Skip to main content
Erschienen in: Journal of Coatings Technology and Research 1/2017

29.11.2016 | Review Paper

Recent progress of functional coating materials and technologies for polycarbonate

verfasst von: Namil Kim

Erschienen in: Journal of Coatings Technology and Research | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polycarbonate (PC) has been recognized as a promising alternative for inorganic glass thanks to high optical transparency, light weight, and excellent toughness. To expand the PC applications, especially in outdoor environments, and to impart new functionalities, surface coating can be an effective approach to overcome the intrinsic drawbacks of PC, such as low hardness and poor weathering performance. Coating techniques for PC are primarily classified into the wet chemical coating of organic–inorganic hybrid networks and the gaseous vacuum deposition of inorganic materials. Parallel to the development of electrical and optical devices and energy-efficient automobiles, PC with improved electrical conductivity, antireflection, and self-cleaning has been in high demand and has been achieved by well-controlled coating technologies of programmed functional materials. This article reviews the physical properties of the coating materials used for PC with emphasis on recent progress of coating technologies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat LeGrand, DG, Bendler, JT, Handbook of Polycarbonate Science and Technology. Marcel Dekker, New York (2000) LeGrand, DG, Bendler, JT, Handbook of Polycarbonate Science and Technology. Marcel Dekker, New York (2000)
2.
Zurück zum Zitat Jang, MJ, Park, CK, Lee, NY, “Modification of Polycarbonate with Hydrophilic/Hydrophobic Coatings for the Fabrication of Microdevices.” Sensor. Actuat. B, 193 599–607 (2014)CrossRef Jang, MJ, Park, CK, Lee, NY, “Modification of Polycarbonate with Hydrophilic/Hydrophobic Coatings for the Fabrication of Microdevices.” Sensor. Actuat. B, 193 599–607 (2014)CrossRef
3.
Zurück zum Zitat Zhang, Y, Trinh, KTL, Yoo, IS, Lee, NY, “One-Step Glass-Like Coating of Polycarbonate for Seamless DNA Purification and Amplification on an Integrated Monolithic Microdevice.” Sensor. Actuat. B-Chem., 202 1281–1289 (2014)CrossRef Zhang, Y, Trinh, KTL, Yoo, IS, Lee, NY, “One-Step Glass-Like Coating of Polycarbonate for Seamless DNA Purification and Amplification on an Integrated Monolithic Microdevice.” Sensor. Actuat. B-Chem., 202 1281–1289 (2014)CrossRef
4.
Zurück zum Zitat Seubert, C, Nietering, K, Nichols, M, Wykoff, R, Bollin, S, “An Overview of the Scratch Resistance of Automotive Coatings: Exterior Clearcoats and Polycarbonate Hardcoats.” Coatings, 2 221–234 (2014)CrossRef Seubert, C, Nietering, K, Nichols, M, Wykoff, R, Bollin, S, “An Overview of the Scratch Resistance of Automotive Coatings: Exterior Clearcoats and Polycarbonate Hardcoats.” Coatings, 2 221–234 (2014)CrossRef
5.
Zurück zum Zitat Bewilogua, K, Brauer, G, Dietz, A, Gabler, J, Goch, G, Karpuschewski, B, Szyszka, B, “Surface Technology for Automotive Engineering.” CIRP Ann. Manuf. Technol., 58 608–627 (2009)CrossRef Bewilogua, K, Brauer, G, Dietz, A, Gabler, J, Goch, G, Karpuschewski, B, Szyszka, B, “Surface Technology for Automotive Engineering.” CIRP Ann. Manuf. Technol., 58 608–627 (2009)CrossRef
6.
Zurück zum Zitat Choi, MC, Kim, YK, Ha, CS, “Polymers for Flexible Displays: From Material Selection to Device Applications.” Prog. Polym. Sci., 33 581–630 (2008)CrossRef Choi, MC, Kim, YK, Ha, CS, “Polymers for Flexible Displays: From Material Selection to Device Applications.” Prog. Polym. Sci., 33 581–630 (2008)CrossRef
7.
Zurück zum Zitat Schmauder, T, Nauenburg, KD, Kruse, K, “Hard Coatings by Plasma CVD on Polycarbonate for Automotive and Optical Applications.” Thin Solid Films, 502 270–274 (2006)CrossRef Schmauder, T, Nauenburg, KD, Kruse, K, “Hard Coatings by Plasma CVD on Polycarbonate for Automotive and Optical Applications.” Thin Solid Films, 502 270–274 (2006)CrossRef
8.
Zurück zum Zitat Charitidis, C, Laskarakis, A, Kassavetis, S, Gravalidis, C, Logothetidis, S, “Optical and Nanomechanical Study of Anti-Scratch Layers on Polycarbonate Lenses.” Superlattices Microst., 36 171–179 (2004)CrossRef Charitidis, C, Laskarakis, A, Kassavetis, S, Gravalidis, C, Logothetidis, S, “Optical and Nanomechanical Study of Anti-Scratch Layers on Polycarbonate Lenses.” Superlattices Microst., 36 171–179 (2004)CrossRef
9.
Zurück zum Zitat Urreaga, JM, Matías, MC, Lorenzo, V, de la Orden, MU, “Abrasion Resistance in the Tumble Test of Sol-Gel Hybrid Coatings for Ophthalmic Plastic Lenses.” Mater. Lett., 45 293–297 (2000)CrossRef Urreaga, JM, Matías, MC, Lorenzo, V, de la Orden, MU, “Abrasion Resistance in the Tumble Test of Sol-Gel Hybrid Coatings for Ophthalmic Plastic Lenses.” Mater. Lett., 45 293–297 (2000)CrossRef
10.
Zurück zum Zitat Katsamberis, D, Browall, K, Iacovangelo, C, Neumann Morgner, M, “Highly Durable Coatings for Automotive Polycarbonate Glazing.” Prog. Org. Coat., 34 130–134 (1998)CrossRef Katsamberis, D, Browall, K, Iacovangelo, C, Neumann Morgner, M, “Highly Durable Coatings for Automotive Polycarbonate Glazing.” Prog. Org. Coat., 34 130–134 (1998)CrossRef
11.
Zurück zum Zitat Samson, F, “Ophthalmic Lens Coatings.” Surf. Coat. Technol., 81 79–86 (1996)CrossRef Samson, F, “Ophthalmic Lens Coatings.” Surf. Coat. Technol., 81 79–86 (1996)CrossRef
12.
Zurück zum Zitat Fukushima, M, Higuchi, K, Komori, H, Yamaya, M, Okumura, K, Chigita, K, Maruyama, Y, Takai, T, Isobe, Y, Kawamura, N, Nagai, T, “Plastic Article for Automotive Glazing.” US Patent 2012/0058347 A1 (2012) Fukushima, M, Higuchi, K, Komori, H, Yamaya, M, Okumura, K, Chigita, K, Maruyama, Y, Takai, T, Isobe, Y, Kawamura, N, Nagai, T, “Plastic Article for Automotive Glazing.” US Patent 2012/0058347 A1 (2012)
13.
Zurück zum Zitat Gasworth, SM, Peters, M, Dujardin, R, “Polycarbonate Automotive Window Panels with Coating System Blocking UV and IR Radiation and Providing Abrasion Resistant Surface.” US Patent 6,797,384 B2 (2004) Gasworth, SM, Peters, M, Dujardin, R, “Polycarbonate Automotive Window Panels with Coating System Blocking UV and IR Radiation and Providing Abrasion Resistant Surface.” US Patent 6,797,384 B2 (2004)
14.
Zurück zum Zitat Westeppe, U, Weymans, G, Freitag, D, Idel, K-J, “Polycarbonate Mixtures in Optical Applications.” US Patent 5,132,154 (1992) Westeppe, U, Weymans, G, Freitag, D, Idel, K-J, “Polycarbonate Mixtures in Optical Applications.” US Patent 5,132,154 (1992)
15.
Zurück zum Zitat Ruhlin, R, “Method of Forming an Opthalmic Lens from a Synthetic Material Blank.” US Patent 5,100,590 (1992) Ruhlin, R, “Method of Forming an Opthalmic Lens from a Synthetic Material Blank.” US Patent 5,100,590 (1992)
16.
Zurück zum Zitat Diepens, M, Gijsman, P, “Influence of Light Intensity on the Photodegradation of Bisphenol A Polycarbonate.” Polym. Degrad. Stab., 94 34–38 (2009)CrossRef Diepens, M, Gijsman, P, “Influence of Light Intensity on the Photodegradation of Bisphenol A Polycarbonate.” Polym. Degrad. Stab., 94 34–38 (2009)CrossRef
17.
Zurück zum Zitat Diepens, M, Gijsman, P, “Photodegradation of Bisphenol A Polycarbonate.” Polym. Degrad. Stab., 92 397–406 (2007)CrossRef Diepens, M, Gijsman, P, “Photodegradation of Bisphenol A Polycarbonate.” Polym. Degrad. Stab., 92 397–406 (2007)CrossRef
18.
Zurück zum Zitat Rivaton, A, Mailhot, B, Soulestin, J, Varghese, H, Gardette, JL, “Comparison of the Photochemical and Thermal Degradation of Bisphenol-A Polycarbonate and Trimethylcyclohexane–Polycarbonate.” Polym. Degrad. Stab., 75 17–33 (2002)CrossRef Rivaton, A, Mailhot, B, Soulestin, J, Varghese, H, Gardette, JL, “Comparison of the Photochemical and Thermal Degradation of Bisphenol-A Polycarbonate and Trimethylcyclohexane–Polycarbonate.” Polym. Degrad. Stab., 75 17–33 (2002)CrossRef
19.
Zurück zum Zitat Rivaton, A, “Recent Advances in Bisphenol-A Polycarbonate Photodegradation.” Polym. Degrad. Stab., 49 163–179 (1995)CrossRef Rivaton, A, “Recent Advances in Bisphenol-A Polycarbonate Photodegradation.” Polym. Degrad. Stab., 49 163–179 (1995)CrossRef
20.
Zurück zum Zitat Blaga, A, Yamasaki, RS, “Surface Microcracking Induced by Weathering of Polycarbonate Sheet.” J. Mater. Sci., 11 1513–1520 (1976)CrossRef Blaga, A, Yamasaki, RS, “Surface Microcracking Induced by Weathering of Polycarbonate Sheet.” J. Mater. Sci., 11 1513–1520 (1976)CrossRef
21.
Zurück zum Zitat Hauenstein, O, Reiter, M, Agarwal, S, Rieger, B, Greiner, A, “Bio-based Polycarbonate from Limonene Oxide and CO2 with High Molecular Weight, Excellent Thermal Resistance, Hardness and Transparency.” Green Chem., 18 760–770 (2016)CrossRef Hauenstein, O, Reiter, M, Agarwal, S, Rieger, B, Greiner, A, “Bio-based Polycarbonate from Limonene Oxide and CO2 with High Molecular Weight, Excellent Thermal Resistance, Hardness and Transparency.” Green Chem., 18 760–770 (2016)CrossRef
22.
Zurück zum Zitat Rao, PS, Subrahmanya, S, Sathyanarayana, DN, “Polyaniline–Polycarbonate Blends Synthesized by Two Emulsion Pathways.” Synth. Met., 143 323–330 (2004)CrossRef Rao, PS, Subrahmanya, S, Sathyanarayana, DN, “Polyaniline–Polycarbonate Blends Synthesized by Two Emulsion Pathways.” Synth. Met., 143 323–330 (2004)CrossRef
23.
Zurück zum Zitat Seguch, T, Yagi, T, Ishikawa, S, Sano, Y, “New Material Synthesis by Radiation Processing at High Temperature-Polymer Modification with Improved Irradiation Technology.” Radiat. Phys. Chem., 63 35–40 (2002)CrossRef Seguch, T, Yagi, T, Ishikawa, S, Sano, Y, “New Material Synthesis by Radiation Processing at High Temperature-Polymer Modification with Improved Irradiation Technology.” Radiat. Phys. Chem., 63 35–40 (2002)CrossRef
24.
Zurück zum Zitat Okamoto, M, “Synthesis and Properties of Polycarbonate-Poly(methylmethacrylate) Graft Copolymers by Polycondensation of Macromonomers.” J. Appl. Polym. Sci., 80 2670–2675 (2001)CrossRef Okamoto, M, “Synthesis and Properties of Polycarbonate-Poly(methylmethacrylate) Graft Copolymers by Polycondensation of Macromonomers.” J. Appl. Polym. Sci., 80 2670–2675 (2001)CrossRef
25.
Zurück zum Zitat Brinker, CJ, Sherrer, GW, Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing. Academic Press, San Diego (1990) Brinker, CJ, Sherrer, GW, Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing. Academic Press, San Diego (1990)
26.
Zurück zum Zitat Ciriminna, R, Fidalgo, A, Pandarus, V, Béland, F, Ilharco, LM, Pagliaro, M, “The Sol–Gel Route to Advanced Silica-based Materials and Recent Applications.” Chem. Rev., 113 6592–6620 (2013)CrossRef Ciriminna, R, Fidalgo, A, Pandarus, V, Béland, F, Ilharco, LM, Pagliaro, M, “The Sol–Gel Route to Advanced Silica-based Materials and Recent Applications.” Chem. Rev., 113 6592–6620 (2013)CrossRef
27.
Zurück zum Zitat Schulz, U, Kaiser, N, “Vacuum Coating of Plastic Optics.” Prog. Surf. Sci., 81 387–401 (2006)CrossRef Schulz, U, Kaiser, N, “Vacuum Coating of Plastic Optics.” Prog. Surf. Sci., 81 387–401 (2006)CrossRef
28.
Zurück zum Zitat Choy, KL, “Chemical Vapour Deposition of Coatings.” Prog. Mater. Sci., 48 57–170 (2003)CrossRef Choy, KL, “Chemical Vapour Deposition of Coatings.” Prog. Mater. Sci., 48 57–170 (2003)CrossRef
29.
Zurück zum Zitat Chen, Z, Wu, LYL, “Scratch Damage Resistance of Silica-based Sol-Gel Coatings on Polymeric Substrates.” In: Friedrich, K, Schlarb, AK (eds.) Tribology of Polymeric Nanocomposites, pp. 467–511. Butterworth-Heinemann, Oxford (2013)CrossRef Chen, Z, Wu, LYL, “Scratch Damage Resistance of Silica-based Sol-Gel Coatings on Polymeric Substrates.” In: Friedrich, K, Schlarb, AK (eds.) Tribology of Polymeric Nanocomposites, pp. 467–511. Butterworth-Heinemann, Oxford (2013)CrossRef
30.
Zurück zum Zitat Yahyaei, H, Mohseni, M, “Use of Nanoindentation and Nanoscratch Experiments to Reveal the Mechanical Behavior of Sol-Gel Prepared Nanocomposite Films on Polycarbonate.” Tribol. Int., 57 144–155 (2013)CrossRef Yahyaei, H, Mohseni, M, “Use of Nanoindentation and Nanoscratch Experiments to Reveal the Mechanical Behavior of Sol-Gel Prepared Nanocomposite Films on Polycarbonate.” Tribol. Int., 57 144–155 (2013)CrossRef
31.
Zurück zum Zitat Chen, Z, Wu, LYL, Chwa, E, Tham, O, “Scratch Resistance of Brittle Thin Films on Compliant Substrates.” Mat. Sci. Eng. A Struct., 493 292–298 (2008)CrossRef Chen, Z, Wu, LYL, Chwa, E, Tham, O, “Scratch Resistance of Brittle Thin Films on Compliant Substrates.” Mat. Sci. Eng. A Struct., 493 292–298 (2008)CrossRef
32.
Zurück zum Zitat Wu, LYL, Chwa, E, Chen, Z, Zeng, XT, “A Study Towards Improving Mechanical Properties of Sol-Gel Coatings for Polycarbonate.” Thin Solid Films, 516 1056–1062 (2008)CrossRef Wu, LYL, Chwa, E, Chen, Z, Zeng, XT, “A Study Towards Improving Mechanical Properties of Sol-Gel Coatings for Polycarbonate.” Thin Solid Films, 516 1056–1062 (2008)CrossRef
33.
Zurück zum Zitat Bao, YW, Wang, W, Zhou, YC, “Investigation of the Relationship between Elastic Modulus and Hardness Based on Depth-Sensing Indentation Measurements.” Acta Mater., 52 5397–5404 (2004)CrossRef Bao, YW, Wang, W, Zhou, YC, “Investigation of the Relationship between Elastic Modulus and Hardness Based on Depth-Sensing Indentation Measurements.” Acta Mater., 52 5397–5404 (2004)CrossRef
34.
Zurück zum Zitat Musil, J, Kunc, F, Zeman, H, Poláková, H, “Relationships between Hardness, Young’s Modulus and Elastic Recovery in Hard Nanocomposite Coatings.” Surf. Coat. Technol., 154 304–313 (2002)CrossRef Musil, J, Kunc, F, Zeman, H, Poláková, H, “Relationships between Hardness, Young’s Modulus and Elastic Recovery in Hard Nanocomposite Coatings.” Surf. Coat. Technol., 154 304–313 (2002)CrossRef
35.
Zurück zum Zitat Mackenzie, JD, Bescher, EP, “Physical Properties of Sol-Gel Coatings.” J. Sol-Gel Sci. Technol., 19 23–29 (2000)CrossRef Mackenzie, JD, Bescher, EP, “Physical Properties of Sol-Gel Coatings.” J. Sol-Gel Sci. Technol., 19 23–29 (2000)CrossRef
36.
Zurück zum Zitat Wang, D, Bierwagen, GP, “Sol-Gel Coatings on Metals for Corrosion Protection.” Prog. Org. Coat., 64 327–338 (2009)CrossRef Wang, D, Bierwagen, GP, “Sol-Gel Coatings on Metals for Corrosion Protection.” Prog. Org. Coat., 64 327–338 (2009)CrossRef
37.
Zurück zum Zitat Schottner, G, “Hybrid Sol-Gel-Derived Polymers: Applications of Multifunctional Materials.” Chem. Mater., 13 3422–3435 (2001)CrossRef Schottner, G, “Hybrid Sol-Gel-Derived Polymers: Applications of Multifunctional Materials.” Chem. Mater., 13 3422–3435 (2001)CrossRef
38.
Zurück zum Zitat Wen, J, Vasudevan, VJ, Wilkes, GL, “Abrasion Resistant Inorganic/Organic Coating Materials Prepared by the Sol-Gel Method.” J. Sol-Gel Sci. Technol., 5 115–126 (1995)CrossRef Wen, J, Vasudevan, VJ, Wilkes, GL, “Abrasion Resistant Inorganic/Organic Coating Materials Prepared by the Sol-Gel Method.” J. Sol-Gel Sci. Technol., 5 115–126 (1995)CrossRef
39.
Zurück zum Zitat Song, KC, Park, JK, Kang, HU, Kim, SH, “Synthesis of Hydrophilic Coating Solution for Polymer Substrate Using Glycidoxypropyltrimethoxysilane.” J. Sol-Gel Sci. Technol., 27 53–59 (2003)CrossRef Song, KC, Park, JK, Kang, HU, Kim, SH, “Synthesis of Hydrophilic Coating Solution for Polymer Substrate Using Glycidoxypropyltrimethoxysilane.” J. Sol-Gel Sci. Technol., 27 53–59 (2003)CrossRef
40.
Zurück zum Zitat Chou, TP, Cao, G, “Adhesion of Sol-Gel-Derived Organic-Inorganic Hybrid Coatings on Polyester.” J. Sol-Gel Sci. Technol., 27 31–41 (2003)CrossRef Chou, TP, Cao, G, “Adhesion of Sol-Gel-Derived Organic-Inorganic Hybrid Coatings on Polyester.” J. Sol-Gel Sci. Technol., 27 31–41 (2003)CrossRef
41.
Zurück zum Zitat Deng, Q, Moore, RB, Mauritz, KA, “Nafion®/(SiO2, ORMOSIL, and Dimethylsiloxane) Hybrids Via In Situ Sol-Gel Reactions: Characterization of Fundamental Properties.” J. Appl. Polym. Sci., 68 747–763 (1998)CrossRef Deng, Q, Moore, RB, Mauritz, KA, “Nafion®/(SiO2, ORMOSIL, and Dimethylsiloxane) Hybrids Via In Situ Sol-Gel Reactions: Characterization of Fundamental Properties.” J. Appl. Polym. Sci., 68 747–763 (1998)CrossRef
42.
Zurück zum Zitat Schmidt, H, “New Type of Non-Crystalline Solids between Inorganic and Organic Materials.” J. Non-Cryst. Solids, 73 681–691 (1985)CrossRef Schmidt, H, “New Type of Non-Crystalline Solids between Inorganic and Organic Materials.” J. Non-Cryst. Solids, 73 681–691 (1985)CrossRef
43.
Zurück zum Zitat Haas, KH, Wolter, H, “Synthesis, Properties and Applications of Inorganic-Organic Copolymers.” Curr. Opin. Solid St. M., 4 571–580 (1999)CrossRef Haas, KH, Wolter, H, “Synthesis, Properties and Applications of Inorganic-Organic Copolymers.” Curr. Opin. Solid St. M., 4 571–580 (1999)CrossRef
44.
Zurück zum Zitat Haas, KH, Schwab, SA, Rose, K, Schottner, G, “Functionalized Coatings Based on Inorganic-Organic Polymers(ORMOCER®s) and Their Combination with Vapor Deposited Inorganic Thin Films.” Surf. Coat. Technol., 111 72–79 (1999)CrossRef Haas, KH, Schwab, SA, Rose, K, Schottner, G, “Functionalized Coatings Based on Inorganic-Organic Polymers(ORMOCER®s) and Their Combination with Vapor Deposited Inorganic Thin Films.” Surf. Coat. Technol., 111 72–79 (1999)CrossRef
45.
Zurück zum Zitat Kasemann, R, Schmidt, H, “Coatings for Mechanical and Chemical Protection Based on Organic-Inorganic Sol-Gel Nanocomposites.” New J. Chem., 18 1117–1123 (1994) Kasemann, R, Schmidt, H, “Coatings for Mechanical and Chemical Protection Based on Organic-Inorganic Sol-Gel Nanocomposites.” New J. Chem., 18 1117–1123 (1994)
46.
Zurück zum Zitat Hench, LL, West, JK, “The Sol-Gel Process.” Chem. Rev., 90 33–72 (1990)CrossRef Hench, LL, West, JK, “The Sol-Gel Process.” Chem. Rev., 90 33–72 (1990)CrossRef
47.
Zurück zum Zitat Khramov, AN, Balbyshev, VN, Voevodin, NN, Donley, MS, “Nanostructured Sol-Gel Derived Conversion Coatings Based on Epoxy- and Amino-silanes.” Prog. Org. Coat., 47 207–213 (2003)CrossRef Khramov, AN, Balbyshev, VN, Voevodin, NN, Donley, MS, “Nanostructured Sol-Gel Derived Conversion Coatings Based on Epoxy- and Amino-silanes.” Prog. Org. Coat., 47 207–213 (2003)CrossRef
48.
Zurück zum Zitat Hobble, D, Nacken, M, Schmidt, H, “A NMR Study on the Hydrolysis, Condensation and Epoxide Ring-Opening Reaction in Sols and Gels of the System Glycidoxypropyltrimethoxysilane-Water-Titaniumtetraethoxide.” J. Sol-Gel Sci. Technol., 12 169–179 (1998)CrossRef Hobble, D, Nacken, M, Schmidt, H, “A NMR Study on the Hydrolysis, Condensation and Epoxide Ring-Opening Reaction in Sols and Gels of the System Glycidoxypropyltrimethoxysilane-Water-Titaniumtetraethoxide.” J. Sol-Gel Sci. Technol., 12 169–179 (1998)CrossRef
49.
Zurück zum Zitat Mashouf, G, Ebrahimi, M, “UV Curable Urethane Acrylate Coatings Formulation: Experimental Design Approach.” Pigm. Resin Technol., 43 61–68 (2014)CrossRef Mashouf, G, Ebrahimi, M, “UV Curable Urethane Acrylate Coatings Formulation: Experimental Design Approach.” Pigm. Resin Technol., 43 61–68 (2014)CrossRef
50.
Zurück zum Zitat Chibac, A, Melinte, V, Buruiana, T, Balan, L, Buruiana, EC, “One-Pot Synthesis of Photocrosslinked Sol-Gel Hybrid Composites Containing Silver Nanoparticles in Urethane-Acrylic Matrixes.” Chem. Eng. J., 200–202 577–588 (2012)CrossRef Chibac, A, Melinte, V, Buruiana, T, Balan, L, Buruiana, EC, “One-Pot Synthesis of Photocrosslinked Sol-Gel Hybrid Composites Containing Silver Nanoparticles in Urethane-Acrylic Matrixes.” Chem. Eng. J., 200–202 577–588 (2012)CrossRef
51.
Zurück zum Zitat Sangermano, M, Foix, D, Kortaberria, G, Messori, M, “Multifunctional Antistatic and Scratch Resistant UV-Cured Acrylic Coatings.” Prog. Org. Coat., 76 1191–1196 (2013)CrossRef Sangermano, M, Foix, D, Kortaberria, G, Messori, M, “Multifunctional Antistatic and Scratch Resistant UV-Cured Acrylic Coatings.” Prog. Org. Coat., 76 1191–1196 (2013)CrossRef
52.
Zurück zum Zitat Nakayama, N, Hayashi, T, “Synthesis of Novel UV-Curable Difunctional Thiourethane Methacrylate and Studies on Organic-Inorganic Nanocomposite Hard Coatings for High Refractive Index Plastic Lenses.” Prog. Org. Coat., 62 274–284 (2008)CrossRef Nakayama, N, Hayashi, T, “Synthesis of Novel UV-Curable Difunctional Thiourethane Methacrylate and Studies on Organic-Inorganic Nanocomposite Hard Coatings for High Refractive Index Plastic Lenses.” Prog. Org. Coat., 62 274–284 (2008)CrossRef
53.
Zurück zum Zitat Xu, J, Pang, W, Shi, W, “Synthesis of UV-Curable Organic-Inorganic Hybrid Urethane Acrylates and Properties of Cured Films.” Thin Solid Films, 514 69–75 (2006)CrossRef Xu, J, Pang, W, Shi, W, “Synthesis of UV-Curable Organic-Inorganic Hybrid Urethane Acrylates and Properties of Cured Films.” Thin Solid Films, 514 69–75 (2006)CrossRef
54.
Zurück zum Zitat Sepeur, S, Kunze, N, Werner, B, Schmidt, H, “UV Curable Hard Coatings on Plastics.” Thin Solid Films, 351 216–219 (1999)CrossRef Sepeur, S, Kunze, N, Werner, B, Schmidt, H, “UV Curable Hard Coatings on Plastics.” Thin Solid Films, 351 216–219 (1999)CrossRef
55.
Zurück zum Zitat Kim, HD, Kim, TW, “Preparation and Properties of UV-Curable Polyurethane Acrylate Ionomers.” J. Appl. Polym. Sci., 67 2153–2162 (1998)CrossRef Kim, HD, Kim, TW, “Preparation and Properties of UV-Curable Polyurethane Acrylate Ionomers.” J. Appl. Polym. Sci., 67 2153–2162 (1998)CrossRef
56.
Zurück zum Zitat Barletta, M, Pezzola, S, Vesco, S, Tagliaferri, V, Trovalusci, F, “Experimental Evaluation of Plowing and Scratch Hardness of Aqueous Two-Component Polyurethane (2 K-PUR) Coatings on Glass and Polycarbonate.” Prog. Org. Coat., 77 636–645 (2014)CrossRef Barletta, M, Pezzola, S, Vesco, S, Tagliaferri, V, Trovalusci, F, “Experimental Evaluation of Plowing and Scratch Hardness of Aqueous Two-Component Polyurethane (2 K-PUR) Coatings on Glass and Polycarbonate.” Prog. Org. Coat., 77 636–645 (2014)CrossRef
57.
Zurück zum Zitat Xu, H, Qiu, F, Wang, Y, Wu, W, Yang, D, Guo, Q, “UV-Curable Waterborne Polyurethane-Acrylate: Preparation, Characterization and Properties.” Prog. Org. Coat., 73 47–53 (2012)CrossRef Xu, H, Qiu, F, Wang, Y, Wu, W, Yang, D, Guo, Q, “UV-Curable Waterborne Polyurethane-Acrylate: Preparation, Characterization and Properties.” Prog. Org. Coat., 73 47–53 (2012)CrossRef
58.
Zurück zum Zitat Hwang, HD, Park, CH, Moon, JI, Kim, HJ, Masubuchi, T, “UV-Curing Behavior and Physical Properties of Waterborne UV-Curable Polycarbonate-Based Polyurethane Dispersion.” Prog. Org. Coat., 72 663–675 (2011)CrossRef Hwang, HD, Park, CH, Moon, JI, Kim, HJ, Masubuchi, T, “UV-Curing Behavior and Physical Properties of Waterborne UV-Curable Polycarbonate-Based Polyurethane Dispersion.” Prog. Org. Coat., 72 663–675 (2011)CrossRef
59.
Zurück zum Zitat Masson, F, Decker, C, Jaworek, T, Schwalm, R, “UV-Radiation Curing of Waterbased Urethane-Acrylate Coatings.” Prog. Org. Coat., 39 115–126 (2000)CrossRef Masson, F, Decker, C, Jaworek, T, Schwalm, R, “UV-Radiation Curing of Waterbased Urethane-Acrylate Coatings.” Prog. Org. Coat., 39 115–126 (2000)CrossRef
60.
Zurück zum Zitat Decker, C, Masson, F, Schwalm, R, “Weathering Resistance of Waterbased UV-Cured Polyurethane-Acrylate Coatings.” Polym. Degrad. Stab., 83 309–320 (2004)CrossRef Decker, C, Masson, F, Schwalm, R, “Weathering Resistance of Waterbased UV-Cured Polyurethane-Acrylate Coatings.” Polym. Degrad. Stab., 83 309–320 (2004)CrossRef
61.
Zurück zum Zitat Decker, C, Masson, F, Schwalm, R, “Dual-Curing of Waterborne Urethane-Acrylate Coatings by UV and Thermal Processing.” Macromol. Mater. Eng., 288 17–28 (2003)CrossRef Decker, C, Masson, F, Schwalm, R, “Dual-Curing of Waterborne Urethane-Acrylate Coatings by UV and Thermal Processing.” Macromol. Mater. Eng., 288 17–28 (2003)CrossRef
62.
Zurück zum Zitat Park, YJ, Lim, DH, Kim, HJ, Park, DS, Sung, IK, “UV- and Thermal-Curing Behaviors of Dual-Curable Adhesives Based on Epoxy Acrylate Oligomers.” Int. J. Adhes. Adhes., 29 710–717 (2009)CrossRef Park, YJ, Lim, DH, Kim, HJ, Park, DS, Sung, IK, “UV- and Thermal-Curing Behaviors of Dual-Curable Adhesives Based on Epoxy Acrylate Oligomers.” Int. J. Adhes. Adhes., 29 710–717 (2009)CrossRef
63.
Zurück zum Zitat Jeon, SJ, Lee, JJ, Kim, W, Chang, TS, Koo, SM, “Hard Coating Films Based on Organosilane-Modified Boehmite Nanoparticles under UV/Thermal Dual Curing.” Thin Solid Films, 516 3904–3909 (2008)CrossRef Jeon, SJ, Lee, JJ, Kim, W, Chang, TS, Koo, SM, “Hard Coating Films Based on Organosilane-Modified Boehmite Nanoparticles under UV/Thermal Dual Curing.” Thin Solid Films, 516 3904–3909 (2008)CrossRef
64.
Zurück zum Zitat Gomathi, N, Eswaraiah, C, Neogi, S, “Surface Modification of Polycarbonate by Radio-Frequency Plasma and Optimization of the Process Variables with Response Surface Methodology.” J. Appl. Polym. Sci., 114 1557–1566 (2009)CrossRef Gomathi, N, Eswaraiah, C, Neogi, S, “Surface Modification of Polycarbonate by Radio-Frequency Plasma and Optimization of the Process Variables with Response Surface Methodology.” J. Appl. Polym. Sci., 114 1557–1566 (2009)CrossRef
65.
Zurück zum Zitat Muir, BW, Thissen, H, Simon, GP, Murphy, PJ, Griesser, HJ, “Factors Affecting the Adhesion of Microwave Plasma Deposited Siloxane Films on Polycarbonate.” Thin Solid Films, 500 34–40 (2006)CrossRef Muir, BW, Thissen, H, Simon, GP, Murphy, PJ, Griesser, HJ, “Factors Affecting the Adhesion of Microwave Plasma Deposited Siloxane Films on Polycarbonate.” Thin Solid Films, 500 34–40 (2006)CrossRef
66.
Zurück zum Zitat Hofrichter, A, Bulkin, P, Drévillon, B, “Plasma Treatment of Polycarbonate for Improved Adhesion.” J. Vac. Sci. Technol. A, 20 245–250 (2002)CrossRef Hofrichter, A, Bulkin, P, Drévillon, B, “Plasma Treatment of Polycarbonate for Improved Adhesion.” J. Vac. Sci. Technol. A, 20 245–250 (2002)CrossRef
67.
Zurück zum Zitat Zajíčková, L, Buršíková, V, Janča, J, “Protection Coatings for Polycarbonates Based on PECVD from Organosilicon Feeds.” Vacuum, 50 19–21 (1998)CrossRef Zajíčková, L, Buršíková, V, Janča, J, “Protection Coatings for Polycarbonates Based on PECVD from Organosilicon Feeds.” Vacuum, 50 19–21 (1998)CrossRef
68.
Zurück zum Zitat Klemberg-Sapieha, JE, Poitras, D, Martinu, L, Yamasaki, NLS, Lantman, CW, “Effect of Interface on the Characteristics of Functional Films Deposited on Polycarbonate in Dual-Frequency Plasma.” J. Vac. Sci. Technol. A, 15 985–991 (1997)CrossRef Klemberg-Sapieha, JE, Poitras, D, Martinu, L, Yamasaki, NLS, Lantman, CW, “Effect of Interface on the Characteristics of Functional Films Deposited on Polycarbonate in Dual-Frequency Plasma.” J. Vac. Sci. Technol. A, 15 985–991 (1997)CrossRef
69.
Zurück zum Zitat Cui, L, Ranade, AN, Matos, MA, Pingree, LS, Frot, TJ, Dubois, G, Dauskardt, RH, “Atmospheric Plasma Deposited Dense Silica Coatings on Plastics.” ACS Appl. Mater. Inter., 4 6587–6598 (2012)CrossRef Cui, L, Ranade, AN, Matos, MA, Pingree, LS, Frot, TJ, Dubois, G, Dauskardt, RH, “Atmospheric Plasma Deposited Dense Silica Coatings on Plastics.” ACS Appl. Mater. Inter., 4 6587–6598 (2012)CrossRef
70.
Zurück zum Zitat Lin, YS, Liao, YH, Weng, MS, “Enhanced Scratch Resistance of Polycarbonate by Low Temperature Plasma-Polymerized Organosilica.” Thin Solid Films, 517 5224–5230 (2009)CrossRef Lin, YS, Liao, YH, Weng, MS, “Enhanced Scratch Resistance of Polycarbonate by Low Temperature Plasma-Polymerized Organosilica.” Thin Solid Films, 517 5224–5230 (2009)CrossRef
71.
Zurück zum Zitat Bose, M, Bose, DN, Basa, DK, “Plasma Enhanced Growth, Composition and Refractive Index of Silicon Oxynitride Films.” Mater. Lett., 52 417–422 (2002)CrossRef Bose, M, Bose, DN, Basa, DK, “Plasma Enhanced Growth, Composition and Refractive Index of Silicon Oxynitride Films.” Mater. Lett., 52 417–422 (2002)CrossRef
72.
Zurück zum Zitat Zajíčková, L, Buršíková, V, Peřina, V, Macková, A, Subedi, D, Janča, J, “Plasma Modification of Polycarbonates.” Surf. Coat. Technol., 142–144 449–454 (2001)CrossRef Zajíčková, L, Buršíková, V, Peřina, V, Macková, A, Subedi, D, Janča, J, “Plasma Modification of Polycarbonates.” Surf. Coat. Technol., 142–144 449–454 (2001)CrossRef
73.
Zurück zum Zitat Yang, MR, Chen, KS, Hsu, ST, Wu, TZ, “Fabrication and Characteristics of SiO x Films by Plasma Chemical Vapor Deposition of Tetramethylorthosilicate.” Surf. Coat. Technol., 123 204–209 (2000)CrossRef Yang, MR, Chen, KS, Hsu, ST, Wu, TZ, “Fabrication and Characteristics of SiO x Films by Plasma Chemical Vapor Deposition of Tetramethylorthosilicate.” Surf. Coat. Technol., 123 204–209 (2000)CrossRef
74.
Zurück zum Zitat Rats, D, Martinu, L, von Stebut, J, “Mechanical Properties of Plasma-Deposited SiO x N y Coatings on Polymer Substrates Using Low Load Carrying Capacity Techniques.” Surf. Coat. Technol., 123 36–43 (2000)CrossRef Rats, D, Martinu, L, von Stebut, J, “Mechanical Properties of Plasma-Deposited SiO x N y Coatings on Polymer Substrates Using Low Load Carrying Capacity Techniques.” Surf. Coat. Technol., 123 36–43 (2000)CrossRef
75.
Zurück zum Zitat Rats, D, Hajek, V, Martinu, L, “Micro-Scratch Analysis and Mechanical Properties of Plasma-Deposited Silicon-Based Coatings on Polymer Substrates. Thin Solid Films, 340 33–39 (1999)CrossRef Rats, D, Hajek, V, Martinu, L, “Micro-Scratch Analysis and Mechanical Properties of Plasma-Deposited Silicon-Based Coatings on Polymer Substrates. Thin Solid Films, 340 33–39 (1999)CrossRef
76.
Zurück zum Zitat Tsubone, D, Hasebe, T, Kamijo, A, Hotta, A, “Fracture Mechanics of Diamond-like Carbon (DLC) Films Coated on Flexible Polymer Substrates.” Surf. Coat. Technol., 201 6423–6430 (2007)CrossRef Tsubone, D, Hasebe, T, Kamijo, A, Hotta, A, “Fracture Mechanics of Diamond-like Carbon (DLC) Films Coated on Flexible Polymer Substrates.” Surf. Coat. Technol., 201 6423–6430 (2007)CrossRef
77.
Zurück zum Zitat Cuong, NK, Tahara, M, Yamauchi, N, Sone, T, “Diamond-like Carbon Films Deposited on Polymers by Plasma-Enhanced Chemical Vapor Deposition.” Surf. Coat. Technol., 174–175 1024–1028 (2003)CrossRef Cuong, NK, Tahara, M, Yamauchi, N, Sone, T, “Diamond-like Carbon Films Deposited on Polymers by Plasma-Enhanced Chemical Vapor Deposition.” Surf. Coat. Technol., 174–175 1024–1028 (2003)CrossRef
78.
Zurück zum Zitat Damasceno, JC, Camargo, SS, Jr, Cremona, M, “Optical and Mechanical Properties of DLC-Si Coatings on Polycarbonate.” Thin Solid Films, 433 199–204 (2009)CrossRef Damasceno, JC, Camargo, SS, Jr, Cremona, M, “Optical and Mechanical Properties of DLC-Si Coatings on Polycarbonate.” Thin Solid Films, 433 199–204 (2009)CrossRef
79.
Zurück zum Zitat Baek, SM, Shirafuji, T, Saito, N, Takai, O, “Adhesion Property of SiO x -Doped Diamond-like Carbon Films Deposited on Polycarbonate by Inductively Coupled Plasma Chemical Vapor Deposition.” Thin Solid Films, 519 6678–6682 (2011)CrossRef Baek, SM, Shirafuji, T, Saito, N, Takai, O, “Adhesion Property of SiO x -Doped Diamond-like Carbon Films Deposited on Polycarbonate by Inductively Coupled Plasma Chemical Vapor Deposition.” Thin Solid Films, 519 6678–6682 (2011)CrossRef
80.
Zurück zum Zitat Damasceno, JC, Camargo, SS, “Plasma Deposition and Characterization of Silicon Oxide-Containing Diamond-like Carbon Films Obtained from CH4:SiH4:O2 Gas Mixtures.” Thin Solid Films, 516 1890–1897 (2008)CrossRef Damasceno, JC, Camargo, SS, “Plasma Deposition and Characterization of Silicon Oxide-Containing Diamond-like Carbon Films Obtained from CH4:SiH4:O2 Gas Mixtures.” Thin Solid Films, 516 1890–1897 (2008)CrossRef
81.
Zurück zum Zitat Damasceno, JC, Camargo, SS, Cremona, M, “Deposition and Evaluation of DLC–Si Protective Coatings for Polycarbonate Materials.” Thin Solid Films, 420–421 195–199 (2002)CrossRef Damasceno, JC, Camargo, SS, Cremona, M, “Deposition and Evaluation of DLC–Si Protective Coatings for Polycarbonate Materials.” Thin Solid Films, 420–421 195–199 (2002)CrossRef
82.
Zurück zum Zitat Damasceno, JC, Camargo, SS, Cremona, M, “DLC-Si Protective Coatings for Polycarbonates.” Mater. Res., 6 19–23 (2002)CrossRef Damasceno, JC, Camargo, SS, Cremona, M, “DLC-Si Protective Coatings for Polycarbonates.” Mater. Res., 6 19–23 (2002)CrossRef
83.
Zurück zum Zitat Varma, A, Palshin, V, Meletis, EI, “Structure–Property Relationship of Si-DLC Films.” Surf. Coat. Technol., 148 305–314 (2001)CrossRef Varma, A, Palshin, V, Meletis, EI, “Structure–Property Relationship of Si-DLC Films.” Surf. Coat. Technol., 148 305–314 (2001)CrossRef
84.
Zurück zum Zitat Liu, Y, Shao, H, “Properties of ZnO: Al Films Deposited on Polycarbonate Substrate.” Vacuum, 83 1435–1437 (2009)CrossRef Liu, Y, Shao, H, “Properties of ZnO: Al Films Deposited on Polycarbonate Substrate.” Vacuum, 83 1435–1437 (2009)CrossRef
85.
Zurück zum Zitat Yong, TK, Tou, TY, Teo, BS, “Pulsed Laser Deposition of Tin-Doped Indium Oxide (ITO) on Polycarbonate.” Appl. Surf. Sci., 248 388–391 (2005)CrossRef Yong, TK, Tou, TY, Teo, BS, “Pulsed Laser Deposition of Tin-Doped Indium Oxide (ITO) on Polycarbonate.” Appl. Surf. Sci., 248 388–391 (2005)CrossRef
86.
Zurück zum Zitat Ashfold, MNR, Claeyssens, F, Fuge, GM, Henley, SJ, “Pulsed Laser Ablation and Deposition of Thin Films.” Chem. Soc. Rev., 33 23–31 (2004)CrossRef Ashfold, MNR, Claeyssens, F, Fuge, GM, Henley, SJ, “Pulsed Laser Ablation and Deposition of Thin Films.” Chem. Soc. Rev., 33 23–31 (2004)CrossRef
87.
Zurück zum Zitat Izumi, H, Ishihara, T, Yoshioka, H, Motoyama, M, “Electrical Properties of Crystalline ITO Films Prepared at Room Temperature by Pulsed Laser Deposition on Plastic Substrates.” Thin Solid Films, 411 32–35 (2002)CrossRef Izumi, H, Ishihara, T, Yoshioka, H, Motoyama, M, “Electrical Properties of Crystalline ITO Films Prepared at Room Temperature by Pulsed Laser Deposition on Plastic Substrates.” Thin Solid Films, 411 32–35 (2002)CrossRef
88.
Zurück zum Zitat Gottmann, J, Kreutz, EW, “Pulsed Laser Deposition of Alumina and Zirconia Thin Films on Polymers and Glass as Optical and Protective Coatings.” Surf. Coat. Technol., 116–119 1189–1194 (1999)CrossRef Gottmann, J, Kreutz, EW, “Pulsed Laser Deposition of Alumina and Zirconia Thin Films on Polymers and Glass as Optical and Protective Coatings.” Surf. Coat. Technol., 116–119 1189–1194 (1999)CrossRef
89.
Zurück zum Zitat Oliver, WC, Pharr, GM, “Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology.” J. Mater. Res., 19 3–20 (2004)CrossRef Oliver, WC, Pharr, GM, “Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology.” J. Mater. Res., 19 3–20 (2004)CrossRef
90.
Zurück zum Zitat Wang, ZZ, Gu, P, Zhang, Z, “Indentation and Scratch Behavior of Nano-SiO2/Polycarbonate Composite Coating at the Micro/Nano-Scale.” Wear, 269 21–25 (2010)CrossRef Wang, ZZ, Gu, P, Zhang, Z, “Indentation and Scratch Behavior of Nano-SiO2/Polycarbonate Composite Coating at the Micro/Nano-Scale.” Wear, 269 21–25 (2010)CrossRef
91.
Zurück zum Zitat Boentoro, W, Pflug, A, Szyszka, B, “Scratch Resistance Analysis of Coatings on Glass and Polycarbonate.” Thin Solid Films, 517 3121–3125 (2009)CrossRef Boentoro, W, Pflug, A, Szyszka, B, “Scratch Resistance Analysis of Coatings on Glass and Polycarbonate.” Thin Solid Films, 517 3121–3125 (2009)CrossRef
92.
Zurück zum Zitat Lahijania, YZK, Mohseni, M, Bastani, S, “Characterization of Mechanical Behavior of UV Cured Urethane Acrylate Nanocomposite Films Loaded with Silane Treated Nanosilica by the Aid of Nanoindentation and Nanoscratch Experiments.” Tribol. Int., 69 10–18 (2014)CrossRef Lahijania, YZK, Mohseni, M, Bastani, S, “Characterization of Mechanical Behavior of UV Cured Urethane Acrylate Nanocomposite Films Loaded with Silane Treated Nanosilica by the Aid of Nanoindentation and Nanoscratch Experiments.” Tribol. Int., 69 10–18 (2014)CrossRef
93.
Zurück zum Zitat Zhang, H, Zhang, H, Tang, L, Zhang, Z, Gu, L, Xu, Y, Eger, C, “Wear-Resistant and Transparent Acrylate-based Coating with Highly Filled Nanosilica Particles.” Tribol. Int., 43 83–91 (2010)CrossRef Zhang, H, Zhang, H, Tang, L, Zhang, Z, Gu, L, Xu, Y, Eger, C, “Wear-Resistant and Transparent Acrylate-based Coating with Highly Filled Nanosilica Particles.” Tribol. Int., 43 83–91 (2010)CrossRef
94.
Zurück zum Zitat Zhang, L, Zeng, Z, Yang, J, Chen, Y, “Characterization and Properties of UV-Curable Polyurethane-Acrylate/Silica Hybrid Materials Prepared by the Sol-Gel Process.” Polym. Int., 53 1431–1435 (2004)CrossRef Zhang, L, Zeng, Z, Yang, J, Chen, Y, “Characterization and Properties of UV-Curable Polyurethane-Acrylate/Silica Hybrid Materials Prepared by the Sol-Gel Process.” Polym. Int., 53 1431–1435 (2004)CrossRef
95.
Zurück zum Zitat Soloukhin, VA, Posthumus, W, Brokken-Zijp, JCM, Loos, J, With, G, “Mechanical Properties of Silica–(Meth)acrylate Hybrid Coatings on Polycarbonate Substrate.” Polymer, 43 6169–6181 (2002)CrossRef Soloukhin, VA, Posthumus, W, Brokken-Zijp, JCM, Loos, J, With, G, “Mechanical Properties of Silica–(Meth)acrylate Hybrid Coatings on Polycarbonate Substrate.” Polymer, 43 6169–6181 (2002)CrossRef
96.
Zurück zum Zitat Oh, IS, Park, NH, Suh, KD, “Mechanical and Surface Hardness Properties of Ultraviolet-Cured Polyurethane Acrylate Anionomer/Silica Composite Film.” J. Appl. Polym. Sci., 75 968–975 (2000)CrossRef Oh, IS, Park, NH, Suh, KD, “Mechanical and Surface Hardness Properties of Ultraviolet-Cured Polyurethane Acrylate Anionomer/Silica Composite Film.” J. Appl. Polym. Sci., 75 968–975 (2000)CrossRef
97.
Zurück zum Zitat Barletta, M, Vesco, S, Puopolo, M, Tagliaferri, V, “High Performance Composite Coatings on Plastics: UV-Curable Cycloaliphatic Epoxy Resins Reinforced by Graphene or Graphene Derivatives.” Surf. Coat. Technol., 272 322–336 (2015)CrossRef Barletta, M, Vesco, S, Puopolo, M, Tagliaferri, V, “High Performance Composite Coatings on Plastics: UV-Curable Cycloaliphatic Epoxy Resins Reinforced by Graphene or Graphene Derivatives.” Surf. Coat. Technol., 272 322–336 (2015)CrossRef
98.
Zurück zum Zitat Kuo, SW, Chang, FC, “POSS Related Polymer Nanocomposites.” Prog. Polym. Sci., 36 1649–1696 (2011)CrossRef Kuo, SW, Chang, FC, “POSS Related Polymer Nanocomposites.” Prog. Polym. Sci., 36 1649–1696 (2011)CrossRef
99.
Zurück zum Zitat Castelvetro, V, Ciardelli, F, Vita, C, Puppo, A, “Hybrid Nanocomposite Films from Mono- and Multi-Functional POSS Copolyacrylates in Miniemulsion.” Macromol. Rapid Commun., 27 619–625 (2006)CrossRef Castelvetro, V, Ciardelli, F, Vita, C, Puppo, A, “Hybrid Nanocomposite Films from Mono- and Multi-Functional POSS Copolyacrylates in Miniemulsion.” Macromol. Rapid Commun., 27 619–625 (2006)CrossRef
100.
Zurück zum Zitat Bizet, S, Galy, J, Gérard, JF, “Structure-Property Relationships in Organic-Inorganic Nanomaterials Based on Methacryl-POSS and Dimethacrylate Networks.” Macromolecules, 39 2574–2583 (2006)CrossRef Bizet, S, Galy, J, Gérard, JF, “Structure-Property Relationships in Organic-Inorganic Nanomaterials Based on Methacryl-POSS and Dimethacrylate Networks.” Macromolecules, 39 2574–2583 (2006)CrossRef
101.
Zurück zum Zitat Zhao, Y, Schiraldi, DA, “Thermal and Mechanical Properties of Polyhedral Oligomeric Silsesquioxane (POSS)/Polycarbonate Composites.” Polymer, 46 11640–11647 (2005)CrossRef Zhao, Y, Schiraldi, DA, “Thermal and Mechanical Properties of Polyhedral Oligomeric Silsesquioxane (POSS)/Polycarbonate Composites.” Polymer, 46 11640–11647 (2005)CrossRef
102.
Zurück zum Zitat Kopesky, ET, Haddad, TS, Cohen, RE, McKinley, GH, “Thermomechanical Properties of Poly(methyl methacrylate)s Containing Tethered and Untethered Polyhedral Oligomeric Silsesquioxanes.” Macromolecules, 37 8992–9004 (2004)CrossRef Kopesky, ET, Haddad, TS, Cohen, RE, McKinley, GH, “Thermomechanical Properties of Poly(methyl methacrylate)s Containing Tethered and Untethered Polyhedral Oligomeric Silsesquioxanes.” Macromolecules, 37 8992–9004 (2004)CrossRef
103.
Zurück zum Zitat Raut, HK, Dinachali, SS, He, AY, Ganesh, VA, Saifullah, MSM, Law, J, Ramakrishna, R, “Robust and Durable Polyhedral Oligomeric Silsesquioxane-Based Anti-Reflective Nanostructures with Broadband Quasi-Omnidirectional Properties.” Energ. Environ. Sci., 6 1929–1937 (2013)CrossRef Raut, HK, Dinachali, SS, He, AY, Ganesh, VA, Saifullah, MSM, Law, J, Ramakrishna, R, “Robust and Durable Polyhedral Oligomeric Silsesquioxane-Based Anti-Reflective Nanostructures with Broadband Quasi-Omnidirectional Properties.” Energ. Environ. Sci., 6 1929–1937 (2013)CrossRef
104.
Zurück zum Zitat Jin, SB, Lee, JS, Choi, YS, Choi, IS, Han, JG, “High-Rate Deposition and Mechanical Properties of SiO x Film at Low Temperature by Plasma Enhanced Chemical Vapor Deposition with the Dual Frequencies Ultra High Frequency and High Frequency.” Thin Solid Films, 519 6334–6338 (2011)CrossRef Jin, SB, Lee, JS, Choi, YS, Choi, IS, Han, JG, “High-Rate Deposition and Mechanical Properties of SiO x Film at Low Temperature by Plasma Enhanced Chemical Vapor Deposition with the Dual Frequencies Ultra High Frequency and High Frequency.” Thin Solid Films, 519 6334–6338 (2011)CrossRef
105.
Zurück zum Zitat Lin, YS, Weng, MS, Chung, TW, Huang, C, “Enhanced Surface Hardness of Flexible Polycarbonate Substrates Using Plasma-Polymerized Organosilicon Oxynitride Films by Air Plasma Jet under Atmospheric Pressure.” Surf. Coat. Technol., 205 3856–3864 (2011)CrossRef Lin, YS, Weng, MS, Chung, TW, Huang, C, “Enhanced Surface Hardness of Flexible Polycarbonate Substrates Using Plasma-Polymerized Organosilicon Oxynitride Films by Air Plasma Jet under Atmospheric Pressure.” Surf. Coat. Technol., 205 3856–3864 (2011)CrossRef
106.
Zurück zum Zitat Lugscheider, E, Bobzin, K, Maes, M, Krämer, A, “On the Coating of Polymers—Basic Investigations.” Thin Solid Films, 459 313–317 (2004)CrossRef Lugscheider, E, Bobzin, K, Maes, M, Krämer, A, “On the Coating of Polymers—Basic Investigations.” Thin Solid Films, 459 313–317 (2004)CrossRef
107.
Zurück zum Zitat Hegemann, D, Brunner, H, Oehr, C, “Deposition Rate and Three-Dimensional Uniformity of RF Plasma Deposited SiO2 Films.” Surf. Coat. Technol., 142–144 849–855 (2001)CrossRef Hegemann, D, Brunner, H, Oehr, C, “Deposition Rate and Three-Dimensional Uniformity of RF Plasma Deposited SiO2 Films.” Surf. Coat. Technol., 142–144 849–855 (2001)CrossRef
108.
Zurück zum Zitat Rats, D, Martinu, L, von Stebut, J, “Mechanical Properties of Plasma-Deposited SiO x N y Coatings on Polymer Substrates Using Low Load Carrying Capacity Techniques.” Surf. Coat. Technol., 123 36–43 (2000)CrossRef Rats, D, Martinu, L, von Stebut, J, “Mechanical Properties of Plasma-Deposited SiO x N y Coatings on Polymer Substrates Using Low Load Carrying Capacity Techniques.” Surf. Coat. Technol., 123 36–43 (2000)CrossRef
109.
Zurück zum Zitat Yoonessi, M, Gaier, JR, “Highly Conductive Multifunctional Graphene Polycarbonate Nanocomposites.” ACS Nano, 4 7211–7220 (2010)CrossRef Yoonessi, M, Gaier, JR, “Highly Conductive Multifunctional Graphene Polycarbonate Nanocomposites.” ACS Nano, 4 7211–7220 (2010)CrossRef
110.
Zurück zum Zitat Kim, HW, Macosko, CW, “Processing-Property Relationships of Polycarbonate/Graphene Composites.” Polymer, 50 3797–3809 (2009)CrossRef Kim, HW, Macosko, CW, “Processing-Property Relationships of Polycarbonate/Graphene Composites.” Polymer, 50 3797–3809 (2009)CrossRef
111.
Zurück zum Zitat Bauhofer, W, Kovacs, JZ, “A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites.” Compos. Sci. Technol., 69 1486–1498 (2009)CrossRef Bauhofer, W, Kovacs, JZ, “A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites.” Compos. Sci. Technol., 69 1486–1498 (2009)CrossRef
112.
Zurück zum Zitat Sung, YT, Han, MS, Jung, JW, Lee, HS, Kum, CK, Joo, J, Kim, WN, “Rheological and Electrical Properties of Polycarbonate/Multi-Walled Carbon Nanotube Composites.” Polymer, 47 4434–4439 (2006)CrossRef Sung, YT, Han, MS, Jung, JW, Lee, HS, Kum, CK, Joo, J, Kim, WN, “Rheological and Electrical Properties of Polycarbonate/Multi-Walled Carbon Nanotube Composites.” Polymer, 47 4434–4439 (2006)CrossRef
113.
Zurück zum Zitat Hornbostel, B, Pötschke, P, Kotz, J, Roth, S, “Single-Walled Carbon Nanotubes/Polycarbonate Composites: Basic Electrical and Mechanical Properties.” Phys. Stat. Sol (b), 243 3445–3451 (2006)CrossRef Hornbostel, B, Pötschke, P, Kotz, J, Roth, S, “Single-Walled Carbon Nanotubes/Polycarbonate Composites: Basic Electrical and Mechanical Properties.” Phys. Stat. Sol (b), 243 3445–3451 (2006)CrossRef
114.
Zurück zum Zitat Pötschke, P, Bhattacharyya, AR, Janke, A, “Carbon Nanotube-Filled Polycarbonate Composites Produced by Melt Mixing and Their Use in Blends with Polyethylene.” Carbon, 42 965–969 (2004)CrossRef Pötschke, P, Bhattacharyya, AR, Janke, A, “Carbon Nanotube-Filled Polycarbonate Composites Produced by Melt Mixing and Their Use in Blends with Polyethylene.” Carbon, 42 965–969 (2004)CrossRef
115.
Zurück zum Zitat Pötschke, P, Abdel-Goad, M, Alig, I, Dudkin, S, Lellinger, D, “Rheological and Dielectrical Characterization of Melt Mixed Polycarbonate-Multiwalled Carbon Nanotube Composites.” Polymer, 45 8863–8870 (2004)CrossRef Pötschke, P, Abdel-Goad, M, Alig, I, Dudkin, S, Lellinger, D, “Rheological and Dielectrical Characterization of Melt Mixed Polycarbonate-Multiwalled Carbon Nanotube Composites.” Polymer, 45 8863–8870 (2004)CrossRef
116.
Zurück zum Zitat Pötschke, P, Fornes, TD, Paul, DR, “Rheological Behavior of Multiwalled Carbon Nanotube/Polycarbonate Composites.” Polymer, 43 3247–3255 (2002)CrossRef Pötschke, P, Fornes, TD, Paul, DR, “Rheological Behavior of Multiwalled Carbon Nanotube/Polycarbonate Composites.” Polymer, 43 3247–3255 (2002)CrossRef
117.
Zurück zum Zitat Jeon, SS, Han, SI, Jin, YH, Im, SS, “Polycarbonate-Based Conductive Film Prepared by Coating DBSA-Doped PEDOT/Sorbitol.” Synthetic Met., 148 287–291 (2005)CrossRef Jeon, SS, Han, SI, Jin, YH, Im, SS, “Polycarbonate-Based Conductive Film Prepared by Coating DBSA-Doped PEDOT/Sorbitol.” Synthetic Met., 148 287–291 (2005)CrossRef
118.
Zurück zum Zitat Lee, WJ, Kim, YJ, Kaang, SY, “Electrical Properties of Polyaniline/Sulfonated Polycarbonate Blends.” Synthetic Met., 113 237–243 (2000)CrossRef Lee, WJ, Kim, YJ, Kaang, SY, “Electrical Properties of Polyaniline/Sulfonated Polycarbonate Blends.” Synthetic Met., 113 237–243 (2000)CrossRef
119.
Zurück zum Zitat Roldughin, VI, Vysotskii, VV, “Percolation Properties of Metal-Filled Polymer Films. Structure and Mechanisms of Conductivity.” Prog. Org. Coat., 39 81–100 (2004)CrossRef Roldughin, VI, Vysotskii, VV, “Percolation Properties of Metal-Filled Polymer Films. Structure and Mechanisms of Conductivity.” Prog. Org. Coat., 39 81–100 (2004)CrossRef
120.
Zurück zum Zitat Patole, A, Lubineau, G, “Carbon Nanotubes with Silver Nanoparticle Decoration and Conductive Polymer Coating for Improving the Electrical Conductivity of Polycarbonate Composites.” Carbon, 81 720–730 (2015)CrossRef Patole, A, Lubineau, G, “Carbon Nanotubes with Silver Nanoparticle Decoration and Conductive Polymer Coating for Improving the Electrical Conductivity of Polycarbonate Composites.” Carbon, 81 720–730 (2015)CrossRef
121.
Zurück zum Zitat Zhou, J, Lubineau, G, “Improving Electrical Conductivity in Polycarbonate Nanocomposites Using Highly Conductive PEDOT/PSS Coated MWCNTs.” ACS Appl. Mater. Inter., 5 6189–6200 (2013)CrossRef Zhou, J, Lubineau, G, “Improving Electrical Conductivity in Polycarbonate Nanocomposites Using Highly Conductive PEDOT/PSS Coated MWCNTs.” ACS Appl. Mater. Inter., 5 6189–6200 (2013)CrossRef
122.
Zurück zum Zitat Kyrylyuk, A, Hermant, M, Schilling, T, Klumperman, B, Koning, C, van der Schoot, P, “Controlling Electrical Percolation in Multicomponent Carbon Nanotube Dispersions.” Nat. Nanotechnol., 6 364–369 (2011)CrossRef Kyrylyuk, A, Hermant, M, Schilling, T, Klumperman, B, Koning, C, van der Schoot, P, “Controlling Electrical Percolation in Multicomponent Carbon Nanotube Dispersions.” Nat. Nanotechnol., 6 364–369 (2011)CrossRef
123.
Zurück zum Zitat Hong, KP, Kim, SH, Yang, CW, Yun, WM, Nam, SJ, Jang, JY, “Photopatternable Poly(4-styrene sulfonicacid)-Wrapped MWNT Thin-Film Source/Drain Electrodes for Use in Organic Field-Effect Transistors.” ACS Appl. Mater. Inter., 3 74–79 (2011)CrossRef Hong, KP, Kim, SH, Yang, CW, Yun, WM, Nam, SJ, Jang, JY, “Photopatternable Poly(4-styrene sulfonicacid)-Wrapped MWNT Thin-Film Source/Drain Electrodes for Use in Organic Field-Effect Transistors.” ACS Appl. Mater. Inter., 3 74–79 (2011)CrossRef
124.
Zurück zum Zitat Hermant, MC, Schoot, P, Klumperman, B, Koning, CE, “Probing the Cooperative Nature of the Conductive Components in Polystyrene/Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate)-Single-Walled Carbon Nanotube Composites.” ACS Nano, 4 2242–2248 (2010)CrossRef Hermant, MC, Schoot, P, Klumperman, B, Koning, CE, “Probing the Cooperative Nature of the Conductive Components in Polystyrene/Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate)-Single-Walled Carbon Nanotube Composites.” ACS Nano, 4 2242–2248 (2010)CrossRef
125.
Zurück zum Zitat Kim, DSRY, Kim, YS, Choi, KW, Grunlan, JC, Yu, CH, “Improved Thermoelectric Behavior of Nanotube-filled Polymer Composites with Poly(3,4-ethylenedioxythiophene) Poly(styrenesulfonate).” ACS Nano, 4 513–523 (2010)CrossRef Kim, DSRY, Kim, YS, Choi, KW, Grunlan, JC, Yu, CH, “Improved Thermoelectric Behavior of Nanotube-filled Polymer Composites with Poly(3,4-ethylenedioxythiophene) Poly(styrenesulfonate).” ACS Nano, 4 513–523 (2010)CrossRef
126.
Zurück zum Zitat Hermant, M, Klumperman, B, Kyrylyuk, A, van der Schoot, P, Koning, C, “Lowering the Percolation Threshold of Single-Walled Carbon Nanotubes Using Polystyrene/Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) Blends.” Soft Matter, 5 878–885 (2009)CrossRef Hermant, M, Klumperman, B, Kyrylyuk, A, van der Schoot, P, Koning, C, “Lowering the Percolation Threshold of Single-Walled Carbon Nanotubes Using Polystyrene/Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) Blends.” Soft Matter, 5 878–885 (2009)CrossRef
127.
Zurück zum Zitat Amoli, HS, Shokatian, S, Abdous, M, “Thermal Annealing Combination with Pulse Nd-YAG Laser Treatment of ITO on Polycarbonate Using Spin Coating Process.” J. Sol-Gel Sci. Technol., 62 319–323 (2012)CrossRef Amoli, HS, Shokatian, S, Abdous, M, “Thermal Annealing Combination with Pulse Nd-YAG Laser Treatment of ITO on Polycarbonate Using Spin Coating Process.” J. Sol-Gel Sci. Technol., 62 319–323 (2012)CrossRef
128.
Zurück zum Zitat Yong, TK, Tou, TY, Teo, BS, “Pulsed Laser Deposition of Tin-Doped Indium Oxide (ITO) on Polycarbonate.” Appl. Surf. Sci., 214 388–391 (2005)CrossRef Yong, TK, Tou, TY, Teo, BS, “Pulsed Laser Deposition of Tin-Doped Indium Oxide (ITO) on Polycarbonate.” Appl. Surf. Sci., 214 388–391 (2005)CrossRef
129.
Zurück zum Zitat Kim, DI, KIM, SJ, “AFM Observation of ITO Thin Films Deposited on Polycarbonate Substrates by Sputter Type Negative Metal Ion Source.” Surf. Coat. Technol., 176 23–29 (2003)CrossRef Kim, DI, KIM, SJ, “AFM Observation of ITO Thin Films Deposited on Polycarbonate Substrates by Sputter Type Negative Metal Ion Source.” Surf. Coat. Technol., 176 23–29 (2003)CrossRef
130.
Zurück zum Zitat Kim, JS, Bae, JW, Kim, HJ, Lee, N-E, Yeom, GY, Oh, KH, “Effects of Oxygen Radical on the Properties of Indium Tin Oxide Thin Films Deposited at Room Temperature by Oxygen Ion Beam Assisted Evaporation.” Thin Solid Films, 377–378 103–108 (2000)CrossRef Kim, JS, Bae, JW, Kim, HJ, Lee, N-E, Yeom, GY, Oh, KH, “Effects of Oxygen Radical on the Properties of Indium Tin Oxide Thin Films Deposited at Room Temperature by Oxygen Ion Beam Assisted Evaporation.” Thin Solid Films, 377–378 103–108 (2000)CrossRef
131.
Zurück zum Zitat Wu, WF, Chiou, BS, “Deposition of Indium Tin Oxide Films on Polycarbonate Substrates by Radio-Frequency Magnetron Sputtering.” Thin Solid Films, 298 221–227 (1997)CrossRef Wu, WF, Chiou, BS, “Deposition of Indium Tin Oxide Films on Polycarbonate Substrates by Radio-Frequency Magnetron Sputtering.” Thin Solid Films, 298 221–227 (1997)CrossRef
132.
Zurück zum Zitat Wu, WF, Chiou, BS, “Mechanical Properties of r.f. Magnetron Sputtered Indium Tin Oxide Films.” Thin Solid Films, 298 244–250 (1997)CrossRef Wu, WF, Chiou, BS, “Mechanical Properties of r.f. Magnetron Sputtered Indium Tin Oxide Films.” Thin Solid Films, 298 244–250 (1997)CrossRef
133.
Zurück zum Zitat Kulkarni, AK, Schulz, KH, Lim, TS, Khan, M, “Electrical, Optical and Structural Characteristics of Indium-Tin-Oxide Thin Films Deposited on Glass and Polymer Substrates.” Thin Solid Films, 308–309 1–7 (1997)CrossRef Kulkarni, AK, Schulz, KH, Lim, TS, Khan, M, “Electrical, Optical and Structural Characteristics of Indium-Tin-Oxide Thin Films Deposited on Glass and Polymer Substrates.” Thin Solid Films, 308–309 1–7 (1997)CrossRef
134.
Zurück zum Zitat Minami, T, Sonohara, H, Kakumu, T, Takata, S, “Physics of Very Thin ITO Conducting Films with High Transparency Prepared by DC Magnetron Sputtering.” Thin Solid Films, 270 37–42 (1995)CrossRef Minami, T, Sonohara, H, Kakumu, T, Takata, S, “Physics of Very Thin ITO Conducting Films with High Transparency Prepared by DC Magnetron Sputtering.” Thin Solid Films, 270 37–42 (1995)CrossRef
135.
Zurück zum Zitat Asakuma, N, Fukui, T, Toki, M, “Low-Temperature Synthesis of ITO Thin Films Using an Ultraviolet Laser for Conductive Coating on Organic Polymer Substrates.” J. Sol-Gel Sci. Technol., 27 91–95 (2003)CrossRef Asakuma, N, Fukui, T, Toki, M, “Low-Temperature Synthesis of ITO Thin Films Using an Ultraviolet Laser for Conductive Coating on Organic Polymer Substrates.” J. Sol-Gel Sci. Technol., 27 91–95 (2003)CrossRef
136.
Zurück zum Zitat Aegerter, MA, Al-Dahoudi, N, “Wet-Chemical Processing of Transparent and Antiglare Conducting ITO Coating on Plastic Substrates.” J. Sol-Gel Sci. Technol., 27 81–89 (2003)CrossRef Aegerter, MA, Al-Dahoudi, N, “Wet-Chemical Processing of Transparent and Antiglare Conducting ITO Coating on Plastic Substrates.” J. Sol-Gel Sci. Technol., 27 81–89 (2003)CrossRef
137.
Zurück zum Zitat Al-Dahoudi, N, Aegerter, MA, “Wet Coating Deposition of ITO Coatings on Plastic Substrates.” J. Sol-Gel Sci. Technol., 26 693–697 (2003)CrossRef Al-Dahoudi, N, Aegerter, MA, “Wet Coating Deposition of ITO Coatings on Plastic Substrates.” J. Sol-Gel Sci. Technol., 26 693–697 (2003)CrossRef
138.
Zurück zum Zitat Al-Dahoudi, N, Bisht, H, Göbbert, C, Krajewski, T, Aegerter, MA, “Transparent Conducting, Anti-Static and Anti-Static-Anti-Glare Coatings on Plastic Substrates.” Thin Solid Films, 392 299–304 (2001)CrossRef Al-Dahoudi, N, Bisht, H, Göbbert, C, Krajewski, T, Aegerter, MA, “Transparent Conducting, Anti-Static and Anti-Static-Anti-Glare Coatings on Plastic Substrates.” Thin Solid Films, 392 299–304 (2001)CrossRef
139.
Zurück zum Zitat Burgard, D, Goebbert, C, Nass, R, “Synthesis of Nanocrystalline, Redispersable Antimony-Doped SnO2 Particles for the Preparation of Conductive, Transparent Coatings.” J. Sol-Gel Sci. Technol., 13 789–792 (1998)CrossRef Burgard, D, Goebbert, C, Nass, R, “Synthesis of Nanocrystalline, Redispersable Antimony-Doped SnO2 Particles for the Preparation of Conductive, Transparent Coatings.” J. Sol-Gel Sci. Technol., 13 789–792 (1998)CrossRef
140.
Zurück zum Zitat Sangermano, M, Foix, D, Kortaberria, G, Messori, M, “Multifunctional Antistatic and Scratch Resistant UV-Cured Acrylic Coatings.” Prog. Org. Coat., 76 1191–1196 (2013)CrossRef Sangermano, M, Foix, D, Kortaberria, G, Messori, M, “Multifunctional Antistatic and Scratch Resistant UV-Cured Acrylic Coatings.” Prog. Org. Coat., 76 1191–1196 (2013)CrossRef
141.
Zurück zum Zitat Wouters, MEL, Wolfs, DP, van der Linde, MC, Hovens, JHP, Tinnemans, AHA, “Transparent UV Curable Antistatic Hybrid Coatings on Polycarbonate Prepared by the Sol-Gel Method.” Prog. Org. Coat., 51 312–320 (2004)CrossRef Wouters, MEL, Wolfs, DP, van der Linde, MC, Hovens, JHP, Tinnemans, AHA, “Transparent UV Curable Antistatic Hybrid Coatings on Polycarbonate Prepared by the Sol-Gel Method.” Prog. Org. Coat., 51 312–320 (2004)CrossRef
142.
Zurück zum Zitat Kim, HK, Kim, YB, Cho, JD, Hong, JW, “Synthesis and Characterization of Radiation-Curable Monomers for Antistatic Coatings.” Prog. Org. Coat., 48 34–42 (2003)CrossRef Kim, HK, Kim, YB, Cho, JD, Hong, JW, “Synthesis and Characterization of Radiation-Curable Monomers for Antistatic Coatings.” Prog. Org. Coat., 48 34–42 (2003)CrossRef
143.
Zurück zum Zitat Haas, KH, Amberg-Schwab, S, Rose, K, “Functionalized Coating Materials Based on Inorganic-Organic Polymers.” Thin Solid Films, 351 198–203 (1999)CrossRef Haas, KH, Amberg-Schwab, S, Rose, K, “Functionalized Coating Materials Based on Inorganic-Organic Polymers.” Thin Solid Films, 351 198–203 (1999)CrossRef
144.
Zurück zum Zitat Jonas, F, Schrader, L, “Conductive Modifications of Polymers with Polypyrroles and Polythiophenes.” Synth. Met., 41 831–836 (1991)CrossRef Jonas, F, Schrader, L, “Conductive Modifications of Polymers with Polypyrroles and Polythiophenes.” Synth. Met., 41 831–836 (1991)CrossRef
145.
Zurück zum Zitat Gardner, SV, Jeanne, L, Klein, S, Brady, BK, “Electrically Conductive Composition and Elements Containing Solubilized Polyaniline Complex and Solvent Mixture.” US Patent 5,716,550 (1998) Gardner, SV, Jeanne, L, Klein, S, Brady, BK, “Electrically Conductive Composition and Elements Containing Solubilized Polyaniline Complex and Solvent Mixture.” US Patent 5,716,550 (1998)
146.
Zurück zum Zitat Jonas, F, Heywang, G, Schmidtberg, W, Heinze, J, Dietrich, M, “Method of Imparting Antistatic Properties to a Substrate by Coating the Substrate with a Novel Polythiophene.” UV Patent 5,035,926 (1991) Jonas, F, Heywang, G, Schmidtberg, W, Heinze, J, Dietrich, M, “Method of Imparting Antistatic Properties to a Substrate by Coating the Substrate with a Novel Polythiophene.” UV Patent 5,035,926 (1991)
147.
Zurück zum Zitat Yoshizumi, M, “Antistatic Transparent Coating Composition.” US Patent 4,431,764 (1984) Yoshizumi, M, “Antistatic Transparent Coating Composition.” US Patent 4,431,764 (1984)
148.
Zurück zum Zitat Glaubitt, W, Löbmann, P, “Antireflective Coatings Prepared by Sol-Gel Processing: Principles and Applications.” J. Eur. Ceram. Soc., 32 2995–2999 (2012)CrossRef Glaubitt, W, Löbmann, P, “Antireflective Coatings Prepared by Sol-Gel Processing: Principles and Applications.” J. Eur. Ceram. Soc., 32 2995–2999 (2012)CrossRef
149.
Zurück zum Zitat Raut, HK, Ganesh, VA, Nair, AS, Ramakrishna, S, “Anti-Reflective Coatings: A Critical, In-depth Review.” Energy Environ. Sci., 4 3779–3804 (2011)CrossRef Raut, HK, Ganesh, VA, Nair, AS, Ramakrishna, S, “Anti-Reflective Coatings: A Critical, In-depth Review.” Energy Environ. Sci., 4 3779–3804 (2011)CrossRef
150.
Zurück zum Zitat Schubert, MF, Mont, FW, Chhajed, S, Poxson, DJ, Kim, JK, Schubert, EF, “Design of Multilayer Antireflection Coatings Made from Co-Sputtered and Low-Refractive-Index Materials by Genetic Algorithm.” Opt. Express, 16 5290–5298 (2008)CrossRef Schubert, MF, Mont, FW, Chhajed, S, Poxson, DJ, Kim, JK, Schubert, EF, “Design of Multilayer Antireflection Coatings Made from Co-Sputtered and Low-Refractive-Index Materials by Genetic Algorithm.” Opt. Express, 16 5290–5298 (2008)CrossRef
151.
Zurück zum Zitat Schulz, U, “Review of Modern Techniques to Generate Antireflective Properties on Thermoplastic Polymers.” Appl. Optics, 45 1608–1618 (2006)CrossRef Schulz, U, “Review of Modern Techniques to Generate Antireflective Properties on Thermoplastic Polymers.” Appl. Optics, 45 1608–1618 (2006)CrossRef
152.
Zurück zum Zitat Dobrowolski, JA, Poitras, D, Ma, P, Vakil, H, Acree, M, “Toward Perfect Antireflection Coatings: Numerical Investigation.” Appl. Optics, 41 3075–3083 (2002)CrossRef Dobrowolski, JA, Poitras, D, Ma, P, Vakil, H, Acree, M, “Toward Perfect Antireflection Coatings: Numerical Investigation.” Appl. Optics, 41 3075–3083 (2002)CrossRef
153.
Zurück zum Zitat Chen, D, “Anti-Reflection (AR) Coatings Made by Sol-Gel Processes: A Review.” Sol. Energy Mater. Sol. Cells, 68 313–336 (2001)CrossRef Chen, D, “Anti-Reflection (AR) Coatings Made by Sol-Gel Processes: A Review.” Sol. Energy Mater. Sol. Cells, 68 313–336 (2001)CrossRef
154.
Zurück zum Zitat Jewhurst, S, Kalyankar, N, “Magnesium Fluoride and Magnesium Oxyfluoride Based Anti-reflection Coating via Chemical Solution Deposition Processes.” US Patent 2014/0147594 A1 (2014) Jewhurst, S, Kalyankar, N, “Magnesium Fluoride and Magnesium Oxyfluoride Based Anti-reflection Coating via Chemical Solution Deposition Processes.” US Patent 2014/0147594 A1 (2014)
155.
Zurück zum Zitat Tanaka, H, Kobayashi, M, Sakakibara, T, “Method of Producing Magnesium Fluoride Coating, Antireflection Coating, and Optical Element.” US Patent 8,399,069 B2 (2013) Tanaka, H, Kobayashi, M, Sakakibara, T, “Method of Producing Magnesium Fluoride Coating, Antireflection Coating, and Optical Element.” US Patent 8,399,069 B2 (2013)
156.
Zurück zum Zitat Hattori, H, “Anti-Reflection Surface with Particle Coating Deposited by Electrostatic Attraction.” Adv. Mater., 13 51–54 (2001)CrossRef Hattori, H, “Anti-Reflection Surface with Particle Coating Deposited by Electrostatic Attraction.” Adv. Mater., 13 51–54 (2001)CrossRef
157.
Zurück zum Zitat Walheim, S, Schäffer, E, Mylnek, J, Steiner, U, “Nanophase-Separated Polymer Films as High-Performance Antireflection Coatings.” Science, 283 520–522 (1999)CrossRef Walheim, S, Schäffer, E, Mylnek, J, Steiner, U, “Nanophase-Separated Polymer Films as High-Performance Antireflection Coatings.” Science, 283 520–522 (1999)CrossRef
158.
Zurück zum Zitat Uhlmann, DR, Suratwala, T, Davidson, K, Boulton, JM, Teowee, G, “Sol-Gel Derived Coatings on Glass.” J. Non-Cryst. Solids, 218 113–122 (1997)CrossRef Uhlmann, DR, Suratwala, T, Davidson, K, Boulton, JM, Teowee, G, “Sol-Gel Derived Coatings on Glass.” J. Non-Cryst. Solids, 218 113–122 (1997)CrossRef
159.
Zurück zum Zitat Minot, MJ, “Single-Layer, Gradient Refractive Index Antireflection Films Effective from 0.35 to 2.5 Microns.” J. Opt. Soc. Am., 66 515–519 (1976)CrossRef Minot, MJ, “Single-Layer, Gradient Refractive Index Antireflection Films Effective from 0.35 to 2.5 Microns.” J. Opt. Soc. Am., 66 515–519 (1976)CrossRef
160.
Zurück zum Zitat Moghal, J, Kobler, J, Sauer, J, Best, J, Gardener, M, Watt, ARR, Wakefield, G, “High-Performance, Single-Layer Antireflective Optical Coatings Comprising Mesoporous Silica Nanoparticles.” ACS Appl. Mater. Interfaces, 4 854–859 (2012)CrossRef Moghal, J, Kobler, J, Sauer, J, Best, J, Gardener, M, Watt, ARR, Wakefield, G, “High-Performance, Single-Layer Antireflective Optical Coatings Comprising Mesoporous Silica Nanoparticles.” ACS Appl. Mater. Interfaces, 4 854–859 (2012)CrossRef
161.
Zurück zum Zitat Vincent, A, Babu, S, Brinley, E, Karakoti, A, Deshpande, S, Seal, S, “Role of Catalyst on Refractive Index Tunability of Porous Silica Antireflective Coatings by Sol-Gel Technique.” J. Phys. Chem. C, 111 8291–8298 (2007)CrossRef Vincent, A, Babu, S, Brinley, E, Karakoti, A, Deshpande, S, Seal, S, “Role of Catalyst on Refractive Index Tunability of Porous Silica Antireflective Coatings by Sol-Gel Technique.” J. Phys. Chem. C, 111 8291–8298 (2007)CrossRef
162.
Zurück zum Zitat Bautista, MC, Morales, A, “Silica Antireflective Films on Glass Produced by the Sol-Gel Method.” Sol. Energy Mater. Sol. Cells, 80 217–225 (2003)CrossRef Bautista, MC, Morales, A, “Silica Antireflective Films on Glass Produced by the Sol-Gel Method.” Sol. Energy Mater. Sol. Cells, 80 217–225 (2003)CrossRef
163.
Zurück zum Zitat Menna, P, Francia, GD, Ferrara, VL, “Porous Silicon in Solar Cells: A Review and a Description of Its Application as an AR Coating.” Sol. Energy Mater. Sol. Cells, 37 13–24 (1995)CrossRef Menna, P, Francia, GD, Ferrara, VL, “Porous Silicon in Solar Cells: A Review and a Description of Its Application as an AR Coating.” Sol. Energy Mater. Sol. Cells, 37 13–24 (1995)CrossRef
164.
Zurück zum Zitat Thomas, IM, “Method for the Preparation of Porous Silica Antireflection Coatings Varying in Refractive Index from 1.22 to 1.44.” Appl. Opt., 31 (28) 6145–6149 (1992)CrossRef Thomas, IM, “Method for the Preparation of Porous Silica Antireflection Coatings Varying in Refractive Index from 1.22 to 1.44.” Appl. Opt., 31 (28) 6145–6149 (1992)CrossRef
165.
Zurück zum Zitat Galeotti, F, Trespidi, F, Timò, G, Pasini, M, “Broadband and Crack-Free Antireflection Coatings by Self-Assembled Moth Eye Patterns.” ACS Appl. Mater. Interfaces, 6 5827–5834 (2014)CrossRef Galeotti, F, Trespidi, F, Timò, G, Pasini, M, “Broadband and Crack-Free Antireflection Coatings by Self-Assembled Moth Eye Patterns.” ACS Appl. Mater. Interfaces, 6 5827–5834 (2014)CrossRef
166.
Zurück zum Zitat Oh, SS, Choi, CG, Kim, YS, “Fabrication of Micro-lens Arrays with Moth-Eye Antireflective Nanostructures Using Thermal Imprinting Process.” Microelectron. Eng., 87 2328–2331 (2010)CrossRef Oh, SS, Choi, CG, Kim, YS, “Fabrication of Micro-lens Arrays with Moth-Eye Antireflective Nanostructures Using Thermal Imprinting Process.” Microelectron. Eng., 87 2328–2331 (2010)CrossRef
167.
Zurück zum Zitat Chen, Q, Hubbard, G, Shields, PA, Liu, C, Allsopp, DWE, Wang, WN, Abbot, S, “Broadband Moth-Eye Antireflection Coatings Fabricated by Low-cost Nanoimprinting.” Appl. Phys. Lett., 94 263118-1–263118-3 (2009) Chen, Q, Hubbard, G, Shields, PA, Liu, C, Allsopp, DWE, Wang, WN, Abbot, S, “Broadband Moth-Eye Antireflection Coatings Fabricated by Low-cost Nanoimprinting.” Appl. Phys. Lett., 94 263118-1–263118-3 (2009)
168.
Zurück zum Zitat Sun, CH, Jiang, P, Jiang, B, “Broadband Moth-Eye Antireflection Coatings on Silicon.” Appl. Phys. Lett., 92 (061112) 1–3 (2008) Sun, CH, Jiang, P, Jiang, B, “Broadband Moth-Eye Antireflection Coatings on Silicon.” Appl. Phys. Lett., 92 (061112) 1–3 (2008)
169.
Zurück zum Zitat Clapham, PB, Hutley, MC, “Reduction of Lens Reflection by the “Moth Eye” Principle.” Nature, 244 281–282 (1973)CrossRef Clapham, PB, Hutley, MC, “Reduction of Lens Reflection by the “Moth Eye” Principle.” Nature, 244 281–282 (1973)CrossRef
170.
Zurück zum Zitat Mazur, M, Wojcieszak, D, Kaczmarek, D, Domaradzki, J, Song, S, Gibson, D, Placido, F, Mazur, P, Kalisz, M, Poniedzialek, A, “Functional Photocatalytically Active and Scratch Resistant Antireflective Coating Based on TiO2 and SiO2.” Appl. Surf. Sci., 380 165–171 (2016)CrossRef Mazur, M, Wojcieszak, D, Kaczmarek, D, Domaradzki, J, Song, S, Gibson, D, Placido, F, Mazur, P, Kalisz, M, Poniedzialek, A, “Functional Photocatalytically Active and Scratch Resistant Antireflective Coating Based on TiO2 and SiO2.” Appl. Surf. Sci., 380 165–171 (2016)CrossRef
171.
Zurück zum Zitat Li, D, Wan, D, Zhu, X, Wang, Y, Han, Z, Han, S, Shan, Y, Huang, F, “Broadband Antireflection TiO2–SiO2 Stack Coatings with Refractive-Index-Grade Structure and Their Applications to Cu(In, Ga)Se2 Solar Cells.” Sol. Energy Mater. Sol. Cells, 130 505–512 (2014)CrossRef Li, D, Wan, D, Zhu, X, Wang, Y, Han, Z, Han, S, Shan, Y, Huang, F, “Broadband Antireflection TiO2–SiO2 Stack Coatings with Refractive-Index-Grade Structure and Their Applications to Cu(In, Ga)Se2 Solar Cells.” Sol. Energy Mater. Sol. Cells, 130 505–512 (2014)CrossRef
172.
Zurück zum Zitat Mazur, M, Wojcieszak, D, Domarazki, J, Kaczmarek, D, Song, S, Placido, F, “TiO2/SiO2 Multilayer as an Antireflective and Protective Coating Deposited by Microwave Assisted Magnetron Sputtering.” Opto-Electron. Rev., 21 233–238 (2013)CrossRef Mazur, M, Wojcieszak, D, Domarazki, J, Kaczmarek, D, Song, S, Placido, F, “TiO2/SiO2 Multilayer as an Antireflective and Protective Coating Deposited by Microwave Assisted Magnetron Sputtering.” Opto-Electron. Rev., 21 233–238 (2013)CrossRef
173.
Zurück zum Zitat Hinczewski, DS, Hinczewski, M, Tepehan, FZ, Tepehan, GG, “Optical Filters from SiO2 and TiO2 Multi-layers Using Sol–Gel Spin Coating Method.” Sol. Energy Mater. Sol. Cells, 87 181–196 (2005)CrossRef Hinczewski, DS, Hinczewski, M, Tepehan, FZ, Tepehan, GG, “Optical Filters from SiO2 and TiO2 Multi-layers Using Sol–Gel Spin Coating Method.” Sol. Energy Mater. Sol. Cells, 87 181–196 (2005)CrossRef
174.
Zurück zum Zitat Jeong, SH, Kim, JK, Kim, BS, Shim, SH, Lee, BT, “Characterization of SiO2 and TiO2 Films Prepared Using rf Magnetron Sputtering and Their Application to Anti-Reflection Coating.” Vacuum, 76 507–515 (2004)CrossRef Jeong, SH, Kim, JK, Kim, BS, Shim, SH, Lee, BT, “Characterization of SiO2 and TiO2 Films Prepared Using rf Magnetron Sputtering and Their Application to Anti-Reflection Coating.” Vacuum, 76 507–515 (2004)CrossRef
175.
Zurück zum Zitat Martinet, C, Paillard, V, Gagnaire, A, Joseph, J, “Deposition of SiO2 and TiO2 Thin Films by Plasma Enhanced Chemical Vapor Deposition for Antireflection Coating.” J. Non-Cryst. Solids, 216 77–82 (1997)CrossRef Martinet, C, Paillard, V, Gagnaire, A, Joseph, J, “Deposition of SiO2 and TiO2 Thin Films by Plasma Enhanced Chemical Vapor Deposition for Antireflection Coating.” J. Non-Cryst. Solids, 216 77–82 (1997)CrossRef
176.
Zurück zum Zitat Chen, D, Yan, Y, Westernberg, E, Niebauer, D, Sakaitani, N, Chaudhuri, SR, Sato, Y, Takamatsu, M, “Development of Anti-Reflection (AR) Coating on Plastic Panels for Display Applications.” J. Sol-Gel Sci. Technol., 19 77–82 (2000)CrossRef Chen, D, Yan, Y, Westernberg, E, Niebauer, D, Sakaitani, N, Chaudhuri, SR, Sato, Y, Takamatsu, M, “Development of Anti-Reflection (AR) Coating on Plastic Panels for Display Applications.” J. Sol-Gel Sci. Technol., 19 77–82 (2000)CrossRef
177.
Zurück zum Zitat Chunder, A, Etcheverry, K, Wadsworth, S, Boreman, GD, Zhai, L, “Fabrication of Anti-Reflection Coatings on Plastics Using the Spraying Layer-by-Layer Self-Assembly Technique.” J. Soc. Inf. Display, 17 389–395 (2009)CrossRef Chunder, A, Etcheverry, K, Wadsworth, S, Boreman, GD, Zhai, L, “Fabrication of Anti-Reflection Coatings on Plastics Using the Spraying Layer-by-Layer Self-Assembly Technique.” J. Soc. Inf. Display, 17 389–395 (2009)CrossRef
178.
Zurück zum Zitat Hiller, J, Mendelsohn, JD, Rubner, MF, “Reversibly Erasable Nanoporous Anti-reflection Coatings from Polyelectrolyte Multilayers.” Nat. Mater., 1 59–63 (2002)CrossRef Hiller, J, Mendelsohn, JD, Rubner, MF, “Reversibly Erasable Nanoporous Anti-reflection Coatings from Polyelectrolyte Multilayers.” Nat. Mater., 1 59–63 (2002)CrossRef
179.
Zurück zum Zitat Yang, S, Rubner, MF, “Micropatterning of Polymer Thin Films with pH-Sensitive and Cross-linkable Hydrogen-Bonded Polyelectrolyte Multilayers.” J. Am. Chem. Soc., 124 2100–2101 (2002)CrossRef Yang, S, Rubner, MF, “Micropatterning of Polymer Thin Films with pH-Sensitive and Cross-linkable Hydrogen-Bonded Polyelectrolyte Multilayers.” J. Am. Chem. Soc., 124 2100–2101 (2002)CrossRef
180.
Zurück zum Zitat Yam, CM, Kakkar, AK, “Molecular Self-Assembly of Dihydroxy-Terminated Molecules via Acid-Base Hydrolytic Chemistry on Silica Surfaces: Step-by-Step Multilayered Film Construction.” Langmuir, 15 3807–3815 (1999)CrossRef Yam, CM, Kakkar, AK, “Molecular Self-Assembly of Dihydroxy-Terminated Molecules via Acid-Base Hydrolytic Chemistry on Silica Surfaces: Step-by-Step Multilayered Film Construction.” Langmuir, 15 3807–3815 (1999)CrossRef
181.
Zurück zum Zitat Weng, KW, Huang, YP, “Preparation of TiO2 Thin Films on Glass Surfaces with Self-Cleaning Characteristics for Solar Concentrators.” Surf. Coat. Technol., 231 201–204 (2013)CrossRef Weng, KW, Huang, YP, “Preparation of TiO2 Thin Films on Glass Surfaces with Self-Cleaning Characteristics for Solar Concentrators.” Surf. Coat. Technol., 231 201–204 (2013)CrossRef
182.
Zurück zum Zitat Lai, Y, Tang, Y, Gong, J, Gong, D, Chi, L, Lin, C, Chen, Z, “Transparent Superhydrophobic/Superhydrophilic TiO2-Based Coatings for Self-Cleaning and Anti-Fogging.” J. Mater. Chem., 22 7420–7426 (2012)CrossRef Lai, Y, Tang, Y, Gong, J, Gong, D, Chi, L, Lin, C, Chen, Z, “Transparent Superhydrophobic/Superhydrophilic TiO2-Based Coatings for Self-Cleaning and Anti-Fogging.” J. Mater. Chem., 22 7420–7426 (2012)CrossRef
183.
Zurück zum Zitat Xi, B, Verma, LK, Li, J, Bhatia, CS, Danner, AJ, Yang, HS, Zeng, HC, “TiO2 Thin Films Prepared via Adsorptive Self-Assembly for Self-Cleaning Applications.” ACS Appl. Mater. Inter., 4 1093–1102 (2012)CrossRef Xi, B, Verma, LK, Li, J, Bhatia, CS, Danner, AJ, Yang, HS, Zeng, HC, “TiO2 Thin Films Prepared via Adsorptive Self-Assembly for Self-Cleaning Applications.” ACS Appl. Mater. Inter., 4 1093–1102 (2012)CrossRef
184.
Zurück zum Zitat Euvananont, C, Junin, C, Inpor, K, Limthongkul, P, Thanachayanont, C, “TiO2 Optical Coating Layers for Self-Cleaning Applications.” Ceram. Int., 34 1067–1071 (2008)CrossRef Euvananont, C, Junin, C, Inpor, K, Limthongkul, P, Thanachayanont, C, “TiO2 Optical Coating Layers for Self-Cleaning Applications.” Ceram. Int., 34 1067–1071 (2008)CrossRef
185.
Zurück zum Zitat Latthe, S, Liu, S, Terashima, C, Nakata, K, Fujishima, A, “Transparent, Adherent, and Photocatalytic SiO2-TiO2 Coatings on Polycarbonate for Self-Cleaning Applications.” Coatings, 4 497–507 (2014)CrossRef Latthe, S, Liu, S, Terashima, C, Nakata, K, Fujishima, A, “Transparent, Adherent, and Photocatalytic SiO2-TiO2 Coatings on Polycarbonate for Self-Cleaning Applications.” Coatings, 4 497–507 (2014)CrossRef
186.
Zurück zum Zitat Fateh, R, Dillert, R, Bahnemann, D, “Preparation and Characterization of Transparent Hydrophilic Photocatalytic TiO2/SiO2 Thin Films on Polycarbonate.” Langmuir, 29 3730–3739 (2013)CrossRef Fateh, R, Dillert, R, Bahnemann, D, “Preparation and Characterization of Transparent Hydrophilic Photocatalytic TiO2/SiO2 Thin Films on Polycarbonate.” Langmuir, 29 3730–3739 (2013)CrossRef
187.
Zurück zum Zitat Kesmez, Ö, Erdem Çamurlu, H, Burunkaya, E, Arpaç, E, “Sol-Gel Preparation and Characterization of Anti-Reflective and Self-Cleaning SiO2-TiO2 Double-Layer Nanometric Films.” Sol. Energy Mater. Sol. Cells, 93 1833–1839 (2009)CrossRef Kesmez, Ö, Erdem Çamurlu, H, Burunkaya, E, Arpaç, E, “Sol-Gel Preparation and Characterization of Anti-Reflective and Self-Cleaning SiO2-TiO2 Double-Layer Nanometric Films.” Sol. Energy Mater. Sol. Cells, 93 1833–1839 (2009)CrossRef
188.
Zurück zum Zitat Liu, Z, Zhang, X, Murakami, T, Fujishima, A, “Sol-Gel TiO2/SiO2 Bilayer Films with Self-Cleaning and Antireflection Properties.” Sol. Energy Mater. Sol. Cells, 92 1434–1438 (2008)CrossRef Liu, Z, Zhang, X, Murakami, T, Fujishima, A, “Sol-Gel TiO2/SiO2 Bilayer Films with Self-Cleaning and Antireflection Properties.” Sol. Energy Mater. Sol. Cells, 92 1434–1438 (2008)CrossRef
189.
Zurück zum Zitat Guan, K, “Relationship between Photocatalytic Activity, Hydrophilicity and Self-Cleaning Effect of TiO2/SiO2 Films.” Surf. Coat. Technol., 191 155–160 (2005)CrossRef Guan, K, “Relationship between Photocatalytic Activity, Hydrophilicity and Self-Cleaning Effect of TiO2/SiO2 Films.” Surf. Coat. Technol., 191 155–160 (2005)CrossRef
190.
Zurück zum Zitat Li, H, Jiang, M, Hu, D, Yan, Y, Li, Q, Dong, L, Xiong, C, “Solvent-Free Zirconia Nanofluid/Silica Single-Layer Multifunctional Hybrid Coatings.” Colloid. Surface. A, 464 26–32 (2015)CrossRef Li, H, Jiang, M, Hu, D, Yan, Y, Li, Q, Dong, L, Xiong, C, “Solvent-Free Zirconia Nanofluid/Silica Single-Layer Multifunctional Hybrid Coatings.” Colloid. Surface. A, 464 26–32 (2015)CrossRef
191.
Zurück zum Zitat Prado, R, Beobide, G, Marcaide, A, Goikoetxea, J, Aranzabe, A, “Development of Multifunctional Sol-Gel Coatings: Anti-Reflection Coatings with Enhanced Self-Cleaning Capacity.” Sol. Energy Mater. Sol. Cells, 94 1081–1088 (2010)CrossRef Prado, R, Beobide, G, Marcaide, A, Goikoetxea, J, Aranzabe, A, “Development of Multifunctional Sol-Gel Coatings: Anti-Reflection Coatings with Enhanced Self-Cleaning Capacity.” Sol. Energy Mater. Sol. Cells, 94 1081–1088 (2010)CrossRef
192.
Zurück zum Zitat Zhao, X, Zhao, Q, Yu, J, Liu, B, “Development of Multifunctional Photoactive Self-Cleaning Glasses.” J. Non-Cryst. Solids, 354 1424–1430 (2008)CrossRef Zhao, X, Zhao, Q, Yu, J, Liu, B, “Development of Multifunctional Photoactive Self-Cleaning Glasses.” J. Non-Cryst. Solids, 354 1424–1430 (2008)CrossRef
193.
Zurück zum Zitat Okada, M, Yamada, Y, Jin, P, Tazawa, M, Yoshimura, K, “Fabrication of Multifunctional Coating Which Combines Low-E Property and Visible-Light-Responsive Photocatalytic Activity.” Thin Solid Films, 442 217–221 (2003)CrossRef Okada, M, Yamada, Y, Jin, P, Tazawa, M, Yoshimura, K, “Fabrication of Multifunctional Coating Which Combines Low-E Property and Visible-Light-Responsive Photocatalytic Activity.” Thin Solid Films, 442 217–221 (2003)CrossRef
194.
Zurück zum Zitat Kuhr, M, Bauer, S, Rothhaar, U, Wolff, D, “Coatings on Plastics with the PICVD Technology.” Thin Solid Films, 442 107–116 (2003)CrossRef Kuhr, M, Bauer, S, Rothhaar, U, Wolff, D, “Coatings on Plastics with the PICVD Technology.” Thin Solid Films, 442 107–116 (2003)CrossRef
Metadaten
Titel
Recent progress of functional coating materials and technologies for polycarbonate
verfasst von
Namil Kim
Publikationsdatum
29.11.2016
Verlag
Springer US
Erschienen in
Journal of Coatings Technology and Research / Ausgabe 1/2017
Print ISSN: 1547-0091
Elektronische ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-016-9837-x

Weitere Artikel der Ausgabe 1/2017

Journal of Coatings Technology and Research 1/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.