Skip to main content
Erschienen in:
Buchtitelbild

2017 | OriginalPaper | Buchkapitel

Recent Progress of Computational Fluid Dynamics Modeling of Animal and Human Swimming for Computer Animation

verfasst von : Tom Matko, Jian Chang, Zhidong Xiao

Erschienen in: Next Generation Computer Animation Techniques

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A literature review is conducted on the Computational Fluid Dynamics (CFD) modeling of swimming. The scope is animated films and games, sports science, animal biological research, bio-inspired submersible vehicle design and robotic design. There are CFD swimming studies on animals (eel, clownfish, turtle, manta, frog, whale, dolphin, shark, trout, sunfish, boxfish, octopus, squid, jellyfish, lamprey) and humans (crawl, butterfly, backstroke, breaststroke, dolphin kick, glide). A benefit is the ability to visualize the physics-based effects of a swimmer’s motion, using key-frame or motion capture animation. Physics-based animation can also be used as a training tool for sports scientists in swimming, water polo and diving. Surface swimming is complex and considers the water surface shape, splashes, bubbles, foam, bubble coalescence, vortex shedding, solid-fluid coupling and body deformation. Only the Navier-Stokes fluid flow equations can capture these features. Two-way solid-fluid coupling between the swimmer and the water is modeled to be able to propel the swimmer forwards in the water. Swimmers are often modeled using articulated rigid bodies, thus avoiding the complexity of deformable body modeling. There is interesting potential research, including the effects of hydrodynamic flow conditions on a swimmer, and the use of motion capture data. The predominant approach for swimming uses grid-based fluid methods for better accuracy. Emerging particle and hybrid-based fluid methods are being increasingly used in swimming for better 3D fluid visualization of the motion of the water surface, droplets, bubbles and foam.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lentine, M., Tómas Grétarsson, J.T., Schroeder, C., Robinson-Mosher, A., Fedkiw, R.: Creature control in a fluid environment. IEEE Trans. Vis. Comput. Graph. 17(5), 682–693 (2011)CrossRef Lentine, M., Tómas Grétarsson, J.T., Schroeder, C., Robinson-Mosher, A., Fedkiw, R.: Creature control in a fluid environment. IEEE Trans. Vis. Comput. Graph. 17(5), 682–693 (2011)CrossRef
2.
Zurück zum Zitat Furukawa, M., Watanabe, M., Fukumoto, A., Suzuki, I., Yamamoto, M.: Swimming Animats with Musculoskeletal structure (2012) Furukawa, M., Watanabe, M., Fukumoto, A., Suzuki, I., Yamamoto, M.: Swimming Animats with Musculoskeletal structure (2012)
3.
Zurück zum Zitat Yang, P.F., Laszlo, J., Singh, K.: Layered dynamic control for interactive character swimming. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 39–47. Eurographics Association (2004) Yang, P.F., Laszlo, J., Singh, K.: Layered dynamic control for interactive character swimming. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 39–47. Eurographics Association (2004)
4.
Zurück zum Zitat Nakashima, M., Nakano, T.: Simulation analysis of an octopus-inspired propulsion mechanism. J. Aero Aqua Bio-mechanisms. 4(1), 49–55 (2015)CrossRef Nakashima, M., Nakano, T.: Simulation analysis of an octopus-inspired propulsion mechanism. J. Aero Aqua Bio-mechanisms. 4(1), 49–55 (2015)CrossRef
5.
Zurück zum Zitat Nakashima, M.: Modeling and simulation of human swimming. J. Aero Aqua Bio-mechanisms 1(1), 11–17 (2010)CrossRef Nakashima, M.: Modeling and simulation of human swimming. J. Aero Aqua Bio-mechanisms 1(1), 11–17 (2010)CrossRef
6.
Zurück zum Zitat Rudolf, D., Mould, D.: Animating Jellyfish through Observational Models of Motion. Department of Computer Science (2004) Rudolf, D., Mould, D.: Animating Jellyfish through Observational Models of Motion. Department of Computer Science (2004)
7.
Zurück zum Zitat Malik, S., Morris, N., Yang, P.: Physically-based Animation of Humanoid Swimming (2002) Malik, S., Morris, N., Yang, P.: Physically-based Animation of Humanoid Swimming (2002)
8.
Zurück zum Zitat Si, W., Lee, S.-H., Sifakis, E., Terzopoulos, D.: Realistic biomechanical simulation and control of human swimming. ACM Trans. Graph. 34(1), 1–15 (2014)CrossRef Si, W., Lee, S.-H., Sifakis, E., Terzopoulos, D.: Realistic biomechanical simulation and control of human swimming. ACM Trans. Graph. 34(1), 1–15 (2014)CrossRef
9.
Zurück zum Zitat Tan, J., Yuting, G., Turk, G., Liu, K.: Articulated swimming creatures. ACM Trans. Graph. 30(4), 1 (2011)CrossRef Tan, J., Yuting, G., Turk, G., Liu, K.: Articulated swimming creatures. ACM Trans. Graph. 30(4), 1 (2011)CrossRef
10.
Zurück zum Zitat Von Loebbecke, A., Mittal, R., Russell, M., Hahn, J.: A computational method for analysis of underwater dolphin kick hydrodynamics in human swimming. Sports Biomech. 8(1), 60–77 (2009)CrossRef Von Loebbecke, A., Mittal, R., Russell, M., Hahn, J.: A computational method for analysis of underwater dolphin kick hydrodynamics in human swimming. Sports Biomech. 8(1), 60–77 (2009)CrossRef
11.
Zurück zum Zitat Cohen, R., Cleary, P.: Computational studies of the locomotion of dolphins and sharks using Smoothed Particle Hydrodynamics. In: Lim, C.T., Goh, J.C.H. (eds.) 6th World Congress of Biomechanics (WCB 2010). IFMBE Proceedings, vol. 31, pp. 22–25. Springer, Heidelberg (2010) Cohen, R., Cleary, P.: Computational studies of the locomotion of dolphins and sharks using Smoothed Particle Hydrodynamics. In: Lim, C.T., Goh, J.C.H. (eds.) 6th World Congress of Biomechanics (WCB 2010). IFMBE Proceedings, vol. 31, pp. 22–25. Springer, Heidelberg (2010)
12.
Zurück zum Zitat Cohen, R.C.Z., Cleary, P.W., Mason, B.: Simulations of human swimming using Smoothed Particle Hydrodynamics. In: 7th International Conference on CFD in the Minerals and Process Industries, Melbourne, Australia (2009) Cohen, R.C.Z., Cleary, P.W., Mason, B.: Simulations of human swimming using Smoothed Particle Hydrodynamics. In: 7th International Conference on CFD in the Minerals and Process Industries, Melbourne, Australia (2009)
13.
Zurück zum Zitat Cohen, R.C.Z., Cleary, P.W., Mason, B.: Improving understanding of human swimming using Smoothed Particle Hydrodynamics. In: Lim, C.T., Goh, J.C.H. (eds.) 6th World Congress of Biomechanics (WCB 2010). IFMBE Proceedings, vol. 31, pp. 174–177. Springer, Heidelberg (2010) Cohen, R.C.Z., Cleary, P.W., Mason, B.: Improving understanding of human swimming using Smoothed Particle Hydrodynamics. In: Lim, C.T., Goh, J.C.H. (eds.) 6th World Congress of Biomechanics (WCB 2010). IFMBE Proceedings, vol. 31, pp. 174–177. Springer, Heidelberg (2010)
14.
Zurück zum Zitat Lazunin, V., Savchenko, V.: Artificial jellyfish: evolutionary optimization of swimming. In: The 20th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision. EuroGraphics Proceedings of WSCG (2012) Lazunin, V., Savchenko, V.: Artificial jellyfish: evolutionary optimization of swimming. In: The 20th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision. EuroGraphics Proceedings of WSCG (2012)
15.
Zurück zum Zitat Kwatra, N., Wojtan, C., Carlson, M., Essa, I., Mucha, P.J., Turk, G.: Fluid simulation with articulated bodies. IEEE Trans. Vis. Comput. Graph. 16(1), 70–80 (2010)CrossRef Kwatra, N., Wojtan, C., Carlson, M., Essa, I., Mucha, P.J., Turk, G.: Fluid simulation with articulated bodies. IEEE Trans. Vis. Comput. Graph. 16(1), 70–80 (2010)CrossRef
16.
Zurück zum Zitat Truong, D.-T., Chow, Y.-Y., Fang, A.C.: Visualization and simulation of near-body hydrodynamics using the Semi-lagrangian fluid simulation method. In: 15th Pacific Conference on Computer Graphics and Applications, PG 2007, pp. 219–228. IEEE (2007) Truong, D.-T., Chow, Y.-Y., Fang, A.C.: Visualization and simulation of near-body hydrodynamics using the Semi-lagrangian fluid simulation method. In: 15th Pacific Conference on Computer Graphics and Applications, PG 2007, pp. 219–228. IEEE (2007)
17.
Zurück zum Zitat Mihalef, V., Kadioglu, S., Sussman, M., Metaxas, D., Hurmusiadis, V.: Interaction of two-phase flow with animated models. Graph. Models 70(3), 33–42 (2008)CrossRef Mihalef, V., Kadioglu, S., Sussman, M., Metaxas, D., Hurmusiadis, V.: Interaction of two-phase flow with animated models. Graph. Models 70(3), 33–42 (2008)CrossRef
18.
Zurück zum Zitat Sato, Y., Hino, T.: CFD simulation of flows around a swimmer in a prone glide position. Suiei Suichu Undo Kagaku. 13(1), 1–9 (2010)CrossRef Sato, Y., Hino, T.: CFD simulation of flows around a swimmer in a prone glide position. Suiei Suichu Undo Kagaku. 13(1), 1–9 (2010)CrossRef
19.
Zurück zum Zitat Mantha, V.R., Marinho, D.A., Silva, A.J., Rouboa, A.I.: The 3D CFD study of gliding swimmer on passive hydrodynamics drag. Braz. Arch. Biol. Technol. 57(2), 302–308 (2014)CrossRef Mantha, V.R., Marinho, D.A., Silva, A.J., Rouboa, A.I.: The 3D CFD study of gliding swimmer on passive hydrodynamics drag. Braz. Arch. Biol. Technol. 57(2), 302–308 (2014)CrossRef
20.
Zurück zum Zitat Banks, J., James, M.C., Turnock, S.R., Hudson, D.A.: An analysis of a swimmer’s passive wave resistance using experimental data and CFD simulations (2014) Banks, J., James, M.C., Turnock, S.R., Hudson, D.A.: An analysis of a swimmer’s passive wave resistance using experimental data and CFD simulations (2014)
21.
Zurück zum Zitat Fan, J., Zhang, W., Zhu, Y., Zhao, J.: CFD-based self-propulsion simulation for frog swimming. J. Mech. Med. Biol. 14(6), 1440012-1–1440012-10 (2014) Fan, J., Zhang, W., Zhu, Y., Zhao, J.: CFD-based self-propulsion simulation for frog swimming. J. Mech. Med. Biol. 14(6), 1440012-1–1440012-10 (2014)
22.
Zurück zum Zitat Dudley, P.N., Bonazza, R., Jones, T.T., Wyneken, J., Porter, W.P.: Leatherbacks swimming in silico: modeling and verifying their momentum and heat balance using computational fluid dynamics. PLoS ONE 9(10), e110701 (2014) Dudley, P.N., Bonazza, R., Jones, T.T., Wyneken, J., Porter, W.P.: Leatherbacks swimming in silico: modeling and verifying their momentum and heat balance using computational fluid dynamics. PLoS ONE 9(10), e110701 (2014)
23.
Zurück zum Zitat Dong, H., Bozkurttas, M., Mittal, R., Madden, P., Lauder, G.V.: Computational modeling and analysis of the hydrodynamics of a highly deformable fish pectoral fin. J. Fluid Mech. 645, 345 (2010)CrossRefMATH Dong, H., Bozkurttas, M., Mittal, R., Madden, P., Lauder, G.V.: Computational modeling and analysis of the hydrodynamics of a highly deformable fish pectoral fin. J. Fluid Mech. 645, 345 (2010)CrossRefMATH
24.
Zurück zum Zitat Van Wassenbergh, S., Van Manen, K., Marcroft, T.A., Alfaro, M.E., Stamhuis, E.J.: Boxfish swimming paradox resolved: forces by the flow of water around the body promote manoeuvrability. J. R. Soc. Interface 12, 1–11 (2014) Van Wassenbergh, S., Van Manen, K., Marcroft, T.A., Alfaro, M.E., Stamhuis, E.J.: Boxfish swimming paradox resolved: forces by the flow of water around the body promote manoeuvrability. J. R. Soc. Interface 12, 1–11 (2014)
25.
Zurück zum Zitat Tytell, E.D., Hsu, C.Y., Williams, T.L., Cohen, A.H., Fauci, L.J.: Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming. Proc. Nat. Acad. Sci. 107(46), 19832–19837 (2010)CrossRef Tytell, E.D., Hsu, C.Y., Williams, T.L., Cohen, A.H., Fauci, L.J.: Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming. Proc. Nat. Acad. Sci. 107(46), 19832–19837 (2010)CrossRef
26.
Zurück zum Zitat Von Loebbecke, A., Mittal, R., Fish, F., Russell, M.: Propulsive efficiency of the underwater dolphin kick in humans. J. Biomech. Eng. 131(5), 054504-1–054504-4 (2009) Von Loebbecke, A., Mittal, R., Fish, F., Russell, M.: Propulsive efficiency of the underwater dolphin kick in humans. J. Biomech. Eng. 131(5), 054504-1–054504-4 (2009)
27.
Zurück zum Zitat Cohen, R.C.Z., Cleary, P.W., Mason, B.R.: Simulations of dolphin kick swimming using smoothed particle hydrodynamics. Hum. Mov. Sci. 31(3), 604–619 (2012)CrossRef Cohen, R.C.Z., Cleary, P.W., Mason, B.R.: Simulations of dolphin kick swimming using smoothed particle hydrodynamics. Hum. Mov. Sci. 31(3), 604–619 (2012)CrossRef
28.
Zurück zum Zitat Sato, Y., Hino, T.: a computational fluid dynamics analysis of hydrodynamic force acting on a swimmer’s hand in a swimming competition. J. Sports Sci. Med. 12(4), 679 (2013) Sato, Y., Hino, T.: a computational fluid dynamics analysis of hydrodynamic force acting on a swimmer’s hand in a swimming competition. J. Sports Sci. Med. 12(4), 679 (2013)
29.
Zurück zum Zitat Hochstein, S., Pacholak, S., Brücker, C., Blickhan, R.: Experimental and Numerical Investigation of the Unsteady Flow around a Human Underwater Undulating Swimmer. In: Tropea, C., Bleckmann, H. (eds.) Nature-Inspired Fluid Mechanics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 119, pp. 293–308. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28302-4_18 Hochstein, S., Pacholak, S., Brücker, C., Blickhan, R.: Experimental and Numerical Investigation of the Unsteady Flow around a Human Underwater Undulating Swimmer. In: Tropea, C., Bleckmann, H. (eds.) Nature-Inspired Fluid Mechanics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 119, pp. 293–308. Springer, Heidelberg (2012). doi:10.​1007/​978-3-642-28302-4_​18
30.
Zurück zum Zitat Novais, M., Silva, A., Mantha, V., Ramos, R., Rouboa, A., Vilas-Boas, J., Luís, S., Marinho, D.: The effect of depth on drag during the streamlined glide: a three-dimensional CFD analysis. J. Hum. Kinet. 33, 55–62 (2012)CrossRef Novais, M., Silva, A., Mantha, V., Ramos, R., Rouboa, A., Vilas-Boas, J., Luís, S., Marinho, D.: The effect of depth on drag during the streamlined glide: a three-dimensional CFD analysis. J. Hum. Kinet. 33, 55–62 (2012)CrossRef
31.
Zurück zum Zitat Marinho, D., Barbosa, T., Rouboa, A., Silva, A.: The hydrodynamic study of the swimming gliding: a two-dimensional computational fluid dynamics (CFD) analysis. J. Hum. Kinet. 29, 49–57 (2011)CrossRef Marinho, D., Barbosa, T., Rouboa, A., Silva, A.: The hydrodynamic study of the swimming gliding: a two-dimensional computational fluid dynamics (CFD) analysis. J. Hum. Kinet. 29, 49–57 (2011)CrossRef
32.
Zurück zum Zitat Silva, A.J., Rouboa, A., Moreira, A., Reis, V.M., Alves, F., Vilas-Boas, J.P., Marinho, D.A.: Analysis of drafting effects in swimming using computational fluid dynamics. J. Sports Sci. Med. 7(1), 60 (2008) Silva, A.J., Rouboa, A., Moreira, A., Reis, V.M., Alves, F., Vilas-Boas, J.P., Marinho, D.A.: Analysis of drafting effects in swimming using computational fluid dynamics. J. Sports Sci. Med. 7(1), 60 (2008)
33.
Zurück zum Zitat Popa, C.V., Zaidi, H., Arfaoui, A., Polidori, G., Taiar, R., Fohanno, S.: Analysis of wall shear stress around a competitive swimmer using 3D Navier-Stokes equations in CFD. Acta Bioeng. Biomech. 13(1), 3–11 (2011) Popa, C.V., Zaidi, H., Arfaoui, A., Polidori, G., Taiar, R., Fohanno, S.: Analysis of wall shear stress around a competitive swimmer using 3D Navier-Stokes equations in CFD. Acta Bioeng. Biomech. 13(1), 3–11 (2011)
34.
Zurück zum Zitat Popa, C.V., Arfaoui, A., Fohanno, S., Taïar, R., Polidori, G.: Influence of a postural change of the swimmer’s head in hydrodynamic performances using 3D CFD. Comput. Methods Biomech. Biomed. Eng. 17(4), 344–351 (2014)CrossRef Popa, C.V., Arfaoui, A., Fohanno, S., Taïar, R., Polidori, G.: Influence of a postural change of the swimmer’s head in hydrodynamic performances using 3D CFD. Comput. Methods Biomech. Biomed. Eng. 17(4), 344–351 (2014)CrossRef
35.
Zurück zum Zitat Arfaoui, A., Popa, C.V., Taïar, R., Polidori, G., Fohanno, S.: Numerical streamline patterns at swimmer’s surface using RANS equations. J. Appl. Biomech. 28(3), 279–283 (2012)CrossRef Arfaoui, A., Popa, C.V., Taïar, R., Polidori, G., Fohanno, S.: Numerical streamline patterns at swimmer’s surface using RANS equations. J. Appl. Biomech. 28(3), 279–283 (2012)CrossRef
36.
Zurück zum Zitat Zaïdi, H., Fohanno, S., Taïar, R., Polidori, G.: Turbulence model choice for the calculation of drag forces when using the CFD method. J. Biomech. 43(3), 405–411 (2010)CrossRef Zaïdi, H., Fohanno, S., Taïar, R., Polidori, G.: Turbulence model choice for the calculation of drag forces when using the CFD method. J. Biomech. 43(3), 405–411 (2010)CrossRef
37.
Zurück zum Zitat Zaïdi, H., Taïar, R., Fohanno, S., Polidori, G.: An evaluation of turbulence models in CFD simulations of underwater swimming. Ser. Biomech. 24, 1–5 (2009) Zaïdi, H., Taïar, R., Fohanno, S., Polidori, G.: An evaluation of turbulence models in CFD simulations of underwater swimming. Ser. Biomech. 24, 1–5 (2009)
38.
Zurück zum Zitat Weber, P.W., Howle, L.E., Murray, M.M., Fish, F.E.: Lift and drag performance of odontocete cetacean flippers. J. Exp. Biol. 212(14), 2149–2158 (2009)CrossRef Weber, P.W., Howle, L.E., Murray, M.M., Fish, F.E.: Lift and drag performance of odontocete cetacean flippers. J. Exp. Biol. 212(14), 2149–2158 (2009)CrossRef
39.
Zurück zum Zitat Pavlov, V., Riedeberger, D., Rist, U., Siebert, U.: Analysis of the relation between skin morphology and local flow conditions for a fast-swimming dolphin. In: Tropea, C., Bleckmann, H. (eds.) Nature-Inspired Fluid Mechanics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 119, pp. 239–253. Springer, Heidelberg (2012)CrossRef Pavlov, V., Riedeberger, D., Rist, U., Siebert, U.: Analysis of the relation between skin morphology and local flow conditions for a fast-swimming dolphin. In: Tropea, C., Bleckmann, H. (eds.) Nature-Inspired Fluid Mechanics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 119, pp. 239–253. Springer, Heidelberg (2012)CrossRef
40.
Zurück zum Zitat Taverna, L., Chellali, R., Rossi, L.: 3D simulation of robotic fish interactions with physics-based underwater environment. In: OCEANS 2010 IEEE, pp. 1–4. IEEE Sydney (2010) Taverna, L., Chellali, R., Rossi, L.: 3D simulation of robotic fish interactions with physics-based underwater environment. In: OCEANS 2010 IEEE, pp. 1–4. IEEE Sydney (2010)
41.
Zurück zum Zitat Ramakrishnan, S., Mittal, R., Lauder, G.V., Bozkurttas, M.: Analysis of maneuvering fish fin hydrodynamics using an immersed boundary method. In: AIAA 2008 38th Fluid Dynamics Conference and Exhibit. AIAA, Seattle, Washington (2008) Ramakrishnan, S., Mittal, R., Lauder, G.V., Bozkurttas, M.: Analysis of maneuvering fish fin hydrodynamics using an immersed boundary method. In: AIAA 2008 38th Fluid Dynamics Conference and Exhibit. AIAA, Seattle, Washington (2008)
42.
Zurück zum Zitat Mittal, R., Dong, H., Bozkurttas, M., Lauder, G., Madden, P.: Locomotion with flexible propulsors: II. Computational modeling of pectoral fin swimming in sunfish. Bioinspiration Biomimetics 1(4), S35–S41 (2006)CrossRef Mittal, R., Dong, H., Bozkurttas, M., Lauder, G., Madden, P.: Locomotion with flexible propulsors: II. Computational modeling of pectoral fin swimming in sunfish. Bioinspiration Biomimetics 1(4), S35–S41 (2006)CrossRef
43.
Zurück zum Zitat Tabatabaei, M., Olcay, A.B., Gokçen, G., Heperkan, H.A.: Drag force and jet propulsion investigation of a swimming squid. In: EPJ Web of Conferences, vol. 92 (2015) Tabatabaei, M., Olcay, A.B., Gokçen, G., Heperkan, H.A.: Drag force and jet propulsion investigation of a swimming squid. In: EPJ Web of Conferences, vol. 92 (2015)
44.
Zurück zum Zitat Yuan, H.Z., Shu, S., Niu, X.D., Li, M., Hu, Y.: A numerical study of jet propulsion of an oblate jellyfish using a momentum exchange-based immersed boundary-lattice boltzmann method. Adv. Appl. Math. Mech. 6(3), 307–326 (2014)CrossRefMATHMathSciNet Yuan, H.Z., Shu, S., Niu, X.D., Li, M., Hu, Y.: A numerical study of jet propulsion of an oblate jellyfish using a momentum exchange-based immersed boundary-lattice boltzmann method. Adv. Appl. Math. Mech. 6(3), 307–326 (2014)CrossRefMATHMathSciNet
45.
Zurück zum Zitat Sahin, M., Mohseni, K., Colin, S.P.: The numerical comparison of flow patterns and propulsive performances for the hydromedusae Sarsia tubulosa and Aequorea victoria. J. Exp. Biol. 212(16), 2656–2667 (2009)CrossRef Sahin, M., Mohseni, K., Colin, S.P.: The numerical comparison of flow patterns and propulsive performances for the hydromedusae Sarsia tubulosa and Aequorea victoria. J. Exp. Biol. 212(16), 2656–2667 (2009)CrossRef
46.
Zurück zum Zitat Sfakiotakis, M., Kazakidi, A., Pateromichelakis, N., Ekaterinaris, J.A., Tsakiris, D.P.: Robotic underwater propulsion inspired by the octopus multi-arm swimming. Robotics and Automation (ICRA). In: 2012 IEEE International Conference, pp. 3833–3839. IEEE (2012) Sfakiotakis, M., Kazakidi, A., Pateromichelakis, N., Ekaterinaris, J.A., Tsakiris, D.P.: Robotic underwater propulsion inspired by the octopus multi-arm swimming. Robotics and Automation (ICRA). In: 2012 IEEE International Conference, pp. 3833–3839. IEEE (2012)
47.
Zurück zum Zitat Van Rees, W.M., Gazzola, M., Koumoutsakos, P.: Optimal shapes for anguilliform swimmers at intermediate Reynolds numbers. J. Fluid Mech. 722, R3-1–R3-12 (2013) Van Rees, W.M., Gazzola, M., Koumoutsakos, P.: Optimal shapes for anguilliform swimmers at intermediate Reynolds numbers. J. Fluid Mech. 722, R3-1–R3-12 (2013)
48.
Zurück zum Zitat Hirato, J., Kawaguchi, Y.: Calculation model of jellyfish for simulating the propulsive motion and the pulsation of the tentacles. In: 18th International Conference on Artificial Reality and Telexistence (2008) Hirato, J., Kawaguchi, Y.: Calculation model of jellyfish for simulating the propulsive motion and the pulsation of the tentacles. In: 18th International Conference on Artificial Reality and Telexistence (2008)
49.
Zurück zum Zitat Inomoto, T., Matsuno, K., Yamakawa, M., Asao, S., Ishihara, S.: Numerical Simulation of flows around jellyfish in a current. In: ICCM 2015, Auckland, NZ (2015) Inomoto, T., Matsuno, K., Yamakawa, M., Asao, S., Ishihara, S.: Numerical Simulation of flows around jellyfish in a current. In: ICCM 2015, Auckland, NZ (2015)
50.
Zurück zum Zitat Rudolf, D., Mould, D.: An Interactive fluid model of jellyfish for animation. In: Ranchordas, A., Pereira, J.M., Araújo, Hélder J., Tavares, João Manuel R.S. (eds.) VISIGRAPP 2009. CCIS, vol. 68, pp. 59–72. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11840-1_5 CrossRef Rudolf, D., Mould, D.: An Interactive fluid model of jellyfish for animation. In: Ranchordas, A., Pereira, J.M., Araújo, Hélder J., Tavares, João Manuel R.S. (eds.) VISIGRAPP 2009. CCIS, vol. 68, pp. 59–72. Springer, Heidelberg (2010). doi:10.​1007/​978-3-642-11840-1_​5 CrossRef
51.
Zurück zum Zitat Kern, S., Koumoutsakos, P.: Simulations of optimized anguilliform swimming. J. Exp. Biol. 209(24), 4841–4857 (2006)CrossRef Kern, S., Koumoutsakos, P.: Simulations of optimized anguilliform swimming. J. Exp. Biol. 209(24), 4841–4857 (2006)CrossRef
52.
Zurück zum Zitat Shirgaonkar, A.A., Curet, O.M., Patankar, N.A., MacIver, M.A.: The hydrodynamics of ribbon-fin propulsion during impulsive motion. J. Exp. Biol. 211(21), 3490–3503 (2008)CrossRef Shirgaonkar, A.A., Curet, O.M., Patankar, N.A., MacIver, M.A.: The hydrodynamics of ribbon-fin propulsion during impulsive motion. J. Exp. Biol. 211(21), 3490–3503 (2008)CrossRef
53.
Zurück zum Zitat Mittal, R.H., Dong, M., Bozkurttas, A., Von Loebbecke, A., Najjar, F.: Analysis of flying and swimming in nature using an immersed boundary method. Urbana51 (2006) Mittal, R.H., Dong, M., Bozkurttas, A., Von Loebbecke, A., Najjar, F.: Analysis of flying and swimming in nature using an immersed boundary method. Urbana51 (2006)
54.
Zurück zum Zitat Matevž, D., Bajcar,T., Širok., B.: Numerical investigation of flow in the vicinity of a swimming jellyfish. Eng. Appl. Comput. Fluid Mech. 3(2), 258–270 (2009) Matevž, D., Bajcar,T., Širok., B.: Numerical investigation of flow in the vicinity of a swimming jellyfish. Eng. Appl. Comput. Fluid Mech. 3(2), 258–270 (2009)
55.
Zurück zum Zitat Monaghan, J.: Smoothed particle hydrodynamics. Ann. Rev. Astron. Astrophys. 30(1), 543–574 (1992)CrossRef Monaghan, J.: Smoothed particle hydrodynamics. Ann. Rev. Astron. Astrophys. 30(1), 543–574 (1992)CrossRef
57.
Zurück zum Zitat Harlow, F., Welch, J.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8(12), 2182 (1965)CrossRefMATHMathSciNet Harlow, F., Welch, J.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8(12), 2182 (1965)CrossRefMATHMathSciNet
58.
Zurück zum Zitat Riedeberger, D., Rist, U.: Numerical simulation of laminar-turbulent transition on a dolphin using the γ-Re θ model. In: Nagel, W., Kröner, D., Resch, M. (eds.) High Performance Computing in Science and Engineering ‘11, pp. 379–391. Springer, Heidelberg (2012) Riedeberger, D., Rist, U.: Numerical simulation of laminar-turbulent transition on a dolphin using the γ-Re θ model. In: Nagel, W., Kröner, D., Resch, M. (eds.) High Performance Computing in Science and Engineering ‘11, pp. 379–391. Springer, Heidelberg (2012)
59.
Zurück zum Zitat Enright, D., Marschner, S., Fedkiw, R., Animation and rendering of complex water surfaces. ACM Trans. Graph. 21(3), 736–744 (2002) Enright, D., Marschner, S., Fedkiw, R., Animation and rendering of complex water surfaces. ACM Trans. Graph. 21(3), 736–744 (2002)
60.
Zurück zum Zitat Foster, N., Fedkiw, R.: Practical animation of liquids. In: 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 23–30. ACM (2001) Foster, N., Fedkiw, R.: Practical animation of liquids. In: 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 23–30. ACM (2001)
62.
Zurück zum Zitat Stam, J.: Stable fluids. In: 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 121–128. ACM Press/Addison-Wesley Publishing Co. (1999) Stam, J.: Stable fluids. In: 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 121–128. ACM Press/Addison-Wesley Publishing Co. (1999)
63.
Zurück zum Zitat Lazunin, V., Savchenko, V.: Vortices formation for medusa-like objects. In: ECCOMAS CFD 2010 (2010) Lazunin, V., Savchenko, V.: Vortices formation for medusa-like objects. In: ECCOMAS CFD 2010 (2010)
64.
Zurück zum Zitat Ichikawa, S., Yazaki, Y., Mochizuki, O.: Flow induced by jellyfish. Phys. Fluids 18(9), 091108 (2006)CrossRef Ichikawa, S., Yazaki, Y., Mochizuki, O.: Flow induced by jellyfish. Phys. Fluids 18(9), 091108 (2006)CrossRef
65.
Zurück zum Zitat Tytell, E.: The hydrodynamics of eel swimming II. Effect of swimming speed. J. Exp. Biol. 207(19), 3265–3279 (2004)CrossRef Tytell, E.: The hydrodynamics of eel swimming II. Effect of swimming speed. J. Exp. Biol. 207(19), 3265–3279 (2004)CrossRef
67.
Zurück zum Zitat Sussman, M., Puckett, E.: A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162(2), 301–337 (2000)CrossRefMATHMathSciNet Sussman, M., Puckett, E.: A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162(2), 301–337 (2000)CrossRefMATHMathSciNet
68.
Zurück zum Zitat Li, S., Liu, W.: Meshfree and particle methods and their applications. Appl. Mech. Rev. 55(1), 1 (2002)CrossRef Li, S., Liu, W.: Meshfree and particle methods and their applications. Appl. Mech. Rev. 55(1), 1 (2002)CrossRef
69.
Zurück zum Zitat Cleary, P.W., Prakash, M., Ha, J., Stokes, N., Scott, C.: Smooth particle hydrodynamics: status and future potential. Prog. Comput. Fluid Dyn. Int. J. 7(2–4), 70 (2007)CrossRefMATHMathSciNet Cleary, P.W., Prakash, M., Ha, J., Stokes, N., Scott, C.: Smooth particle hydrodynamics: status and future potential. Prog. Comput. Fluid Dyn. Int. J. 7(2–4), 70 (2007)CrossRefMATHMathSciNet
Metadaten
Titel
Recent Progress of Computational Fluid Dynamics Modeling of Animal and Human Swimming for Computer Animation
verfasst von
Tom Matko
Jian Chang
Zhidong Xiao
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-69487-0_1