2014 | OriginalPaper | Buchkapitel
Recognition of Brain Structures from MER-Signals Using Dynamic MFCC Analysis and a HMC Classifier
verfasst von : Mauricio Holguin, German A. Holguin, Hernán Darío Vargas Cardona, Genaro Daza, Enrique Guijarro, Alvaro Orozco
Erschienen in: XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013
Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.
Wählen Sie Textabschnitte aus um mit Künstlicher Intelligenz passenden Patente zu finden. powered by
Markieren Sie Textabschnitte, um KI-gestützt weitere passende Inhalte zu finden. powered by (Link öffnet in neuem Fenster)
A novel methodology for the characterization of Microelectrode Recording signals (MER-signals) in Parkinson’s patients in order to recognize basal ganglia in the brain is presented in this work. The most common approach of MER signals analysis consists of time-frequency analysis through Short Time Fourier Transform, Wavelet Transform, or Filters Banks. We present an approach based on MEL-Frequency Cepstral Coefficients (MFCC) and K-means clustering to obtain dynamic features from MER-signals. A Hidden Markov Chain (HMC) with 1, 2, 3, and 4 states was used for the classification of four classes of basal ganglia: Thalamus (Tal), Zone Incerta (ZI), Subthalamic Nucleus (STN) and Substantia Nigra reticulata (SNr), achieving a positive identification over 82%. A performance analysis for each HHM model is presented using ROC curves.