680CrossRef Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680CrossRef
33.
Zurück zum Zitat Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84:5552–5555CrossRef Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84:5552–5555CrossRef
34.
Zurück zum Zitat Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581CrossRef Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581CrossRef
35.
Zurück zum Zitat Miao M (2011) Electrical conductivity of pure carbon nanotube yarns. Carbon 49:3755–3761CrossRef Miao M (2011) Electrical conductivity of pure carbon nanotube yarns. Carbon 49:3755–3761CrossRef
36.
Zurück zum Zitat Yang YL, Gupta MC (2005) Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. Nano Lett 5:2131–2134CrossRef Yang YL, Gupta MC (2005) Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. Nano Lett 5:2131–2134CrossRef
37.
Zurück zum Zitat Yang YL, Gupta MC, Dudley KL, Lawrence RW (2005) A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites. J Nanosci Nanotechnol 5:927–931CrossRef Yang YL, Gupta MC, Dudley KL, Lawrence RW (2005) A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites. J Nanosci Nanotechnol 5:927–931CrossRef
38.
Zurück zum Zitat Mehdipour A, Rosca ID, Trueman CW, Sebak AR, Van Hoa S (2012) Multiwall carbon nanotube-eoxy composites with high shielding effectiveness for aeronautic applications. IEEE T Electromagn C 54:28–36CrossRef Mehdipour A, Rosca ID, Trueman CW, Sebak AR, Van Hoa S (2012) Multiwall carbon nanotube-eoxy composites with high shielding effectiveness for aeronautic applications. IEEE T Electromagn C 54:28–36CrossRef
39.
Zurück zum Zitat Kim HM, Kim K, Lee CY et al (2004) Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl Phys Lett 84:589–591CrossRef Kim HM, Kim K, Lee CY et al (2004) Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl Phys Lett 84:589–591CrossRef
40.
Zurück zum Zitat Das NC, Maiti S (2008) Electromagnetic interference shielding of carbon nanotube/ethylene vinyl acetate composites. J Mater Sci 43:1920–1925CrossRef Das NC, Maiti S (2008) Electromagnetic interference shielding of carbon nanotube/ethylene vinyl acetate composites. J Mater Sci 43:1920–1925CrossRef
41.
Zurück zum Zitat Li Y, Chen C, Zhang S, Ni Y, Huang J (2008) Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyacrylate composite films. Appl Surf Sci 254:5766–5771CrossRef Li Y, Chen C, Zhang S, Ni Y, Huang J (2008) Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyacrylate composite films. Appl Surf Sci 254:5766–5771CrossRef
42.
Zurück zum Zitat Huang Y, Li N, Ma Y et al (2007) The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon 45:1614–1621CrossRef Huang Y, Li N, Ma Y et al (2007) The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon 45:1614–1621CrossRef
43.
Zurück zum Zitat Chaudhary A, Kumari S, Kumar R et al (2016) Lightweight and easily foldable MCMB-MWCNTs composite paper with exceptional electromagnetic interference shielding. ACS Appl Mater Interfaces 8:10600–10608CrossRef Chaudhary A, Kumari S, Kumar R et al (2016) Lightweight and easily foldable MCMB-MWCNTs composite paper with exceptional electromagnetic interference shielding. ACS Appl Mater Interfaces 8:10600–10608CrossRef
44.
Zurück zum Zitat Park JG, Louis J, Cheng QF et al (2009) Electromagnetic interference shielding properties of carbon nanotube buckypaper composites. Nanotechnology 20:7 Park JG, Louis J, Cheng QF et al (2009) Electromagnetic interference shielding properties of carbon nanotube buckypaper composites. Nanotechnology 20:7
45.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
46.
Zurück zum Zitat Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162CrossRef Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162CrossRef
47.
Zurück zum Zitat Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef
48.
Zurück zum Zitat Cao C, Mukherjee S, Liu J et al (2017) Role of graphene in enhancing the mechanical properties of TiO2/graphene heterostructures. Nanoscale 9:11678–11684CrossRef Cao C, Mukherjee S, Liu J et al (2017) Role of graphene in enhancing the mechanical properties of TiO2/graphene heterostructures. Nanoscale 9:11678–11684CrossRef
49.
Zurück zum Zitat IA Ovid ko (2013) Mechanical properties of graphene. Rev Adv Mater Sci 34:1–11 IA Ovid ko (2013) Mechanical properties of graphene. Rev Adv Mater Sci 34:1–11
50.
Zurück zum Zitat Wang Chan Yuan WXX, Sheng Cao Mao (2016) Progress in research on lightweight graphene-based EMI shielding materials. J Mater Eng 44:109–118 Wang Chan Yuan WXX, Sheng Cao Mao (2016) Progress in research on lightweight graphene-based EMI shielding materials. J Mater Eng 44:109–118
51.
Zurück zum Zitat Wang M, Wu F, Sun M (2014) Graphene based composite for electromagnetic interference shielding. Chin Sci Bull 59:1681–1687 Wang M, Wu F, Sun M (2014) Graphene based composite for electromagnetic interference shielding. Chin Sci Bull 59:1681–1687
52.
Zurück zum Zitat Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110:5366–5397CrossRef Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110:5366–5397CrossRef
53.
Zurück zum Zitat Goh PS, Ismail AF, Aziz M (2009) Effect of acid oxidation on the dispersion property of multiwalled carbon nanotubes. AIP Conf Proc 1136:224–228CrossRef Goh PS, Ismail AF, Aziz M (2009) Effect of acid oxidation on the dispersion property of multiwalled carbon nanotubes. AIP Conf Proc 1136:224–228CrossRef
54.
Zurück zum Zitat Yan D, Wang F, Zhao Y et al (2009) Production of a high dispersion of silver nanoparticles on surface-functionalized multi-walled carbon nanotubes using an electrostatic technique. Mater Lett 63:171–173CrossRef Yan D, Wang F, Zhao Y et al (2009) Production of a high dispersion of silver nanoparticles on surface-functionalized multi-walled carbon nanotubes using an electrostatic technique. Mater Lett 63:171–173CrossRef
55.
Zurück zum Zitat Kuznetsova A, Popova I, Yates JT et al (2001) Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies. J Am Chem Soc 123:10699–10704CrossRef Kuznetsova A, Popova I, Yates JT et al (2001) Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies. J Am Chem Soc 123:10699–10704CrossRef
56.
Zurück zum Zitat Kim SW, Kim T, Kim YS et al (2012) Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50:3–33CrossRef Kim SW, Kim T, Kim YS et al (2012) Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50:3–33CrossRef
57.
Zurück zum Zitat Spitalsky Z, Matejka L, Slouf M et al (2009) Modification of carbon nanotubes and Its effect on properties of carbon nanotube/epoxy nanocomposites. Polym Compos 30:1378–1387CrossRef Spitalsky Z, Matejka L, Slouf M et al (2009) Modification of carbon nanotubes and Its effect on properties of carbon nanotube/epoxy nanocomposites. Polym Compos 30:1378–1387CrossRef
58.
Zurück zum Zitat Holzinger M, Steinmetz J, Samaille D et al (2004) 2 + 1 cycloaddition for cross-linking SWCNTs. Carbon 42:941–947CrossRef Holzinger M, Steinmetz J, Samaille D et al (2004) 2 + 1 cycloaddition for cross-linking SWCNTs. Carbon 42:941–947CrossRef
59.
Zurück zum Zitat Holzinger M, Abraha J, Whelan P et al (2003) Functionalization of single-walled carbon nanotubes with (R-)oxycarbonyl nitrenes. J Am Chem Soc 125:8566–8580CrossRef Holzinger M, Abraha J, Whelan P et al (2003) Functionalization of single-walled carbon nanotubes with (R-)oxycarbonyl nitrenes. J Am Chem Soc 125:8566–8580CrossRef
60.
Zurück zum Zitat Ren FJ, Yu HJ, Wang L, Saleem M, Tian ZF, Ren PF (2014) Current progress on the modification of carbon nanotubes and their application in electromagnetic wave absorption. RSC Adv 4:14419–14431CrossRef Ren FJ, Yu HJ, Wang L, Saleem M, Tian ZF, Ren PF (2014) Current progress on the modification of carbon nanotubes and their application in electromagnetic wave absorption. RSC Adv 4:14419–14431CrossRef
61.
Zurück zum Zitat Doyle CD, Tour JM (2009) Environmentally friendly functionalization of single walled carbon nanotubes in molten urea. Carbon 47:3215–3218CrossRef Doyle CD, Tour JM (2009) Environmentally friendly functionalization of single walled carbon nanotubes in molten urea. Carbon 47:3215–3218CrossRef
62.
Zurück zum Zitat Le Floch F, Thuaire A, Bidan G, Simonato JP (2009) The electrochemical signature of functionalized single-walled carbon nanotubes bearing electroactive groups. Nanotechnology 20:145705CrossRef Le Floch F, Thuaire A, Bidan G, Simonato JP (2009) The electrochemical signature of functionalized single-walled carbon nanotubes bearing electroactive groups. Nanotechnology 20:145705CrossRef
63.
Zurück zum Zitat Sun YP, Huang WJ, Lin Y et al (2001) Soluble dendron-functionalized carbon nanotubes: preparation, characterization, and properties. Chem Mater 13:2864–2869CrossRef Sun YP, Huang WJ, Lin Y et al (2001) Soluble dendron-functionalized carbon nanotubes: preparation, characterization, and properties. Chem Mater 13:2864–2869CrossRef
64.
Zurück zum Zitat Hamon MA, Hui H, Bhowmik P, Itkis HME, Haddon RC (2002) Ester-functionalized soluble single-walled carbon nanotubes. Appl Phys A-mater 74:333–338CrossRef Hamon MA, Hui H, Bhowmik P, Itkis HME, Haddon RC (2002) Ester-functionalized soluble single-walled carbon nanotubes. Appl Phys A-mater 74:333–338CrossRef
65.
Zurück zum Zitat Meng L, Fu C, Lu Q (2009) Advanced technology for functionalization of carbon nanotubes. Prog Nat Sci 19:801–810CrossRef Meng L, Fu C, Lu Q (2009) Advanced technology for functionalization of carbon nanotubes. Prog Nat Sci 19:801–810CrossRef
66.
Zurück zum Zitat Tuncel D (2011) Non-covalent interactions between carbon nanotubes and conjugated polymers. Nanoscale 3:3545–3554CrossRef Tuncel D (2011) Non-covalent interactions between carbon nanotubes and conjugated polymers. Nanoscale 3:3545–3554CrossRef
67.
Zurück zum Zitat Blanch AJ, Lenehan CE, Quinton JS (2010) Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solution. J Phys Chem B 114:9805–9811CrossRef Blanch AJ, Lenehan CE, Quinton JS (2010) Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solution. J Phys Chem B 114:9805–9811CrossRef
68.
Zurück zum Zitat Czanikova K, Krupa I, Ilcikova M et al (2012) Photo-actuating materials based on elastomers and modified carbon nanotubes. J Nanophotonics 6:063522CrossRef Czanikova K, Krupa I, Ilcikova M et al (2012) Photo-actuating materials based on elastomers and modified carbon nanotubes. J Nanophotonics 6:063522CrossRef
69.
Zurück zum Zitat Georgakilas V, Tzitzios V, Gournis D, Petridis D (2005) Attachment of magnetic nanoparticles on carbon nanotubes and their soluble derivatives. Chem Mater 17:1613–1617CrossRef Georgakilas V, Tzitzios V, Gournis D, Petridis D (2005) Attachment of magnetic nanoparticles on carbon nanotubes and their soluble derivatives. Chem Mater 17:1613–1617CrossRef
70.
Zurück zum Zitat Cheng F, Adronov A (2006) Noncovalent functionalization and solubilization of carbon nanotubes by using a conjugated Zn-porphyrin polymer. Chem-Eur J 12:5053–5059CrossRef Cheng F, Adronov A (2006) Noncovalent functionalization and solubilization of carbon nanotubes by using a conjugated Zn-porphyrin polymer. Chem-Eur J 12:5053–5059CrossRef
71.
Zurück zum Zitat Mu YY, Liang HP, Hu JS, Jiang L, Wan LJ (2005) Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. J Phys Chem B 109:22212–22216CrossRef Mu YY, Liang HP, Hu JS, Jiang L, Wan LJ (2005) Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. J Phys Chem B 109:22212–22216CrossRef
72.
Zurück zum Zitat Paul R, Kumbhakar P, Mitra AK (2011) Green luminescence from triphenylphosphine functionalized single-wall carbon nanotubes. Appl Surf Sci 257:6699–6703CrossRef Paul R, Kumbhakar P, Mitra AK (2011) Green luminescence from triphenylphosphine functionalized single-wall carbon nanotubes. Appl Surf Sci 257:6699–6703CrossRef
73.
Zurück zum Zitat O’Connell MJ, Boul P, Ericson LM et al (2001) Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 342:265–271CrossRef O’Connell MJ, Boul P, Ericson LM et al (2001) Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 342:265–271CrossRef
74.
Zurück zum Zitat Star A, Stoddart JF (2002) Dispersion and solubilization of single-walled carbon nanotubes with a hyperbranched polymer. Macromolecules 35:7516–7520CrossRef Star A, Stoddart JF (2002) Dispersion and solubilization of single-walled carbon nanotubes with a hyperbranched polymer. Macromolecules 35:7516–7520CrossRef
75.
Zurück zum Zitat Steuerman DW, Star A, Narizzano R et al (2002) Interactions between conjugated polymers and single-walled carbon nanotubes. J Phys Chem B 106:3124–3130CrossRef Steuerman DW, Star A, Narizzano R et al (2002) Interactions between conjugated polymers and single-walled carbon nanotubes. J Phys Chem B 106:3124–3130CrossRef
76.
Zurück zum Zitat Star A, Liu Y, Grant K et al (2003) Noncovalent side-wall functionalization of single-walled carbon nanotubes. Macromolecules 36:553–560CrossRef Star A, Liu Y, Grant K et al (2003) Noncovalent side-wall functionalization of single-walled carbon nanotubes. Macromolecules 36:553–560CrossRef
77.
Zurück zum Zitat Liu P (2005) Modifications of carbon nanotubes with polymers. Eur Polym J 41:2693–2703CrossRef Liu P (2005) Modifications of carbon nanotubes with polymers. Eur Polym J 41:2693–2703CrossRef
78.
Zurück zum Zitat Charman M, Leonardi F, Dominguez S, Bissuel C, Derail C (2011) Dispersion of multiwalled carbon nanotubes in a rubber matrix using an internal mixer: effects on rheological and electrical properties. J Polym Sci Pol Phys 49:1597–1604CrossRef Charman M, Leonardi F, Dominguez S, Bissuel C, Derail C (2011) Dispersion of multiwalled carbon nanotubes in a rubber matrix using an internal mixer: effects on rheological and electrical properties. J Polym Sci Pol Phys 49:1597–1604CrossRef
79.
Zurück zum Zitat Chadwick RC, Fong D, Rice NA, Brook MA, Adronov A (2015) Bulk dispersion of single-walled carbon nanotubes in silicones using diblock copolymers. J Polym Sci Pol Chem 53:265–273CrossRef Chadwick RC, Fong D, Rice NA, Brook MA, Adronov A (2015) Bulk dispersion of single-walled carbon nanotubes in silicones using diblock copolymers. J Polym Sci Pol Chem 53:265–273CrossRef
80.
Zurück zum Zitat Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Pt A Appl Sci Manuf 41:1345–1367CrossRef Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Pt A Appl Sci Manuf 41:1345–1367CrossRef
81.
Zurück zum Zitat Salavagione HJ, Martinez G, Ellis G (2011) Recent advances in the covalent modification of graphene with polymers. Macromol Rapid Comm 32:1771–1789CrossRef Salavagione HJ, Martinez G, Ellis G (2011) Recent advances in the covalent modification of graphene with polymers. Macromol Rapid Comm 32:1771–1789CrossRef
82.
Zurück zum Zitat Zheng W, Shen B, Zhai W (2013) Surface functionalization of graphene with polymers for enhanced properties. New Progress on Graphene Research:Ch. 08 Zheng W, Shen B, Zhai W (2013) Surface functionalization of graphene with polymers for enhanced properties. New Progress on Graphene Research:Ch. 08
83.
Zurück zum Zitat Lee SH, Dreyer DR, An J et al (2010) Polymer brushes via controlled, surface-initiated atom transfer radical polymerization (ATRP) from graphene oxide. Macromol Rapid Commun 31:281–288CrossRef Lee SH, Dreyer DR, An J et al (2010) Polymer brushes via controlled, surface-initiated atom transfer radical polymerization (ATRP) from graphene oxide. Macromol Rapid Commun 31:281–288CrossRef
84.
Zurück zum Zitat Goncalves G, Marques PAAP, Barros Timmons A et al (2010) Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J Mater Chem 20:9927–9934CrossRef Goncalves G, Marques PAAP, Barros Timmons A et al (2010) Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J Mater Chem 20:9927–9934CrossRef
85.
Zurück zum Zitat Fang M, Wang K, Lu H, Yang Y, Nutt S (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19:7098–7105CrossRef Fang M, Wang K, Lu H, Yang Y, Nutt S (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19:7098–7105CrossRef
86.
Zurück zum Zitat Yu D, Yang Y, Durstock M, Baek JB, Dai L (2010) Soluble P3HT-grafted graphene for efficient bilayer-heterojunction photovoltaic devices. ACS Nano 4:5633–5640CrossRef Yu D, Yang Y, Durstock M, Baek JB, Dai L (2010) Soluble P3HT-grafted graphene for efficient bilayer-heterojunction photovoltaic devices. ACS Nano 4:5633–5640CrossRef
87.
Zurück zum Zitat Zhu J, Li Y, Chen Y et al (2011) Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting. Carbon 49:1900–1905CrossRef Zhu J, Li Y, Chen Y et al (2011) Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting. Carbon 49:1900–1905CrossRef
88.
Zurück zum Zitat Mallakpour S, Abdolmaleki A, Borandeh S (2014) Covalently functionalized graphene sheets with biocompatible natural amino acids. Appl Surf Sci 307:533–542CrossRef Mallakpour S, Abdolmaleki A, Borandeh S (2014) Covalently functionalized graphene sheets with biocompatible natural amino acids. Appl Surf Sci 307:533–542CrossRef
89.
Zurück zum Zitat Shen B, Zhai W, Chen C, Lu D, Wang J, Zheng W (2011) Melt blending in situ enhances the interaction between polystyrene and graphene through π–π stacking. ACS Appl Mater Interfaces 3:3103–3109CrossRef Shen B, Zhai W, Chen C, Lu D, Wang J, Zheng W (2011) Melt blending in situ enhances the interaction between polystyrene and graphene through π–π stacking. ACS Appl Mater Interfaces 3:3103–3109CrossRef
90.
Zurück zum Zitat Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856CrossRef Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856CrossRef
91.
Zurück zum Zitat Wang Y, Chen X, Zhong Y, Zhu F, Loh KP (2009) Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl Phys Lett 95:063302CrossRef Wang Y, Chen X, Zhong Y, Zhu F, Loh KP (2009) Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl Phys Lett 95:063302CrossRef
92.
Zurück zum Zitat Coluci VR, Martinez DST, Honorio JG et al (2014) Noncovalent interaction with graphene oxide: the crucial role of oxidative debris. J Phys Chem C 118:2187–2193CrossRef Coluci VR, Martinez DST, Honorio JG et al (2014) Noncovalent interaction with graphene oxide: the crucial role of oxidative debris. J Phys Chem C 118:2187–2193CrossRef
93.
Zurück zum Zitat Dubnikova I, Kuvardina E, Krasheninnikov V, Lomakin S, Tchmutin I, Kuznetsov S (2010) The effect of multiwalled carbon nanotube dimensions on the morphology, mechanical, and electrical properties of melt mixed polypropylene-based composites. J Appl Polym Sci 117:259–272 Dubnikova I, Kuvardina E, Krasheninnikov V, Lomakin S, Tchmutin I, Kuznetsov S (2010) The effect of multiwalled carbon nanotube dimensions on the morphology, mechanical, and electrical properties of melt mixed polypropylene-based composites. J Appl Polym Sci 117:259–272
94.
Zurück zum Zitat Thomassin JM, Huynen I, Jerome R, Detrembleur C (2010) Functionalized polypropylenes as efficient dispersing agents for carbon nanotubes in a polypropylene matrix; application to electromagnetic interference (EMI) absorber materials. Polymer 51:115–121CrossRef Thomassin JM, Huynen I, Jerome R, Detrembleur C (2010) Functionalized polypropylenes as efficient dispersing agents for carbon nanotubes in a polypropylene matrix; application to electromagnetic interference (EMI) absorber materials. Polymer 51:115–121CrossRef
95.
Zurück zum Zitat Fan Z, Luo G, Zhang Z, Zhou L, Wei F (2006) Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Mater Sci Eng B 132:85–89CrossRef Fan Z, Luo G, Zhang Z, Zhou L, Wei F (2006) Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Mater Sci Eng B 132:85–89CrossRef
96.
Zurück zum Zitat Sharma M, Sharma S, Abraham J, Thomas S, Madras G, Bose S (2014) Flexible EMI shielding materials derived by melt blending PVDF and ionic liquid modified MWNTs. Mater Res Express 1:035003CrossRef Sharma M, Sharma S, Abraham J, Thomas S, Madras G, Bose S (2014) Flexible EMI shielding materials derived by melt blending PVDF and ionic liquid modified MWNTs. Mater Res Express 1:035003CrossRef
97.
Zurück zum Zitat Kum CK, Sung YT, Han MS et al (2006) Effects of morphology on the electrical and mechanical properties of the polycarbonate/multi-walled carbon nanotube composites. Macro Res 14:456–460CrossRef Kum CK, Sung YT, Han MS et al (2006) Effects of morphology on the electrical and mechanical properties of the polycarbonate/multi-walled carbon nanotube composites. Macro Res 14:456–460CrossRef
98.
Zurück zum Zitat Ling Q, Sun J, Zhao Q, Zhou Q (2010) Linear low-density polyethylene/ethylene-octene copolymer/multi-walled carbon nanotube composites with microwave absorbing properties. Polym-Plast Technol 49:481–486CrossRef Ling Q, Sun J, Zhao Q, Zhou Q (2010) Linear low-density polyethylene/ethylene-octene copolymer/multi-walled carbon nanotube composites with microwave absorbing properties. Polym-Plast Technol 49:481–486CrossRef
99.
Zurück zum Zitat Wang H, Wang G, Li W et al (2012) A material with high electromagnetic radiation shielding effectiveness fabricated using multi-walled carbon nanotubes wrapped with poly(ether sulfone) in a poly(ether ether ketone) matrix. J Mater Chem 22:21232–21237CrossRef Wang H, Wang G, Li W et al (2012) A material with high electromagnetic radiation shielding effectiveness fabricated using multi-walled carbon nanotubes wrapped with poly(ether sulfone) in a poly(ether ether ketone) matrix. J Mater Chem 22:21232–21237CrossRef
100.
Zurück zum Zitat Basuli U, Chattopadhyay S, Nah C, Chaki TK (2012) Electrical properties and electromagnetic interference shielding effectiveness of multiwalled carbon nanotubes-reinforced EMA nanocomposites. Polym Compos 33:897–903CrossRef Basuli U, Chattopadhyay S, Nah C, Chaki TK (2012) Electrical properties and electromagnetic interference shielding effectiveness of multiwalled carbon nanotubes-reinforced EMA nanocomposites. Polym Compos 33:897–903CrossRef
101.
Zurück zum Zitat Li QF, Xu Y, Yoon JS, Chen GX (2011) Dispersions of carbon nanotubes/polyhedral oligomeric silsesquioxanes hybrids in polymer: the mechanical, electrical and EMI shielding properties. J Mater Sci 46:2324–2330CrossRef Li QF, Xu Y, Yoon JS, Chen GX (2011) Dispersions of carbon nanotubes/polyhedral oligomeric silsesquioxanes hybrids in polymer: the mechanical, electrical and EMI shielding properties. J Mater Sci 46:2324–2330CrossRef
102.
Zurück zum Zitat Lin JH, Lin ZI, Pan YJ, Hsieh CT, Huang CL, Lou CW (2016) Thermoplastic polyvinyl alcohol/multiwalled carbon nanotube composites: preparation, mechanical properties, thermal properties, and electromagnetic shielding effectiveness. J Appl Polym Sci 133:43474–43484CrossRef Lin JH, Lin ZI, Pan YJ, Hsieh CT, Huang CL, Lou CW (2016) Thermoplastic polyvinyl alcohol/multiwalled carbon nanotube composites: preparation, mechanical properties, thermal properties, and electromagnetic shielding effectiveness. J Appl Polym Sci 133:43474–43484CrossRef
103.
Zurück zum Zitat Al-Saleh MH, Sundararaj U (2012) Microstructure, electrical, and electromagnetic interference shielding properties of carbon nanotube/acrylonitrile–butadiene–styrene nanocomposites. J Polym Sci Pol Phys 50:1356–1362CrossRef Al-Saleh MH, Sundararaj U (2012) Microstructure, electrical, and electromagnetic interference shielding properties of carbon nanotube/acrylonitrile–butadiene–styrene nanocomposites. J Polym Sci Pol Phys 50:1356–1362CrossRef
104.
Zurück zum Zitat Gupta A, Choudhary V (2011) Electrical conductivity and shielding effectiveness of poly(trimethylene terephthalate)/multiwalled carbon nanotube composites. J Mater Sci 46:6416–6423CrossRef Gupta A, Choudhary V (2011) Electrical conductivity and shielding effectiveness of poly(trimethylene terephthalate)/multiwalled carbon nanotube composites. J Mater Sci 46:6416–6423CrossRef
105.
Zurück zum Zitat Zhang K, Li GH, Feng LM et al (2017) Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks. J Mater Chem C 5:9359–9369CrossRef Zhang K, Li GH, Feng LM et al (2017) Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks. J Mater Chem C 5:9359–9369CrossRef
106.
Zurück zum Zitat Ganß M, Satapathy BK, Thunga M, Weidisch R, Pötschke P, Jehnichen D (2008) Structural interpretations of deformation and fracture behavior of polypropylene/multi-walled carbon nanotube composites. Acta Mater 56:2247–2261CrossRef Ganß M, Satapathy BK, Thunga M, Weidisch R, Pötschke P, Jehnichen D (2008) Structural interpretations of deformation and fracture behavior of polypropylene/multi-walled carbon nanotube composites. Acta Mater 56:2247–2261CrossRef
107.
Zurück zum Zitat Thomassin JM, Lou X, Pagnoulle C et al (2007) Multiwalled carbon nanotube/poly(epsilon-caprolactone) nanocomposites with exceptional electromagnetic interference shielding properties. J Phys Chem C 111:11186–11192CrossRef Thomassin JM, Lou X, Pagnoulle C et al (2007) Multiwalled carbon nanotube/poly(epsilon-caprolactone) nanocomposites with exceptional electromagnetic interference shielding properties. J Phys Chem C 111:11186–11192CrossRef
108.
Zurück zum Zitat Sohi NJS, Rahaman M, Khastgir D (2011) Dielectric property and electromagnetic interference shielding effectiveness of ethylene vinyl acetate-based conductive composites: effect of different type of carbon fillers. Polym Compos 32:1148–1154CrossRef Sohi NJS, Rahaman M, Khastgir D (2011) Dielectric property and electromagnetic interference shielding effectiveness of ethylene vinyl acetate-based conductive composites: effect of different type of carbon fillers. Polym Compos 32:1148–1154CrossRef
109.
Zurück zum Zitat Liu Z, Bai G, Huang Y et al (2007) Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon 45:821–827CrossRef Liu Z, Bai G, Huang Y et al (2007) Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon 45:821–827CrossRef
110.
Zurück zum Zitat Mathur RB, Pande S, Singh BP, Dhami TL (2008) Electrical and mechanical properties of multi-walled carbon nanotubes reinforced PMMA and PS composites. Polym Composite 29:717–727CrossRef Mathur RB, Pande S, Singh BP, Dhami TL (2008) Electrical and mechanical properties of multi-walled carbon nanotubes reinforced PMMA and PS composites. Polym Composite 29:717–727CrossRef
111.
Zurück zum Zitat Han MS, Lee YK, Kim WN et al (2009) Effect of multi-walled carbon nanotube dispersion on the electrical, morphological and rheological properties of polycarbonate/multi-walled carbon nanotube composites. Macro Res 17:863–869CrossRef Han MS, Lee YK, Kim WN et al (2009) Effect of multi-walled carbon nanotube dispersion on the electrical, morphological and rheological properties of polycarbonate/multi-walled carbon nanotube composites. Macro Res 17:863–869CrossRef
112.
Zurück zum Zitat Park SH, Theilmann PT, Asbeck PM, Bandaru PR (2010) Enhanced electromagnetic interference shielding through the use of functionalized carbon nanotube-reactive polymer composites. Ieee T Nanotechnol 9:464–469CrossRef Park SH, Theilmann PT, Asbeck PM, Bandaru PR (2010) Enhanced electromagnetic interference shielding through the use of functionalized carbon nanotube-reactive polymer composites. Ieee T Nanotechnol 9:464–469CrossRef
113.
Zurück zum Zitat Saini P, Choudhary V (2013) Enhanced electromagnetic interference shielding effectiveness of polyaniline functionalized carbon nanotubes filled polystyrene composites. J Nanopart Res 15:1415CrossRef Saini P, Choudhary V (2013) Enhanced electromagnetic interference shielding effectiveness of polyaniline functionalized carbon nanotubes filled polystyrene composites. J Nanopart Res 15:1415CrossRef
114.
Zurück zum Zitat Im JS, Park IJ, In SJ, Kim T, Lee YS (2009) Fluorination effects of MWCNT additives for EMI shielding efficiency by developed conductive network in epoxy complex. J Fluorine Chem 130:1111–1116CrossRef Im JS, Park IJ, In SJ, Kim T, Lee YS (2009) Fluorination effects of MWCNT additives for EMI shielding efficiency by developed conductive network in epoxy complex. J Fluorine Chem 130:1111–1116CrossRef
115.
Zurück zum Zitat Yun J, Im JS, Kim HI, Lee YS (2011) Effect of oxyfluorination on electromagnetic interference shielding of polyaniline-coated multi-walled carbon nanotubes. Colloid Polym Sci 289:1749–1755CrossRef Yun J, Im JS, Kim HI, Lee YS (2011) Effect of oxyfluorination on electromagnetic interference shielding of polyaniline-coated multi-walled carbon nanotubes. Colloid Polym Sci 289:1749–1755CrossRef
116.
Zurück zum Zitat Makeiff DA, Huber T (2006) Microwave absorption by polyaniline-carbon nanotube composites. Synthetic Met 156:497–505CrossRef Makeiff DA, Huber T (2006) Microwave absorption by polyaniline-carbon nanotube composites. Synthetic Met 156:497–505CrossRef
117.
Zurück zum Zitat Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK (2009) Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys 113:919–926CrossRef Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK (2009) Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys 113:919–926CrossRef
118.
Zurück zum Zitat Jelmy EJ, Ramakrishnan S, Kothurkar NK (2016) EMI shielding and microwave absorption behavior of Au-MWCNT/polyaniline nanocomposites. Polym Advan Technol 27:1246–1257CrossRef Jelmy EJ, Ramakrishnan S, Kothurkar NK (2016) EMI shielding and microwave absorption behavior of Au-MWCNT/polyaniline nanocomposites. Polym Advan Technol 27:1246–1257CrossRef
119.
Zurück zum Zitat Li H, Lu X, Yuan D et al (2017) Lightweight flexible carbon nanotube/polyaniline films with outstanding EMI shielding properties. J Mater Chem C 5:8694–8698CrossRef Li H, Lu X, Yuan D et al (2017) Lightweight flexible carbon nanotube/polyaniline films with outstanding EMI shielding properties. J Mater Chem C 5:8694–8698CrossRef
120.
Zurück zum Zitat Ting TH, Jau YN, Yu RP (2012) Microwave absorbing properties of polyaniline/multi-walled carbon nanotube composites with various polyaniline contents. Appl Surf Sci 258:3184–3190CrossRef Ting TH, Jau YN, Yu RP (2012) Microwave absorbing properties of polyaniline/multi-walled carbon nanotube composites with various polyaniline contents. Appl Surf Sci 258:3184–3190CrossRef
121.
Zurück zum Zitat Sobha AP, Sreekala PS, Narayanankutty SK (2017) Electrical, thermal, mechanical and electromagnetic interference shielding properties of PANI/FMWCNT/TPU composites. Prog Org Coat 113:168–174CrossRef Sobha AP, Sreekala PS, Narayanankutty SK (2017) Electrical, thermal, mechanical and electromagnetic interference shielding properties of PANI/FMWCNT/TPU composites. Prog Org Coat 113:168–174CrossRef
122.
Zurück zum Zitat Yun J, Kim HI (2012) Electromagnetic interference shielding effects of polyaniline-coated multi-wall carbon nanotubes/maghemite nanocomposites. Polym Bull 68:561–573CrossRef Yun J, Kim HI (2012) Electromagnetic interference shielding effects of polyaniline-coated multi-wall carbon nanotubes/maghemite nanocomposites. Polym Bull 68:561–573CrossRef
123.
Zurück zum Zitat Kim YY, Yun J, Kim HI, Lee YS (2012) Effect of oxyfluorination on electromagnetic interference shielding of polypyrrole-coated multi-walled carbon nanotubes. J Ind Eng Chem 18:392–398CrossRef Kim YY, Yun J, Kim HI, Lee YS (2012) Effect of oxyfluorination on electromagnetic interference shielding of polypyrrole-coated multi-walled carbon nanotubes. J Ind Eng Chem 18:392–398CrossRef
124.
Zurück zum Zitat Moon JS, Gaskill DK (2011) Graphene: its fundamentals to future applications. Ieee T Microw Theory 59:2702–2708CrossRef Moon JS, Gaskill DK (2011) Graphene: its fundamentals to future applications. Ieee T Microw Theory 59:2702–2708CrossRef
125.
Zurück zum Zitat Yu H, Wang T, Wen B et al (2012) Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. J Mater Chem 22:21679–21685CrossRef Yu H, Wang T, Wen B et al (2012) Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. J Mater Chem 22:21679–21685CrossRef
126.
Zurück zum Zitat Modak P, Kondawar SB, Nandanwar DV (2015) Synthesis and characterization of conducting polyaniline/graphene nanocomposites for electromagnetic interference shielding. Proc Mater Sci 10:588–594CrossRef Modak P, Kondawar SB, Nandanwar DV (2015) Synthesis and characterization of conducting polyaniline/graphene nanocomposites for electromagnetic interference shielding. Proc Mater Sci 10:588–594CrossRef
127.
Zurück zum Zitat Liu P, Huang Y, Zhang X (2015) Synthesis, characterization and excellent electromagnetic wave absorption properties of graphene@CoFe2O4@polyaniline nanocomposites. Synthetic Met 201:76–81CrossRef Liu P, Huang Y, Zhang X (2015) Synthesis, characterization and excellent electromagnetic wave absorption properties of graphene@CoFe2O4@polyaniline nanocomposites. Synthetic Met 201:76–81CrossRef
128.
Zurück zum Zitat Basavaraja C, Kim WJ, Kim YD, Huh DS (2011) Synthesis of polyaniline-gold/graphene oxide composite and microwave absorption characteristics of the composite films. Mater Lett 65:3120–3123CrossRef Basavaraja C, Kim WJ, Kim YD, Huh DS (2011) Synthesis of polyaniline-gold/graphene oxide composite and microwave absorption characteristics of the composite films. Mater Lett 65:3120–3123CrossRef
129.
Zurück zum Zitat Mar Bernal M, Martin-Gallego M, Molenberg I, Huynen I, Lopez Manchado MA, Verdejo R (2014) Influence of carbon nanoparticles on the polymerization and EMI shielding properties of PU nanocomposite foams. RSC Adv 4:7911–7918CrossRef Mar Bernal M, Martin-Gallego M, Molenberg I, Huynen I, Lopez Manchado MA, Verdejo R (2014) Influence of carbon nanoparticles on the polymerization and EMI shielding properties of PU nanocomposite foams. RSC Adv 4:7911–7918CrossRef
130.
Zurück zum Zitat Puri P, Mehta R, Rattan S (2015) Synthesis of conductive polyurethane/graphite composites for electromagnetic interference shielding. J Electron Mater 44:4255–4268CrossRef Puri P, Mehta R, Rattan S (2015) Synthesis of conductive polyurethane/graphite composites for electromagnetic interference shielding. J Electron Mater 44:4255–4268CrossRef
131.
Zurück zum Zitat Gupta A, Varshney S, Goyal A, Sambyal P, Kumar Gupta B, Dhawan SK (2015) Enhanced electromagnetic shielding behaviour of multilayer graphene anchored luminescent TiO2 in PPY matrix. Mater Lett 158:167–169CrossRef Gupta A, Varshney S, Goyal A, Sambyal P, Kumar Gupta B, Dhawan SK (2015) Enhanced electromagnetic shielding behaviour of multilayer graphene anchored luminescent TiO2 in PPY matrix. Mater Lett 158:167–169CrossRef
132.
Zurück zum Zitat Modak P, Nandanwar DV, Kondawar SB (2016) Conducting polypyrrole/graphene nanocomposites as potential electromagnetic interference shielding materials in the Ku-band. J Phys Sci 27:137–157CrossRef Modak P, Nandanwar DV, Kondawar SB (2016) Conducting polypyrrole/graphene nanocomposites as potential electromagnetic interference shielding materials in the Ku-band. J Phys Sci 27:137–157CrossRef
133.
Zurück zum Zitat Tripathi SN, Saini P, Gupta D, Choudhary V (2013) Electrical and mechanical properties of PMMA/reduced graphene oxide nanocomposites prepared via in situ polymerization. J Mater Sci 48:6223–6232CrossRef Tripathi SN, Saini P, Gupta D, Choudhary V (2013) Electrical and mechanical properties of PMMA/reduced graphene oxide nanocomposites prepared via in situ polymerization. J Mater Sci 48:6223–6232CrossRef
134.
Zurück zum Zitat Wu T, Xu X, Zhang L, Chen H, Gao J, Liu Y (2014) A polyaniline/graphene nanocomposite prepared by in situ polymerization of polyaniline onto polyanion grafted graphene and its electrochemical properties. RSC Adv 4:7673–7681CrossRef Wu T, Xu X, Zhang L, Chen H, Gao J, Liu Y (2014) A polyaniline/graphene nanocomposite prepared by in situ polymerization of polyaniline onto polyanion grafted graphene and its electrochemical properties. RSC Adv 4:7673–7681CrossRef
135.
Zurück zum Zitat Ding P, Su S, Song N, Tang S, Liu Y, Shi L (2014) Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process. Carbon 66:576–584CrossRef Ding P, Su S, Song N, Tang S, Liu Y, Shi L (2014) Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process. Carbon 66:576–584CrossRef
136.
Zurück zum Zitat Singh K, Ohlan A, Viet Hung P et al (2013) Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale 5:2411–2420CrossRef Singh K, Ohlan A, Viet Hung P et al (2013) Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale 5:2411–2420CrossRef
137.
Zurück zum Zitat Liang JJ, Wang Y, Huang Y et al (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47:922–925CrossRef Liang JJ, Wang Y, Huang Y et al (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47:922–925CrossRef
138.
Zurück zum Zitat Liu J, Tang J, Gooding JJ (2012) Strategies for chemical modification of graphene and applications of chemically modified graphene. J Mater Chem 22:12435–12452CrossRef Liu J, Tang J, Gooding JJ (2012) Strategies for chemical modification of graphene and applications of chemically modified graphene. J Mater Chem 22:12435–12452CrossRef
139.
Zurück zum Zitat Zhang HB, Zheng WG, Yan Q, Jiang ZG, Yu ZZ (2012) The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites. Carbon 50:5117–5125CrossRef Zhang HB, Zheng WG, Yan Q, Jiang ZG, Yu ZZ (2012) The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites. Carbon 50:5117–5125CrossRef
140.
Zurück zum Zitat Bansala T, Joshi M, Mukhopadhyay S, Doong R, Chaudhary M (2017) Electrically conducting graphene-based polyurethane nanocomposites for microwave shielding applications in the Ku band. J Mater Sci 52:1546–1560CrossRef Bansala T, Joshi M, Mukhopadhyay S, Doong R, Chaudhary M (2017) Electrically conducting graphene-based polyurethane nanocomposites for microwave shielding applications in the Ku band. J Mater Sci 52:1546–1560CrossRef
141.
Zurück zum Zitat Verma M, Verma P, Dhawan SK, Choudhary V (2015) Tailored graphene based polyurethane composites for efficient electrostatic dissipation and electromagnetic interference shielding applications. RSC Adv 5:97349–97358CrossRef Verma M, Verma P, Dhawan SK, Choudhary V (2015) Tailored graphene based polyurethane composites for efficient electrostatic dissipation and electromagnetic interference shielding applications. RSC Adv 5:97349–97358CrossRef
142.
Zurück zum Zitat Hsiao ST, Ma CCM, Tien HW et al (2013) Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon 60:57–66CrossRef Hsiao ST, Ma CCM, Tien HW et al (2013) Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon 60:57–66CrossRef
143.
Zurück zum Zitat Yan DX, Ren PG, Pang H, Fu Q, Yang MB, Li ZM (2012) Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J Mater Chem 22:18772–18774CrossRef Yan DX, Ren PG, Pang H, Fu Q, Yang MB, Li ZM (2012) Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J Mater Chem 22:18772–18774CrossRef
144.
Zurück zum Zitat Shahzad F, Yu S, Kumar P et al (2015) Sulfur doped graphene/polystyrene nanocomposites for electromagnetic interference shielding. Compos Struct 133:1267–1275CrossRef Shahzad F, Yu S, Kumar P et al (2015) Sulfur doped graphene/polystyrene nanocomposites for electromagnetic interference shielding. Compos Struct 133:1267–1275CrossRef
145.
Zurück zum Zitat Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Functionalized graphene-PVDF foam composites for EMI shielding. Macromol Mater Eng 296:894–898CrossRef Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Functionalized graphene-PVDF foam composites for EMI shielding. Macromol Mater Eng 296:894–898CrossRef
146.
Zurück zum Zitat Yang L, Phua SL, Toh CL et al (2013) Polydopamine-coated graphene as multifunctional nanofillers in polyurethane. RSC Adv 3:6377–6385CrossRef Yang L, Phua SL, Toh CL et al (2013) Polydopamine-coated graphene as multifunctional nanofillers in polyurethane. RSC Adv 3:6377–6385CrossRef
147.
Zurück zum Zitat Hsiao ST, Ma CCM, Tien HW et al (2015) Effect of covalent modification of graphene nanosheets on the electrical property and electromagnetic interference shielding performance of a water-borne polyurethane composite. ACS Appl Mater Interfaces 7:2817–2826CrossRef Hsiao ST, Ma CCM, Tien HW et al (2015) Effect of covalent modification of graphene nanosheets on the electrical property and electromagnetic interference shielding performance of a water-borne polyurethane composite. ACS Appl Mater Interfaces 7:2817–2826CrossRef
148.
Zurück zum Zitat Nasr Esfahani A, Katbab A, Taeb A, Simon L, Pope MA (2017) Correlation between mechanical dissipation and improved X-band electromagnetic shielding capabilities of amine functionalized graphene/thermoplastic polyurethane composites. Eur Polym J 95:520–538CrossRef Nasr Esfahani A, Katbab A, Taeb A, Simon L, Pope MA (2017) Correlation between mechanical dissipation and improved X-band electromagnetic shielding capabilities of amine functionalized graphene/thermoplastic polyurethane composites. Eur Polym J 95:520–538CrossRef
149.
Zurück zum Zitat Manna K, Srivastava SK, Mittal V (2016) Role of enhanced hydrogen bonding of selectively reduced graphite oxide in fabrication of poly(vinyl alcohol) nanocomposites in water as EMI shielding material. J Phys Chem C 120:17011–17023CrossRef Manna K, Srivastava SK, Mittal V (2016) Role of enhanced hydrogen bonding of selectively reduced graphite oxide in fabrication of poly(vinyl alcohol) nanocomposites in water as EMI shielding material. J Phys Chem C 120:17011–17023CrossRef
150.
Zurück zum Zitat Zhang HB, Yan Q, Zheng WG, He Z, Yu ZZ (2011) Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 3:918–924CrossRef Zhang HB, Yan Q, Zheng WG, He Z, Yu ZZ (2011) Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 3:918–924CrossRef
151.
Zurück zum Zitat Narasimman R, Vijayan S, Prabhakaran K (2015) Graphene-reinforced carbon composite foams with improved strength and EMI shielding from sucrose and graphene oxide. J Mater Sci 50:8018–8028CrossRef Narasimman R, Vijayan S, Prabhakaran K (2015) Graphene-reinforced carbon composite foams with improved strength and EMI shielding from sucrose and graphene oxide. J Mater Sci 50:8018–8028CrossRef
152.
Zurück zum Zitat Li Y, Shen B, Yi D et al (2017) The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams. Compos Sci Technol 138:209–216CrossRef Li Y, Shen B, Yi D et al (2017) The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams. Compos Sci Technol 138:209–216CrossRef
Metadaten
Titel
Recent progress in the modification of carbon materials and their application in composites for electromagnetic interference shielding
verfasst von
Ahsan Nazir
Haojie Yu
Li Wang
Muhammad Haroon
Raja Summe Ullah
Shah Fahad
Kaleem-ur-Rahman Naveed
Tarig Elshaarani
Amin Khan
Muhammad Usman
Publikationsdatum
15.02.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 12/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2122-x

Weitere Artikel der Ausgabe 12/2018

Journal of Materials Science 12/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.