Skip to main content

2018 | OriginalPaper | Buchkapitel

Reconciliation Feasibility of Non-binary Gene Trees Under a Duplication-Loss-Coalescence Model

verfasst von : Ricson Cheng, Matthew Dohlen, Chen Pekker, Gabriel Quiroz, Jincheng Wang, Ran Libeskind-Hadas, Yi-Chieh Wu

Erschienen in: Algorithms for Computational Biology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Phylogenetic tree reconciliation is a widely-used method to understand gene family evolution. For eukaryotes, the duplication-loss-coalescence (DLC) model seeks to explain incongruence between gene trees and species trees by postulating gene duplication, gene loss, and deep coalescence events. While efficient algorithms exist for inferring optimal DLC reconciliations, they assume that only one individual is sampled per species. In recent work, we demonstrated that with additional samples, there exist gene tree topologies that are impossible to reconcile with any species tree. However, our algorithm required the gene tree to be binary whereas, in practice, gene trees are often non-binary due to uncertainty in the reconstruction process. In this work, we consider for the first time reconciliation under the DLC model with non-binary gene trees. Specifically, we describe an efficient algorithm that takes as input an arbitrary gene tree with an arbitrary number of samples per species and either (1) determines that there is a valid reconcilable binary resolution of that tree and constructs one such resolution or (2) determines that there exists no valid reconcilable binary resolution of that tree. Our work makes it possible to systematically analyze non-binary gene trees and will help biologists identify incorrect gene tree topologies and thus avoid incorrect evolutionary inferences.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Branch lengths are not used in this work, so a tree always refers to a tree topology.
 
2
The proof considers only the single unique path between two genes in a binary tree.
 
3
Note that this locus tree is distinct from the locus tree of Rasmussen and Kellis [25].
 
4
For example, in Fig. 3, swapping leaves labeled \(a_2\) with leaves labeled \(c_1\) would result in an irreconcilable LEG and thus a multifurcating gene tree for which there exists no reconcilable binarization.
 
5
While most reconciliation algorithms do not support multiple samples per species nor non-binary gene trees, the former extension is fairly straightforward while the latter requires new algorithms.
 
Literatur
1.
Zurück zum Zitat Åkerborg, Ö., Sennblad, B., Arvestad, L., Lagergren, J.: Simultaneous Bayesian gene tree reconstruction and reconciliation analysis. Proc. Nat. Acad. Sci. USA 106(14), 5714–5719 (2009)CrossRef Åkerborg, Ö., Sennblad, B., Arvestad, L., Lagergren, J.: Simultaneous Bayesian gene tree reconstruction and reconciliation analysis. Proc. Nat. Acad. Sci. USA 106(14), 5714–5719 (2009)CrossRef
2.
Zurück zum Zitat Albalat, R., Cañestro, C.: Evolution by gene loss. Nat. Rev. Genet. 17, 379 (2016)CrossRef Albalat, R., Cañestro, C.: Evolution by gene loss. Nat. Rev. Genet. 17, 379 (2016)CrossRef
3.
Zurück zum Zitat Bansal, M.S., Alm, E.J., Kellis, M.: Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 28(12), i283–i291 (2012)CrossRef Bansal, M.S., Alm, E.J., Kellis, M.: Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 28(12), i283–i291 (2012)CrossRef
4.
Zurück zum Zitat Burleigh, J.G., Bansal, M.S., Eulenstein, O., Hartmann, S., Wehe, A., Vision, T.J.: Genome-scale phylogenetics: inferring the plant tree of life from 18,896 gene trees. Syst. Biol. 60(2), 117–125 (2011)CrossRef Burleigh, J.G., Bansal, M.S., Eulenstein, O., Hartmann, S., Wehe, A., Vision, T.J.: Genome-scale phylogenetics: inferring the plant tree of life from 18,896 gene trees. Syst. Biol. 60(2), 117–125 (2011)CrossRef
6.
Zurück zum Zitat Chauve, C., Doyon, J.P., El-Mabrouk, N.: Gene family evolution by duplication, speciation, and loss. J. Comput. Biol. 15(8), 1043–1062 (2008)MathSciNetCrossRef Chauve, C., Doyon, J.P., El-Mabrouk, N.: Gene family evolution by duplication, speciation, and loss. J. Comput. Biol. 15(8), 1043–1062 (2008)MathSciNetCrossRef
7.
Zurück zum Zitat Chen, K., Durand, D., Farach-Colton, M.: NOTUNG: a program for dating gene duplications and optimizing gene family trees. J. Comput. Biol. 7(3–4), 429–447 (2000)CrossRef Chen, K., Durand, D., Farach-Colton, M.: NOTUNG: a program for dating gene duplications and optimizing gene family trees. J. Comput. Biol. 7(3–4), 429–447 (2000)CrossRef
8.
Zurück zum Zitat Chen, Z.Z., Deng, F., Wang, L.: Simultaneous identification of duplications, losses, and lateral gene transfers. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(5), 1515–1528 (2012)CrossRef Chen, Z.Z., Deng, F., Wang, L.: Simultaneous identification of duplications, losses, and lateral gene transfers. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(5), 1515–1528 (2012)CrossRef
10.
Zurück zum Zitat David, L.A., Alm, E.J.: Rapid evolutionary innovation during an archaean genetic expansion. Nature 469(7328), 93–96 (2011)CrossRef David, L.A., Alm, E.J.: Rapid evolutionary innovation during an archaean genetic expansion. Nature 469(7328), 93–96 (2011)CrossRef
11.
Zurück zum Zitat Degnan, J.H., Rosenberg, N.A.: Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24(6), 332–340 (2009)CrossRef Degnan, J.H., Rosenberg, N.A.: Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24(6), 332–340 (2009)CrossRef
12.
Zurück zum Zitat Delsuc, F., Brinkmann, H., Philippe, H.: Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 6(5), 361–375 (2005)CrossRef Delsuc, F., Brinkmann, H., Philippe, H.: Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 6(5), 361–375 (2005)CrossRef
13.
Zurück zum Zitat Doyon, J.-P., Scornavacca, C., Gorbunov, K.Y., Szöllősi, G.J., Ranwez, V., Berry, V.: An efficient algorithm for gene/species trees parsimonious reconciliation with losses, duplications and transfers. In: Tannier, E. (ed.) RECOMB-CG 2010. LNCS, vol. 6398, pp. 93–108. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16181-0_9CrossRef Doyon, J.-P., Scornavacca, C., Gorbunov, K.Y., Szöllősi, G.J., Ranwez, V., Berry, V.: An efficient algorithm for gene/species trees parsimonious reconciliation with losses, duplications and transfers. In: Tannier, E. (ed.) RECOMB-CG 2010. LNCS, vol. 6398, pp. 93–108. Springer, Heidelberg (2010). https://​doi.​org/​10.​1007/​978-3-642-16181-0_​9CrossRef
14.
Zurück zum Zitat Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A., Matsuda, G.: Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Syst. Zool. 28(2), 132–163 (1979)CrossRef Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A., Matsuda, G.: Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Syst. Zool. 28(2), 132–163 (1979)CrossRef
15.
Zurück zum Zitat Górecki, P., Tiuryn, J.: Dls-trees: a model of evolutionary scenarios. Theor. Comput. Sci. 359(1–3), 378–399 (2006)MathSciNetCrossRef Górecki, P., Tiuryn, J.: Dls-trees: a model of evolutionary scenarios. Theor. Comput. Sci. 359(1–3), 378–399 (2006)MathSciNetCrossRef
16.
Zurück zum Zitat Koonin, E.V.: Orthologs, paralogs, and evolutionary genomics. Annu. Rev. Genet. 39(1), 309–338 (2005)CrossRef Koonin, E.V.: Orthologs, paralogs, and evolutionary genomics. Annu. Rev. Genet. 39(1), 309–338 (2005)CrossRef
17.
Zurück zum Zitat Kordi, M., Bansal, M.S.: Exact algorithms for duplication-transfer-loss reconciliation with non-binary gene trees. IEEE/ACM Trans. Comput. Biol. Bioinform. PP(99), 1 (2018) Kordi, M., Bansal, M.S.: Exact algorithms for duplication-transfer-loss reconciliation with non-binary gene trees. IEEE/ACM Trans. Comput. Biol. Bioinform. PP(99), 1 (2018)
19.
Zurück zum Zitat Maddison, W.P.: Gene trees in species trees. Syst. Biol. 46(3), 523–536 (1997)CrossRef Maddison, W.P.: Gene trees in species trees. Syst. Biol. 46(3), 523–536 (1997)CrossRef
20.
Zurück zum Zitat Ochman, H.: Lateral and oblique gene transfer. Curr. Opin. Genet. Dev. 11(6), 616–619 (2001)CrossRef Ochman, H.: Lateral and oblique gene transfer. Curr. Opin. Genet. Dev. 11(6), 616–619 (2001)CrossRef
22.
Zurück zum Zitat Page, R.D.: Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Syst. Biol. 43(1), 58–77 (1994) Page, R.D.: Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Syst. Biol. 43(1), 58–77 (1994)
23.
Zurück zum Zitat Rannala, B., Yang, Z.: Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164(4), 1645–1656 (2003) Rannala, B., Yang, Z.: Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164(4), 1645–1656 (2003)
24.
Zurück zum Zitat Rasmussen, M.D., Kellis, M.: A Bayesian approach for fast and accurate gene tree reconstruction. Mol. Biol. Evol. 28(1), 273–290 (2011)CrossRef Rasmussen, M.D., Kellis, M.: A Bayesian approach for fast and accurate gene tree reconstruction. Mol. Biol. Evol. 28(1), 273–290 (2011)CrossRef
25.
Zurück zum Zitat Rasmussen, M.D., Kellis, M.: Unified modeling of gene duplication, loss, and coalescence using a locus tree. Genome. Res. 22, 755–765 (2012)CrossRef Rasmussen, M.D., Kellis, M.: Unified modeling of gene duplication, loss, and coalescence using a locus tree. Genome. Res. 22, 755–765 (2012)CrossRef
26.
Zurück zum Zitat Rogers, J., Fishberg, A., Youngs, N., Wu, Y.C.: Reconciliation feasibility in the presence of gene duplication, loss, and coalescence with multiple individuals per species. BMC Bioinform. 18, 292 (2017)CrossRef Rogers, J., Fishberg, A., Youngs, N., Wu, Y.C.: Reconciliation feasibility in the presence of gene duplication, loss, and coalescence with multiple individuals per species. BMC Bioinform. 18, 292 (2017)CrossRef
27.
Zurück zum Zitat Slowinski, J.B.: Molecular polytomies. Mol. Phylogenet. Evol. 19(1), 114–120 (2001)CrossRef Slowinski, J.B.: Molecular polytomies. Mol. Phylogenet. Evol. 19(1), 114–120 (2001)CrossRef
28.
Zurück zum Zitat Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006)CrossRef Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006)CrossRef
29.
Zurück zum Zitat Tofigh, A., Hallett, M., Lagergren, J.: Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(2), 517–535 (2011)CrossRef Tofigh, A., Hallett, M., Lagergren, J.: Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(2), 517–535 (2011)CrossRef
30.
Zurück zum Zitat Vilella, A.J., Severin, J., Ureta-Vidal, A., Heng, L., Durbin, R., Birney, E.: Ensemblcompara genetrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome. Res. 19(2), 327–335 (2009)CrossRef Vilella, A.J., Severin, J., Ureta-Vidal, A., Heng, L., Durbin, R., Birney, E.: Ensemblcompara genetrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome. Res. 19(2), 327–335 (2009)CrossRef
31.
Zurück zum Zitat Wu, T., Zhang, L.: Structural properties of the reconciliation space and their applications in enumerating nearly-optimal reconciliations between a gene tree and a species tree. BMC Bioinform. 12(Suppl 9), S7 (2011)CrossRef Wu, T., Zhang, L.: Structural properties of the reconciliation space and their applications in enumerating nearly-optimal reconciliations between a gene tree and a species tree. BMC Bioinform. 12(Suppl 9), S7 (2011)CrossRef
32.
Zurück zum Zitat Wu, Y.C., Rasmussen, M.D., Bansal, M.S., Kellis, M.: Most parsimonious reconciliation in the presence of gene duplication, loss, and deep coalescence using labeled coalescent trees. Genome Res. 24(3), 475–486 (2014)CrossRef Wu, Y.C., Rasmussen, M.D., Bansal, M.S., Kellis, M.: Most parsimonious reconciliation in the presence of gene duplication, loss, and deep coalescence using labeled coalescent trees. Genome Res. 24(3), 475–486 (2014)CrossRef
33.
Zurück zum Zitat Zhang, L.: From gene trees to species trees ii: species tree inference by minimizing deep coalescence events. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(6), 1685–1691 (2011)CrossRef Zhang, L.: From gene trees to species trees ii: species tree inference by minimizing deep coalescence events. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(6), 1685–1691 (2011)CrossRef
35.
Zurück zum Zitat Zmasek, C.M., Eddy, S.R.: A simple algorithm to infer gene duplication and speciation events on a gene tree. Bioinformatics 17(9), 821–828 (2001)CrossRef Zmasek, C.M., Eddy, S.R.: A simple algorithm to infer gene duplication and speciation events on a gene tree. Bioinformatics 17(9), 821–828 (2001)CrossRef
Metadaten
Titel
Reconciliation Feasibility of Non-binary Gene Trees Under a Duplication-Loss-Coalescence Model
verfasst von
Ricson Cheng
Matthew Dohlen
Chen Pekker
Gabriel Quiroz
Jincheng Wang
Ran Libeskind-Hadas
Yi-Chieh Wu
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-91938-6_2