Skip to main content
Erschienen in: Cellulose 4/2018

28.02.2018 | Original Paper

Recombinant family 3 carbohydrate-binding module as a new additive for enhanced enzymatic saccharification of whole slurry from autohydrolyzed Eucalyptus globulus wood

verfasst von: Carla Oliveira, Aloia Romaní, Daniel Gomes, Joana T. Cunha, Francisco M. Gama, Lucília Domingues

Erschienen in: Cellulose | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

By-products resulting from lignocellulosics pretreatment affect the digestibility of resulting whole slurries, but this can be minimized by additives supplementation. In this work, a family 3 carbohydrate-binding module (CBM3), recombinantly produced from Escherichia coli, was used as additive in the enzymatic hydrolysis of the whole slurry from autohydrolyzed Eucalyptus globulus wood (EGW). At the higher dosage used (30 mg/gsolids), CBM3 led to an increase in glucose yield from 75 to 89%. A similar result was obtained for bovine serum albumin (BSA) (11% increase), which has a well-documented additive effect. CBM3 had no effect on the non-productive binding of enzymes, since it could not bind to EGW lignin, while it rapidly bound to cellulose, as shown by fluorescence microscopy. CBM3 is a valid additive for enhanced lignocellulosic saccharification and a valuable alternative to costly additives (e.g. polyethylene glycol) as it can be affordably produced from heterologous bacterium, thus contributing to more cost-efficient biomass valorization bioprocesses.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Andrade FK, Costa R, Domingues L, Soares R, Gama M (2010) Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide. Acta Biomater 6:4034–4041CrossRef Andrade FK, Costa R, Domingues L, Soares R, Gama M (2010) Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide. Acta Biomater 6:4034–4041CrossRef
Zurück zum Zitat Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:4CrossRef Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:4CrossRef
Zurück zum Zitat Arevalo-Gallegos A, Ahmad Z, Asgher M, Parra-Saldivar R, Iqbal HM (2017) Lignocellulose: a sustainable material to produce value-added products with a zero waste approach-A review. Int J Biol Macromol 99:308–318CrossRef Arevalo-Gallegos A, Ahmad Z, Asgher M, Parra-Saldivar R, Iqbal HM (2017) Lignocellulose: a sustainable material to produce value-added products with a zero waste approach-A review. Int J Biol Macromol 99:308–318CrossRef
Zurück zum Zitat Bayer EA, Kenig R, Lamed R (1983) Adherence of Clostridium thermocellum to cellulose. J Bacteriol 156:818–827 Bayer EA, Kenig R, Lamed R (1983) Adherence of Clostridium thermocellum to cellulose. J Bacteriol 156:818–827
Zurück zum Zitat Bayer EA, Lamed R, White BA, Flint HJ (2008) From cellulosomes to cellulosomics. Chem Rec 8:364–377CrossRef Bayer EA, Lamed R, White BA, Flint HJ (2008) From cellulosomes to cellulosomics. Chem Rec 8:364–377CrossRef
Zurück zum Zitat Capolupo L, Faraco V (2016) Green methods of lignocellulose pretreatment for biorefinery development. Appl Microbiol Biotechnol 100:9451–9467CrossRef Capolupo L, Faraco V (2016) Green methods of lignocellulose pretreatment for biorefinery development. Appl Microbiol Biotechnol 100:9451–9467CrossRef
Zurück zum Zitat Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306CrossRef Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306CrossRef
Zurück zum Zitat Gao SH, You C, Renneckar S, Bao J, Zhang YHP (2014) New insights into enzymatic hydrolysis of heterogeneous cellulose by using carbohydrate-binding module 3 containing GFP and carbohydrate-binding module 17 containing CFP. Biotechnol Biofuels 7:24CrossRef Gao SH, You C, Renneckar S, Bao J, Zhang YHP (2014) New insights into enzymatic hydrolysis of heterogeneous cellulose by using carbohydrate-binding module 3 containing GFP and carbohydrate-binding module 17 containing CFP. Biotechnol Biofuels 7:24CrossRef
Zurück zum Zitat Gomes D, Rodrigues AC, Domingues L, Gama M (2015) Cellulase recycling in biorefineries—Is it possible? Appl Microbiol Biotechnol 99:4131–4143CrossRef Gomes D, Rodrigues AC, Domingues L, Gama M (2015) Cellulase recycling in biorefineries—Is it possible? Appl Microbiol Biotechnol 99:4131–4143CrossRef
Zurück zum Zitat Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2011) Biological pretreatment of cellulose: enhancing enzymatic hydrolysis rate using cellulose-binding domains from cellulases. Bioresour Technol 102:2910–2915CrossRef Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2011) Biological pretreatment of cellulose: enhancing enzymatic hydrolysis rate using cellulose-binding domains from cellulases. Bioresour Technol 102:2910–2915CrossRef
Zurück zum Zitat Kim IJ, Lee HJ, Choi IG, Kim KH (2014) Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase. Appl Microbiol Biotechnol 98:8469–8480CrossRef Kim IJ, Lee HJ, Choi IG, Kim KH (2014) Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase. Appl Microbiol Biotechnol 98:8469–8480CrossRef
Zurück zum Zitat Ko JK, Um Y, Park Y-C, Seo J-H, Kim K-H (2015) Compounds inhibiting the bioconversion of hydrothermally pretreated lignocelllulose. Appl Microbiol Biotechnol 99:4201–4212CrossRef Ko JK, Um Y, Park Y-C, Seo J-H, Kim K-H (2015) Compounds inhibiting the bioconversion of hydrothermally pretreated lignocelllulose. Appl Microbiol Biotechnol 99:4201–4212CrossRef
Zurück zum Zitat Lamed R, Naimark J, Morgenstern E, Bayer EA (1987) Specialized cell surface structures in cellulolytic bacteria. J Bacteriol 169:3792–3800CrossRef Lamed R, Naimark J, Morgenstern E, Bayer EA (1987) Specialized cell surface structures in cellulolytic bacteria. J Bacteriol 169:3792–3800CrossRef
Zurück zum Zitat Liu H, Sun JL, Leu SY, Chen SC (2016) Toward a fundamental understanding of cellulase-lignin interactions in the whole slurry enzymatic saccharification process. Biofuels Bioprod Biorefining 10:648–663CrossRef Liu H, Sun JL, Leu SY, Chen SC (2016) Toward a fundamental understanding of cellulase-lignin interactions in the whole slurry enzymatic saccharification process. Biofuels Bioprod Biorefining 10:648–663CrossRef
Zurück zum Zitat Machado J, Araújo A, Pinto R, Gama FM (2009) Studies on the interaction of the carbohydrate binding module 3 from the Clostridium thermocellum CipA scaffolding protein with cellulose and paper fibres. Cellulose 16:817–824CrossRef Machado J, Araújo A, Pinto R, Gama FM (2009) Studies on the interaction of the carbohydrate binding module 3 from the Clostridium thermocellum CipA scaffolding protein with cellulose and paper fibres. Cellulose 16:817–824CrossRef
Zurück zum Zitat Mello BL, Polikarpov I (2014) Family 1 carbohydrate binding-modules enhance saccharification rates. AMB Express 4:36CrossRef Mello BL, Polikarpov I (2014) Family 1 carbohydrate binding-modules enhance saccharification rates. AMB Express 4:36CrossRef
Zurück zum Zitat Mhlongo SI, den Haan R, Viljoen-Bloom M, van Zyl WH (2015) Lignocellulosic hydrolysate inhibitors selectively inhibit/deactivate cellulose performance. Enzyme Microb Technol 81:16–22CrossRef Mhlongo SI, den Haan R, Viljoen-Bloom M, van Zyl WH (2015) Lignocellulosic hydrolysate inhibitors selectively inhibit/deactivate cellulose performance. Enzyme Microb Technol 81:16–22CrossRef
Zurück zum Zitat Oliveira C, Carvalho V, Domingues L, Gama FM (2015a) Recombinant CBM-fusion technology—applications overview. Biotechnol Adv 33:358–369CrossRef Oliveira C, Carvalho V, Domingues L, Gama FM (2015a) Recombinant CBM-fusion technology—applications overview. Biotechnol Adv 33:358–369CrossRef
Zurück zum Zitat Oliveira C, Sepúlveda G, Aguiar TQ, Gama FM, Domingues L (2015b) Modification of paper properties using carbohydrate-binding module 3 from the Clostridium thermocellum CipA scaffolding protein produced in Pichia pastoris: elucidation of the glycosylation effect. Cellulose 22:2755–2765CrossRef Oliveira C, Sepúlveda G, Aguiar TQ, Gama FM, Domingues L (2015b) Modification of paper properties using carbohydrate-binding module 3 from the Clostridium thermocellum CipA scaffolding protein produced in Pichia pastoris: elucidation of the glycosylation effect. Cellulose 22:2755–2765CrossRef
Zurück zum Zitat Pinto R, Moreira S, Mota M, Gama M (2004) Studies on the cellulose-binding domains adsorption to cellulose. Langmuir 20:1409–1413CrossRef Pinto R, Moreira S, Mota M, Gama M (2004) Studies on the cellulose-binding domains adsorption to cellulose. Langmuir 20:1409–1413CrossRef
Zurück zum Zitat Rahikainen JL, Moilanen U, Nurmi-Rantala S, Lappas A, Koivula A, Viikari L, Kruus K (2013) Effect of temperature on lignin-derived inhibition studied with three structurally different cellobiohydrolases. Bioresour Technol 146:118–125CrossRef Rahikainen JL, Moilanen U, Nurmi-Rantala S, Lappas A, Koivula A, Viikari L, Kruus K (2013) Effect of temperature on lignin-derived inhibition studied with three structurally different cellobiohydrolases. Bioresour Technol 146:118–125CrossRef
Zurück zum Zitat Ramos R, Moreira S, Rodrigues A, Gama M, Domingues L (2013) Recombinant expression and purification of the antimicrobial peptide magainin-2. Biotechnol Prog 29:17–22CrossRef Ramos R, Moreira S, Rodrigues A, Gama M, Domingues L (2013) Recombinant expression and purification of the antimicrobial peptide magainin-2. Biotechnol Prog 29:17–22CrossRef
Zurück zum Zitat Rodrigues AC, Haven MO, Lindedam J, Felby C, Gama M (2015) Celluclast and Cellic(R) CTec2: saccharification/fermentation of wheat straw, solid-liquid partition and potential of enzyme recycling by alkaline washing. Enzyme Microb Technol 79–80:70–77CrossRef Rodrigues AC, Haven MO, Lindedam J, Felby C, Gama M (2015) Celluclast and Cellic(R) CTec2: saccharification/fermentation of wheat straw, solid-liquid partition and potential of enzyme recycling by alkaline washing. Enzyme Microb Technol 79–80:70–77CrossRef
Zurück zum Zitat Romaní A, Garrote G, Alonso JL, Parajó JC (2010) Bioethanol production from hydrothermally pretreated Eucalyptus globulus wood. Bioresour Technol 101:8706–8712CrossRef Romaní A, Garrote G, Alonso JL, Parajó JC (2010) Bioethanol production from hydrothermally pretreated Eucalyptus globulus wood. Bioresour Technol 101:8706–8712CrossRef
Zurück zum Zitat Romaní A, Ruiz HA, Pereira FB, Domingues L, Teixeira JA (2014) Effect of hemicellulose liquid phase on the enzymatic hydrolysis of autohydrolyzed Eucalyptus globulus wood. Biomass Conv Bioref 4:77–86CrossRef Romaní A, Ruiz HA, Pereira FB, Domingues L, Teixeira JA (2014) Effect of hemicellulose liquid phase on the enzymatic hydrolysis of autohydrolyzed Eucalyptus globulus wood. Biomass Conv Bioref 4:77–86CrossRef
Zurück zum Zitat Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y et al (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J 15:5739–5751 Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y et al (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J 15:5739–5751
Zurück zum Zitat Várnai A, Makela MR, Djajadi DT, Rahikainen J, Hatakka A, Viikari L (2014) Carbohydrate-binding modules of fungal cellulases: occurrence in nature, function, and relevance in industrial biomass conversion. Adv Appl Microbiol 88:103–165CrossRef Várnai A, Makela MR, Djajadi DT, Rahikainen J, Hatakka A, Viikari L (2014) Carbohydrate-binding modules of fungal cellulases: occurrence in nature, function, and relevance in industrial biomass conversion. Adv Appl Microbiol 88:103–165CrossRef
Zurück zum Zitat Voutilainen SP, Nurmi-Rantala S, Penttilä M, Koivula A (2014) Engineering chimeric thermostable GH7 cellobiohydrolases in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 98:2991–3001CrossRef Voutilainen SP, Nurmi-Rantala S, Penttilä M, Koivula A (2014) Engineering chimeric thermostable GH7 cellobiohydrolases in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 98:2991–3001CrossRef
Zurück zum Zitat Wan W, Wang D, Gao X, Hong J (2011) Expression of family 3 cellulose-binding module (CBM3) as an affinity tag for recombinant proteins in yeast. Appl Microbiol Biotechnol 91:789–798CrossRef Wan W, Wang D, Gao X, Hong J (2011) Expression of family 3 cellulose-binding module (CBM3) as an affinity tag for recombinant proteins in yeast. Appl Microbiol Biotechnol 91:789–798CrossRef
Zurück zum Zitat Wang H, Kobayashi S, Mochidzuki K (2015) Effect of non-enzymatic proteins on enzymatic hydrolysis and simultaneous saccharification and fermentation of different lignocellulosic materials. Bioresour Technol 190:373–380CrossRef Wang H, Kobayashi S, Mochidzuki K (2015) Effect of non-enzymatic proteins on enzymatic hydrolysis and simultaneous saccharification and fermentation of different lignocellulosic materials. Bioresour Technol 190:373–380CrossRef
Zurück zum Zitat Yan L, Zhang L, Yang B (2014) Enhancement of total sugar and lignin yields through dissolution of poplar wood by hot water and dilute acid flowthrough pretreatment. Biotechnol Biofuels 7:76CrossRef Yan L, Zhang L, Yang B (2014) Enhancement of total sugar and lignin yields through dissolution of poplar wood by hot water and dilute acid flowthrough pretreatment. Biotechnol Biofuels 7:76CrossRef
Zurück zum Zitat Yang B, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94:611–617CrossRef Yang B, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94:611–617CrossRef
Zurück zum Zitat Zhai R, Hu J, Saddler JN (2015) What are the major components in steam pretreated lignocellulosic biomass that inhibit the efficcacy of cellulase enzyme mixtures? ACS Sustain Chem Eng 4:3429–3436CrossRef Zhai R, Hu J, Saddler JN (2015) What are the major components in steam pretreated lignocellulosic biomass that inhibit the efficcacy of cellulase enzyme mixtures? ACS Sustain Chem Eng 4:3429–3436CrossRef
Metadaten
Titel
Recombinant family 3 carbohydrate-binding module as a new additive for enhanced enzymatic saccharification of whole slurry from autohydrolyzed Eucalyptus globulus wood
verfasst von
Carla Oliveira
Aloia Romaní
Daniel Gomes
Joana T. Cunha
Francisco M. Gama
Lucília Domingues
Publikationsdatum
28.02.2018
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 4/2018
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-1722-6

Weitere Artikel der Ausgabe 4/2018

Cellulose 4/2018 Zur Ausgabe